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1. Introduction 

 

Composite materials are nowadays increasingly 

used as an alternative to conventional materials, because of 

their high strength, weight saving, specific rigidity, and 

mechanical flexibility especially in the aerospace industry. 

The aim of vibration based damage detection techniques is 

to determine the occurrence of structural damage, its loca-

tion and severity. The information produced by a damage 

assessment process can play a vital role in the development 

of economical repair and retrofit program. Rytter [1] pro-

posed a classification in order to allow a comparison be-

tween different techniques, which consists of four levels. 

The first level is the detection, the second level is the local-

ization, the third level is the assessment, and finally the 

fourth level, which is the consequence of damage, predicts 

the remaining life and the actual safety of the structure in a 

certain state of damage. The complete health state of a 

structure can be determined based on presence, location, 

type and severity of damage (diagnostics) and estimation 

of remaining useful life (prognostics) [2]. The concept of 

dynamical invariants [3] in the SHM methodology is called 

Beacon-based Exception Analysis for Multi-missions 

(BEAM). 

Methods of identification of defects and their 

analysis in a qualitative relation to the location of defect 

and its importance have been studied in literature [4-5]. 

Noise does not affect stable low-order dynamical models 

that can be created using POD based low-order model for 

fault detection [6]. 

POD provides the most efficient way of capturing 

the dominant components of an infinite-dimensional pro-

cess with only (often surprisingly) few modes. Various 

applications of POD to structural dynamics were carried 

out in the literature [7-11]. The diagnostics of various ma-

chines and mechanisms is an important problem to deter-

mine the damaged structural elements. Solving of such 

problem, for example use the method of resonance fre-

quencies, the damaged structural element is judged by the 

deviation of resonance frequency [12]. The location of 

damage in the structure is more complicated for certain 

class of structure, e.g. a beam-like structure, using vibra-

tion analysis. In this approach, the beam structure is suc-

cessively loaded with mass. A harmonic force is used to 

excite the structure in the loaded zones. The detection and 

localization of damage are indicated by the relationship 

between vibration amplitudes of the additional mass and its 

location [13]. Damage detection of a bridge structure based 

on computer simulations of static displacement or strain 

data using POD [14] and finite element analysis had shown 

a success detection. The damage indicator based on mode 

shape data was introduced [15] to identify damage in 

beam-like structures. A two-step procedure for damage 

detection in structures from changes in curvature mode 

shapes was proposed [16]. The damage identification and 

localization of some complex mechanical system described 

in terms of reduced number of modes using finite elements 

was reported [17], where an isolation procedure to describe 

these parameters was followed. Mathematical simulations 

of structural elements and dynamic behaviour due to loss 

of stiffness at damaged area were presented [18]. 

The most existing damage detection study was 

based on modal curvature and investigated the indicator 

value changes between the intact and damaged states [19]. 

The processing of nonlinear features associated with a 

damage event by quadratic time frequency distributions for 

damage identification in a frame structure were studied 

[20]. 

A simple method for determining the stiffness 

matrix of structural and mechanical systems using meas-

ured natural frequencies and corresponding mode shapes 

was proposed [21]. The use of natural frequency shifts for 

damage identification was proposed in several research 

works, where the success of this parameter in the case of a 

single damage location was proven [22]. The first four 

natural frequencies of a simulated cantilever beam were 

used to locate a single crack [23]. The identification of a 

single crack in an experimental single story frame from 

shifts in the first three natural frequencies was investigated 

[24] using a damage identification algorithm to locate and 

identify the size of a single crack. The identification of a 

single crack in a vibrating rod based on knowledge of the 

damage induced shifts of a pair of natural frequencies was 

investigated [25]. A damage identification methodology 

based on natural frequency changes to a numerical model 

of a beam on an elastic foundation was studied [26]. 

Current electrodynamic vibrators and vibration 

rigs for monitoring materials, structural elements and ma-
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chine parts objects subjected to vibrations and large accel-

erations were used to detect damage [27]. The thrusting 

force and amplitude of oscillations in electrodynamic vi-

brators are discussed along with broadening of the fre-

quency range. 
The results found in reference [28] identified sin-

gle damage events as stiffness loss, connection loosening 

and lump mass addition. Two methods of damage assess-

ment based on a relationship between modal strain energy 

and measured modal properties tailored to single damage 

cases [29] were used. Damage approach prediction in beam 

and plate structures with initiated damage were presented 

[30]. The results provided the basis for the development of 

diagnostics algorithms. The location and severity of a sin-

gle damaged element in a simulated planar truss were de-

termined by minimizing the square of the Residual Force 

Vector (RFV) [31]. 

In the present work, a new damage identification 

method is applied to a composite beam structure using ge-

netic algorithm and particle swarm optimization. By intro-

ducing the proper orthogonal decomposition with radial 

basis function, a reduced model is built, the calculation of 

cost function is minimized and more accurate results are 

obtained. 

A finite element model of bi-dimensional mono-

lithic beam reinforced by a graphite-epoxy discretized into 

10 elements is used to generate vibration data. The damage 

resulted in reduction of stiffness with levels of 5% and 

25%, which are placed in different positions. A compara-

tive study between both results of (GA) and (PSO) using 

finite element method indicates that PSO is better than GA. 

However, the calculation of PSO takes a longer time, with 

small error between the real and estimated damage. The 

PSO with POD is better than PSO with FEM algorithm to 

detect and localize damage with higher accuracy and 

shorter computational time. The effect of noise in this 

methodology is considered in some cases by assigning 

noises to natural frequencies. 

 

2. Theoretical background 

 

2.1. Proper orthogonal decomposition (POD) with radial 

basis functions (RBF) 

 

POD with Radial Basis Functions (RBF) is used 

for the interpolation of the data with previously reduced 

dimensionality by the POD. A group of responses for a 

given system can be very effectively compressed using the 

theory of a separate POD. This compression allows for a 

significant reduction of the dimensionality. To make it 

clear, let us recall that our goal is to define an approxima-

tion that should be used instead of FE simulations. There-

fore, we wish to find a function that depends on some pa-

rameters collected in vector p such that: 

f(p) = u. (1) 

In Eq. (1), vector u collects the required output of 

the system and represents the frequency vector of a dam-

aged beam modelled using FEA. 

However, since we already constructed a low or-

der approximation of these responses, they can be repre-

sented in the new truncated system by the matrix of ampli-

tudes. This practically means that RBF can be applied in 

already reduced dimensionality, where responses are ex-

pressed as amplitudes, and therefore the function we are 

looking for is in the following form: 

fa(p) = a . (2) 

The relationship previously defined between the 

responses expressed in the reduced and full dimensionality 

holds for the functions f and fa. Thus we can write: 

f(p) =  fa(p) = u. (3)  

Applying the Radial Basis Functions (RBF) tech-

nique, the approximation of fa is written as a linear combi-

nation of some basis functions gi, i.e.: 
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Or written in matrix form: 
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Similar to other examples of Radial Basis Func-

tions (RBF) interpolation, after the basis functions are cho-

sen, we need to solve for the interpolation coefficients col-

lected in matrix B. 

Having in mind that the values of the function fa 

to be approximated are collected in the matrix of ampli-

tudes A in the reduced space. This leads to the following 

equation: 

B G = Ᾱ. (6) 

Eq. (6) is solved for unknown matrix B, and then 

finally, by combining Eqs. (5) with (3), we arrive to the 

required general formula for the approximation of the sys-

tem response for arbitrary parameter combination, which 

is: 

u ≈   B g(p). (7) 

Eq. (7) was derived by performing the Radial Ba-

sis Functions (RBF) interpolation of the system responses 

in the reduced space, which is represented by amplitude 

matrix Ᾱ and further transformed by pre-multiplying it by 

reduced POD basis by [32]. 

 

2.2. Genetic algorithm (GA) 

 

The Genetic Algorithm (GA) is an evolutionary 

optimization method, used efficiently for different kinds of 

optimization problems in last decades [33]. In our study, 

10 individuals, also called chromosomes, represent the two 

damage parameters of position and severity, are converted 
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to binary encoding. The population evolves toward better 

solution iteratively in a process inspired from the natural 

evolution, where they are allowed to cross among them-

selves in order to obtain favorable solutions. The fitness is 

the objective function value, calculated in Eq. (10), as it 

will be explained latter under section 3. The best feasible 

solutions have higher probability to be chosen as parent of 

new individuals, where the properties of the parents are 

combined by exchanging chromosomes parts, to produce 

two new designs. Afterwards, the mutation is performed by 

randomly replacing the digits of a randomly selected 

chromosome. These basic operators are repeated to create 

the next generations until the maximum number of itera-

tions is reached [34]. 

2.3. Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) is a 

method inspired by the behavior of different kinds of 

flocks (birds, bees, fishes, etc.), which is characterized by 

distinct social and psychological principles. These princi-

ples lead the flock to adapt its physical movement towards 

food seeking in a particular way, which ensures both the 

speed of the quest and the avoidance of potential adversi-

ties, such as hostile predators. This method has been given 

considerable attention in recent years among the optimiza-

tion research community. 

It is pretty clear that PSO is a population based 

optimization method built on the premise that social shar-

ing of information among the individuals can provide an 

evolutionary advantage. The fact that, as an optimization 

method based on population data, PSO requires a relatively 

small number of parameters, reduces the computational 

cost and facilitates the implementation of the algorithm. 

Due to its simple implementation, PSO can be used in both 

simple and large-scale optimization problems. Therefore, 

PSO has been a rather attractive optimization method in 

scientific circles.  

The algorithm was first proposed by Kennedy and 

Eberhart. PSO has been used widely in the recent years and 

has been modified in a variety of versions that can handle 

the majority of optimization problems with or without the 

presence of constraints.  

According to the PSO method, a random popula-

tion of candidate solutions is considered to be a particle 

moving through the multi-dimensional design space in 

search of the position of the global minimum. The particles 

coexist and cooperate with each other to achieve this posi-

tion. Every particle can be characterized by its physical 

position in the design space and its speed of movement. 

Furthermore, each particle has the ability to remember the 

best position it has passed so far or personal best (Pbest, 

Eq. (8)) and the best position that any other particle of the 

swarm has passed so far or global best (G_best, Eq. (9)).In 

every iteration the speed of the particle is updated in a sto-

chastic way. Finally, the old and new speed vectors are 

used in order to update the position of the particle in an 

iterative manner [35]. 

The update equations for the speed and the posi-

tion of the particles are in the following form: 
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2.4. Description of test structure 

We consider a clamped free beam of pure unidi-

rectional composite of AS4/3501-6 graphite-epoxy materi-

als with symmetrical order of layers. The finite element 

model is discretized in 10 elements as shown in Fig. 1. 

Each node of the finite element has three degrees of free-

dom, normal displacement w along the z-axis, rotation γ 

around the y-axis and longitudinal displacement u along 

the x-axis. Since the beam is macroscopically considered 

homogeneous, the shear correction coefficient is the same 

as for isotropic beam, i.e. KCorrection = 5/6 [36]. 

The material properties and beam dimensions of 

AS4/3501-6 graphite epoxy [37] are given in Table 1. 

Table 1 

Dimension and material of beam 

Ply property Mean value 

Length, m 0.75 

Width, m 0.03 

Thickness, m 0.005 

Longitudinal modulus, GPa 141.96 

Transverse Shear modulus, GPa 6 

Density, kg.m-3 1600 

Poisson’s ratio v 0.42 

KCorrection 5/6 
 

 

Fig. 1 Beam structure of unidirectionally reinforce graphite-

epoxy beam 

3. Objective function 

A practical procedure implemented in a stand-

alone software was developed based on two different op-

timization algorithms: particle swarm optimization and 

Genetic Algorithm. The detection and localization task 

were maintained as an inverse identification problem, 

where the two parameters of damage position and its level 

are calculated through the fitness Eq. (10) where the 
r

i
  is 

the frequency of the controlled beam, and 
c

i
  is the fre-

quency calculated using the proper orthogonal decomposi-

tion and finite element method: 

     
2 2n r c r

i i ii
Fitness /    . (10) 

3.1. Optimization parameters 

In this study, we address the problem for damage 

detection and localization in the beam by Genetic Algo-

rithm (GA) and particle swarm optimization (PSO) using 

FEM and new approach for damage detection and localiza-
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tion using Proper Orthogonal Decomposition (POD). 

The particle swarm optimization (PSO) and genetic algo-

rithm (GA) methods were used to minimize the fitness 

function. In PSO, coordinates of the particles in a two di-

mensional space are the unknown parameters for damage 

level and position, using 100 particles. In a second ap-

proach, each of the 100 individuals contains two chromo-

somes representing the required damage parameters. The 

maximum number of iteration is set equal to 200. 

After several applications, a crossover coefficient 

of 0.8 and mutation of 0.1 were used in the GA parameters, 

while C1 = C2 = 2.0 considered in the PSO method. 

3.2. POD-RBF Based damage detection technique  

During the optimization process, we noticed many 

approaches that are used to detect and locate damage in 

beam-like structures using finite element method with op-

timization techniques. Generally, these techniques require 

long computation time because each iterative optimization 

method requires the calculation of location and level of 

damage. However, our POD approach with RBF can con-

verge in a very short time, while it provides a solution with 

high accuracy. To build a reduced model by POD-RBF 

method, 250 FEM results of the studied structure were pro- 
 

 

Fig. 2 Methodological approach to the damage detection 

and localization 

duced by varying the damage level from 0% to 50% using 

a step of 2% in each of the 10 elements of the beam. The 

output parameters considered for the damage identification 

process are the first five natural frequencies. 

The inverse problem is solved using PSO algo-

rithm. The Methodological approach to the damage detec-

tion and localization problems is illustrated by a flow chart 

as shown in Fig. 2. 

4. Results and discussion 

The damage of beam structure was simulated by 

reducing the stiffness of selected elements by varying 

amounts using FEM. The largest damage (level 1) consists 

of 25% stiffness reduction at the center of damage region 

followed by 5% reduction along length of the beam struc-

ture. Three different damage locations were studied, name-

ly, near fixed end (D1), center of the plate (D2), and near 

free edge (D3), as shown in Fig. 3. A modal analysis was 

performed to determine the natural frequencies of the sane 

of beam structure and damage cases D1, D2, and D3. 

 

Fig. 3 Damage locations D1 (center), D2 (fixed end), and 

D3 (free end) 

4.1. Damage detection and localization by genetic algo-

rithm and particle swarm optimization using FEM 

GA and PSO were used to identify the parameters 

of the three considered damage scenarios D1, D2 and D3, 

for damage located at the 2, 5 and 8 elements, respectively 

with a damage severity of 5 and 25%. The error between 

real damage and estimated damage by GA and PSO is cal-

culated. A comparison of fitness evolution from three runs 

of both algorithms is shown in Figs. 4, 5 and 6. The com-

parison of damage location with GA and PSO are given in 

the Table 3. 

 

a 

 

b 

Fig. 4 Fitness convergence of GA and PSO using FEM 

(D1): a - damage 5%; b - damage 25% 
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a 

 

b 

Fig. 5 Fitness convergence of GA and PSO using FEM 

(D2): a - damage 5%; b - damage 25% 

 

a 

 

b 

Fig. 6 Fitness convergence of GA and PSO using FEM 

(D1): a - damage 5%; b - damage 25% 

From Figs. 4 to 6 and Table 2, it can be seen that 

good results are obtained using both PSO and GA algo-

rithms, however PSO is more accurate and faster than GA 

for the detection and localization of damage. It is noticed 

that the errors in GA were considerably higher than the 

errors in PSO. It should be noted that GA, manipulates 

different mechanisms than PSO. In GA, chromosomes 

share information with each other so that the whole popu-

lation moves like one group towards an optimal area. 

However, the PSO has one way information sharing mech-

anism, i.e. only xGb, which gives out the information to 

others. The optimization process takes a long time and 

sometimes the first operation doesn't give the best results, 

even though several attempts have been made to get the 

desired results. 

Table 2 

Comparison between results for damage detection and lo-

calization by PSO and GA using FEM 

Damage 

element with 

Stiffness 

reduction (%) 

Methods Damage 

element 

 

Stiffness 

reduction 

Error % 

Damage 

element 

Error % 

Stiffness 

reduction 

D1-2-5 GA 2.011 4.997 0.011 0.002 

PSO 1.999 4.998 0.001 0.002 

D2-15-5 GA 4.993 4.957 0.007 0.043 

PSO 5.004 4.999 0 0.001 

D3-8-5 GA 7.998 5.000 0.002 0 

PSO 7.999 5.000 0.001 0 

D1-2-25 GA 2.023 24.995 0.023 0.005 

PSO 1.999 24.998 0.001 0.002 

D2-5-25 GA 4.995 24.957 0.005 0.043 

PSO 5.000 24.999 0 0.001 

D3-8-25 GA 7.991 24.9600 0.042 0.042 

PSO 5.010 25.001 0.001 0.001 

4.2. Damage detection and localization by Particle Swarm 

Optimization using POD 

The proper orthogonal decomposition method 

(POD) with radial basis function is a well-known model 

reduction method based on results of the studied phenome-

non called the snapshot method. To build a corresponding 

model of our damaged beam, a snapshot represents a col-

lection of 250 measurements u (see Eq. (1)) of different 

damage levels [1-25%] and positions [1-10 element] were 

considered and the corresponding frequencies are calculat-

ed using FEM. 

PSO with POD and PSO with FEM were used to 

identify the parameters of the three considered damage 

scenarios D1, D2 and D3 located at the 2, 5 and 8 ele-

ments, respectively, with a damage severities of 5 and 

25%. The error between real damage and estimated dam-

age is calculated. A comparison of fitness evolution for the 

three damage scenario of both algorithms is shown in 

Figs. 7 to 9. The comparison with both approaches is also 

given in the Table 3. 

 

Table 3 

Comparison between results for damage detection and lo-

calization by PSO using FEM and POD 

Damage 

element 

with Stiff-

ness reduc-

tion 

(%) 

Identification 

method 

 

Damage 

element 

 

Stiffness 
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Error % 
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element 
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Stiffness 

reduction 

D1-2-5% 

 

PSO-FEM 2.011 4.997 0.011 0.002 

PSO-POD 2.000 5 0000 0000 

D2-5-5% PSO-FEM 4.993 4.957 0.007 0.043 

PSO-POD 4.9999 5.000 0.0001 0000 

D3-8-5% PSO-FEM 7.998 5.000 0.002 0000 

PSO-POD 8.000 5.000 0.000 0000 

D1–2-25% 

 

PSO-FEM 2.023 24.995 0.023 0.005 

PSO-POD 2.000 25.0000 0.000 0000 

D2-5-25% PSO-FEM 4.995 24.957 0.005 0.043 

PSO-POD 5.000 24.999 0000 0.0001 

D3-8-25% PSO-FEM 7.991 24.9600 0.009 0.042 

PSO-POD 8.000 25.000 0000 0000 
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a 

 

b 

Fig. 7 Fitness convergence of PSO using FEM and POD 

(D1) a - damage 5%; b - damage 25% 

 

a 

 

b 

Fig. 8 Fitness convergence of PSO using FEM and POD 

(D2): a - damage 5%; b - damage 25% 

From Figs. 7 to 9, it can be seen that the PSO with 

POD is faster and more accurate than PSO with FEM algo-

rithm to detect and localize damage. The errors are listed in 

table 3 between real and estimated results for both algo-

rithms. It is noticed that the PSO with POD gives good 

results with high accuracy and short computation time for 

locating damage than PSO with FEM. The calculations 

were carried out using MATLAB program in a PC with 

characterization Intel(R) core (TM) I3-2328 CPU2.20 

GHz. Performing such a test with traditional approach, 

where system responses are computed by FEM, to solve 

this current damage detection problem, would require 

about one hour on an average computer. Moreover, some-

times the desired results may not be obtained. However, 

using previously calibrated POD-RBF procedure, the re-

sults are obtained in a bit more than 50 s for the first itera-

tion. 
 

 

a 

 

b 

Fig. 9 Fitness convergence of PSO using FEM and POD 

(D3): a - damage 5%; b - damage 25% 

5. Effect of noise  

In order to investigate the effect of noise on our 

damage detection techniques, White Gaussian noise was 

added to previous results. To test the accuracy of the meth-

od using PSO technique, the reference data of the second 

damage scenario (D2) was manipulated to find natural fre-

quencies, when we consider noise levels of 5%, 10%, 25% 

and 50% as shown in Table 4. 

 

Table 4 

Comparison between real damage and estimated  

damage with noise 

Damage 

scenario 

Damage 

element  

Stiffness 

reduction 

(%) 

Noise  

(%) 

Damage 

element 

with 

noise  

Stiffness 

reduction 

(%) with 

noise  

D2 6 15 1 5.99 14.987 

D2 6 15 5 5.981 14.971 

D2 6 15 10 5.974 14.968 

D2 6 15 15 5.970 14.962 

 

In Table 4, we compare damage positions and 

severities, after introducing a perturbation level of 1%, 

5%, 10% and 15%. For the cases of 1%, 5%, and 10% 

noise, we note that there no significant difference in the 

estimated damage levels. However, at a level of 15% 

noise, the difference becomes notable. 
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6. Conclusion 

An approach for detecting and locating damage in 

beam structures based on model reduction has been inves-

tigated at a numerical level using Genetic Algorithm (GA) 

and particle swarm optimization (PSO) methods to deter-

mine damage severities and positions. The results of finite 

element method (FEM) of the single damaged beam were 

used to build the snapshot matrix, essential for building a 

lower order model by the proper orthogonal decomposi-

tion. The frequencies of the controlled beam were consid-

ered as references in our study. 

In the first part of this paper, we run inverse com-

putation using FEM together with PSO and GA, applied to 

various damage scenarios. The results, in the first part of 

this study, have shown that PSO using FEM is favorable 

than GA in damage detection and localization. However, 

the process takes a considerable amount of time, and re-

quires several iterations to get the desired results. In the 

second part of this study, we used proper orthogonal de-

composition POD with radial basis function RBF to re-

place FEM in PSO optimization process. The results were 

found in a very short computing time with high precision 

compared to FEM-PSO technique. The efficiency of the 

approach was tested using data with different noise levels. 
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DAMAGE DETECTION AND LOCALIZATION IN 

COMPOSITE BEAM STRUCTURES BASED ON 

VIBRATION ANALYSIS 

 
S u m m a r y 

 

This paper presents an approach of inverse dam-

age detection and localization based on model reduction. 

The problem is formulated as an inverse problem where an 

optimization algorithm is used to minimize the cost func-

tion expressed as the normalized difference between a fre-

quency vector of the tested structure and its numerical 

model. A finite element model of bi-dimensional monolith-

ic composite beam reinforced by a graphite-epoxy is used 

to define a numerical model of the tested structure in 

which different scenarios of damage are considered by 

stiffness reduction. Then, calculations are made on a re-

duced model built by the technique of proper orthogonal 

decomposition coupled by radial basis functions. The accu-

racy of the method is verified through different damage 

configurations. The results show that the developed algo-

rithm is a feasible methodology of predicting damage in 

short computing time and with high accuracy. The effect of 

noise on the accuracy of the results is investigated in some 

cases for the structure under consideration. 
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