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1. Introduction 

One of the effective means of braking of cracks 

(slots) may be temperature and thermoelastic fields [1, 2]. 

In the fracture mechanics the problem of "healing" of a 

crack existing in the construction has an important value. 

Influence of heat source decreases [3] deformation of the 

extended plane in the direction perpendicular to the crack 

(slot), owing to which the stress intensity factor in the vi-

cinity of the crack end decreases.  

 Under certain ratio of physical and geometrical 

parameters of the sheet element and heat source, in the 

sheet element there will arise contractive stresses, zones 

where the slot will make a contact at some area and at this 

area of slot faces there will arise contact stresses. Thus, the 

construction failure may be prevented by creating thermal 

fields along the way of the slot growth. Creation of thermal 

fields is justified by the ease of obtaining and comprehen-

sive nature of influence on failure process. Furthermore, 

technical ease of obtaining in the extended object of tem-

perature and thermoelastic field any in size and distribution 

creates wide possibilities of change of direction and brak-

ing of crack propagation. Goal of the paper is to develop a 

mathematical model of slot braking by means of tempera-

ture fields.  

 

2. Problem statement 

 

Assume that an unbounded elastic isotropic plane 

is weakened by a variable )(xh  thickness rectilinear slot   

comparable with elastic deformations. At infinity the plane 

is subjected to uniform tension along the ordinate axis 

0 

y . The slot faces are free from external loads. For 

braking the growth of the slot along the way of its growth, 

the zone of compressive stresses are formed by heating the 

domain 21 SSS   to temperature T0 by the heat source. 

The following assumptions were accepted: all thermoelas-

tic characteristics of the plane's material are temperature 

independent: the plate's material is a homogeneous iso-

tropic medium. It is assumed that at initial time t = 0 the 

arbitrary domain 21 SSS   along the way of the growth 

of the slot in the plane instantly heats up to constant tem-

perature T = T0. The remaining part of the plane at initial 

moment has the temperature Т = 0.  

 For many metallic materials (steels, alluminium 

alloy and so on) at temperature change to 300-400ºC the 

dependence of thermoelastic characteristics weakly chang-

es according to temperature. This fact was experimentally 

established [4, 5]. Thus for all structural materials there 

exists such a temperature range in which the assumption on 

steadiness of characteristics of the material is correct, it is 

established on the basis of temperature dependence of the 

modulus of elasticity. The experiments [1] show that by 

heating the track of the crack way to 70-100ºC, retardation 

and braking of the crack is observed. We can cite other 

papers [6, 7], where there is a positive answer on the ob-

servable effects of partial closing of the crack. Behavior of 

stresses near the ends of the cracks is investigated and 

stress intensity factors are determined in the paper [7]. It is 

established that at some values of the problem parameters 

the stress intensity factors turn to be negative. This means 

that the crack faces make a contact. Existence of negative 

stress intensity factors at least near the crack end reduces 

to necessity of account of partial contact of faces in some 

vicinity of the crack end.  

We assume that in the deformation process the 

slot's faces in the vicinities of apexes make a contact in the 

areas ),( 1a  and ),( 1 b  (Fig. 1). It is assumed that each 

contact area consists of areas of faces stick ),( 1ca  and 

),( 1 bd  and two areas ),( 11 c  and ),( 11 d  on which slip-

ping if possible. Denote by 1L  the set of stick areas; by 2L  

the set of slippage areas; by 3L  the area of the slots faces 

free from load. When determining the temperature field, 

for simplifying the problem its disturbance is not taken into 

account because of existence of a slot. 

 

Fig. 1 Design scheme of the problem 

The boundary conditions on the slot faces for the 

considered contact problem with stresses disappearing at 

infinity are written subject to superposition principle in the 

form:    
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 Here it is accepted that on the slippage areas there 

hold the dry friction forces (the friction law is accepted in 

the Coulomb form); )(xf  is the friction coefficient; 

)(  uu  is tangential )(   vv  is normal component of 

the slop faces opening. The sizes of contact zones are not 

known in advance and should be determined.  

 A model of a contact with friction and stick was 

first considered by L.A. Galin [8]. Recent years a number 

of papers devoted to investigation of bodies with cracks 

with regard to cohesive forces between the faces and pos-

sibility of their contact were published [9-16]. 

 

3. Method of solution 

  

Represent the stress state in the plane with a slot 

in the form:  

10 xxx   ,  
10 yyy   ,      

10 xyxyxy   ,  (4) 

where 
0x , 

0y , 
0xy  are the solution of the thermoelas-

ticity problem for a slotless plane.  

For finding the 
0x , 

0y , 
0xy  stress state we 

solve the thermoelasticity problem for an continuous plane. 

At first we determine temperature distribution in a plane. 

For that we solve a problem of heat conduction theory:  
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where Δ is the Laplace operator; a is the thermal conduc-

tivity of the material.  

 Let for definiteness, the domain 21 SSS   heat-

ed by heat source represent a set of two rectangles. After 

solving the thermoelasticity problem for an entire plane, 

we find: 
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are the shear modulus of the plate material;  is the Pois-

son ratio;  is the coefficient of linear temperature expan-

sion.  

 Express the stress tensor components 
1x , 

1y , 

1xy  and displacement vectors 1u , 1v  by two piecewise 

analytic complex variable functions )(z  and )(z  [17]:  
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where κ is the Muskhelishvili constant.  

 Following N.I. Muskhelishvili [17], based on 

boundary conditions (1), (2), with respect to formulas (5), 

(6) we arrive at the linear conjugation problem with dis-

continuous coefficients: 

 

   

    














,LLxhi

Lxf

21

0

on )(4

,on )(2




  (7) 

 

where 000 )( yxf     on  321 LLL  ,  
)1( 





 .  

 The solution of this problem is of the form: 




  
L zttX

dttf

i

zX
zz

))((

)(

2

)(
)()( 0


                      




 




21
))((

)(
)(2

LL zttX

dtth
zX .       (8) 

here ))()()(()( 11   zzbzazzX .  

From the conditions at infinity, the constants 1  
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 From boundary condition (3) we get [17] a prob-

lem of linear conjugation of boundary values: 
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From the solution of this linear conjugation prob-

lem, we determine the function )(z : 
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The constants 1c  and 1d  satisfy the following 

equations: 
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For determining the stick zones we have the com-

plete system of equations.  

 From the boundary condition (1) we find:   
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 We calculate the necessary integrals containing 

the functions )(tX   and )(1 tX   by the method suggested 

by N.I. Muskhelishvili [17, §110].  

 

4. Analysis of the results of simulation 
 

 Analysis of partial closing of a variable width slot 

is reduced to parametric investigation according to formu-

las (12) at different laws of distribution of temperature 

fields and stresses in a plane, geometric parameters and 

also mechanical constant of the material. Normal and tan-

gential stresses in the contact zone and also the sizes of 

stick and slippage zones are determined directly by means 

of calculations from the obtained formulas.  

 The graphs of distribution of contact stresses 

along the right contact zone for a slot whose width changes 

according to linear law are depicted in Figs. 2 and 3. As 

calculations the dimensionless coordinates 

xbbx  )(2 11   were used. At calculations the 

following values of free parameters were used: 2,0f ; 

3,0 ; 104 2

1  Latt ; 5,011 Lx ; 2,011 Ly ; 

1,011 Lb  where 1L  and 1b  are the coordinates of the 

center of the domain 1S ; 05,0)(  Rab ; 

02,0)(  Rab  (the curves 1, 2). Here R is the typical 

linear size of the medium. 

 

Fig. 2 Distribution of normal dimensionless contact stress-

es along the right contact zone 

 

Fig. 3 Distribution of tangential dimensionless contact 

stresses along the right contact zone 

 

Theoretical and experimental investigations show 

that the temperature field created in the course of some 

limited time braking and partial closing of the slot is insu-

perable barrier [1] on the way of its growth. 

 The next temperature field relief (t→∞) will 

gradually lower the value of compressive stresses and effi-

ciency of partial closing of the slot. The stress intensity 

factors, having achieved the zero value when the shell is 

closed, gradually will grow to the value stipulated by the 

mechanical load.  

 Under the action of temperature field, the maxi-

mum tensile stress decreases and turns to the direction of 

heat source. This reduces [1, 18] to displacement of plane 

of fault observable in experiments. After temperature field 

relief this circumstance will promote increase of the exter-

nal load necessary for the growth of the slot. 
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5. Conclusions 

 

An effective scheme of analysis of a partially 

closed slot of variable thickness in the plane under the ac-

tion of external tensile loads is suggested. Based on the 

obtained results we can consider that the temperature field 

created in the vicinity of the slot apex is a barrier on its 

propagation way. Account of the disturbed temperature 

field will amplify the braking efficiency of the induced 

temperature field of stresses. 

  

References 

 

1. Finkel, V.M. 1977. Physical basis of fracture retarda-

tion. Moscow: Metallurgiya. 360p. (in Russian). 

2. Parton, V.Z.; Morozov, E.M. 1985. Elastic-plastic 

fracture mechanics. Moscow: Nauka, 504p. (in Rus-

sian). 

3. Kadiev, R.I.; Mirsalimov, V.M. 2001. Effect of heat 

source on the dynamics of crack growth, Vestnik Dage-

stanskogo universiteta 4: 69-73 (in Russian). 

4. 1965. Strength, stability and vibrations calculations at 

high temperatures. Ed. I.I. Goldenblat. Moscow: Mash-

inostroeniye. 567p. (in Russian). 

5. Timoshenko, S.P. 1965. Strength of materials. Mos-

cow: Nauka. 480 p. (in Russian). 

6. Belen'kii, V.D. 1984. Closure of a central crack in a 

circular disk under the influence of a temperature field, 

Strength of Materials 16(6): 806-810.  

http://dx.doi.org/10.1007/BF01529967. 

7. Kadiyev, R.I. 2003. The stress intensity factors for a 

plate weakened crack under the influence the heat 

source, Vestnik of Dagestan Science Center 14: 15-18 
(in Russian). 

8. Galin, L.A. 1945. Indentation of stamp in presence of 

friction and cohesion, Journal of Applied Mathematics 

and Mechanics 9(5): 413-424 (in Russian). 

9. Mirsalimov, M.V. 2008. Modelling of partial cracks 

closure in medium with emptiness, Matematicheskoe 

modelirovanie 20(2): 32-42 (in Russian). 

10. Mirsalimov, V.M. 2009. Simulation of bridged crack 

closure in contact pair bushing, Mechanics of Solids 

44(2): 232-243. 

http://dx.doi.org/10.3103/S0025654409020083. 

11. Kovtunenko, V.A. 2005. Nonconvex problem for 

crack with nonpenetration, Z. angew Math. Mech. 

85(4): 242-251.  
http://dx.doi.org/10.1002/zamm.200210176. 

12. Hasanov, Sh.H. 2012. Cohesive crack with partially 

contacting faces in section of the road covering. Me-

chanics of machines, mechanisms and materials 2: 58-

64 (in Russian). 

13. Mir-Salim-zade M.V. 2010. Modeling of partial clo-

sure of cracks in a perforated isotropic medium rein-

forced by a regular system of stringers, Journal of Ap-

plied Mechanics and Technical Physics 51(2): 269-279.  
http://dx.doi.org/10.1007/s10808-010-0037-7. 

14. Mirsalimov, V.M.; Vaghari A.R. 2012. Partial crack 

closure in a perforated body with heat release. Materi-

als Science 47(6): 757-763.  
http://dx.doi.org//10.1007/s11003-012-9453-6. 

15. Mirsalimov, V.M. 2013. Partial closing of cracklike 

cavity in isotropic medium, Deformatsiya i Razrushe-

nie materialov (Deformation and Fracture of Materials) 

1: 16-20 (in Russian). 

16. Mirsalimov, M.V.; Rustamov, B.E. 2013. Simulation 

of partial closure of a crack-like cavity with cohesion 

between the faces in an isotropic medium, Journal of 

Applied Mechanics and Technical Physics 54(6): 1021-

1029.  
http://dx.doi.org/10.1134/S0021894413060175. 

17. Muskhelishvili, N.I. 1977. Some Basic Problems of 

Mathematical Theory of Elasticity. Amsterdam: 

Kluwer. 718p.  
http://dx.doi.org/10.1007/978-94-017-3034-1. 

18. Morozov, E.M. 1969. Deformation and fracture under 

thermal and mechanical loads. Moscow: Atomizdat. 3: 

87-90 (in Russian). 

 

V.M. Mirsalimov, A.B. Mustafayev  

A CONTACT PROBLEM ON PARTIAL INTERACTION 

OF FACES OF A VARIABLE THICKNESS SLOT UN-

DER THE INFLUENCE OF TEMPERATURE FIELD 

S u m m a r y 

Temperature variations near the end of a variable 

thickness slot, comparable with elastic deformations are 

considered. A problem of equilibrium of a slot with partial-

ly contacting faces under the action of external tensile 

loads, induced temperature field and forces on contacting 

surfaces of the slot is reduced to the problem of linear con-

junction of analytic functions. Herewith it is assumed that 

on some part of the contact there arises stick of faces, and 

on the other part there may be slippage. Normal and tan-

gential stresses, values of the sizes of the end contact zone 

are found.  

  

Keywords: variable thickness slot, temperature field, con-

tact stick zone, slippage zone, contact stresses. 
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