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1. Introduction 

 

Piezoelectric converters are used to measure and/or 

regulate a wide range of physical parameters such as force 

[1], strain [2], pressure [3], acceleration [4]. These are also 

used as resonators [5] or even diaphragm drives [6]. Their 

working principle is based on conversion of electric energy 

to the mechanical, or vice versa [7]. Dependency between 

strain and electric field is defined by constitutive equation 

[8, 9]. 

Practically, in the majority of piezoelectric con-

verters, the measure/control unit is of a layer design, what 

causes some issues in determining their durability, and in 

case of bent piezoelectric converters, finding relation be-

tween bending and electric field. Both the former and the 

latter aspect were dealt with by many scientists.  

When designing this piezoelectric converter, spe-

cific application-adequate simultaneous equations should be 

defined and solved. These equations bound together geo-

metrical properties, materials properties and physical pa-

rameters, such as force, deflection and electric field. Solving 

such simultaneous equations is very difficult. Materials and 

geometrical heterogeneity of the converter's global structure 

and anisotropy of piezoelectric materials forces the use of 

some reductions. Smits et al. [10, 11], by using energetic 

methods, formed and solved constitutive equations for a 

converter made of two layers of even length (piezoelectric 

bimorph). Then Wang and Cross [12] extended and solved 

the issue of a three-layer converter, while Xiang, and Shi 

[13] - a multi-layer one. However in works [14, 15], results 

of geometrical properties optimization results for this type 

of converters were given. 

It is a very rare case that in literature there can be 

found particular analytical application solutions, for some 

groups of piezoelectric converters, in the construction of 

which individual components (layers) are of different 

length, and boundary conditions - mounting and external 

load - are different as compared with solution proposed by 

Smits. For such cases, in order to determine electromechan-

ical behaviour of the converter, most frequently the FEM-

based analyses are carried out [16]. Preparing this type of 

analyses is sometimes very work-consuming however, and 

the solution may be subject to high error. 

Therefore, the main purpose of the presented work 

was to develop a simple analytical method for determining 

deflection, in the function of mechanical and electric loads, 

bending piezoelectric converters of various constructions - 

e.g. shown on Fig. 1. 
 

 

Fig. 1 Two-layer piezoelectric converter, 1-beam; 2-piezoelectric elements; 3-piezoelectric bimorph segment PBS 
 

The proposed method involves implementation to 

a homogeneous beam modules referred to hereinafter “pie-

zoelectric bimorph segment”. This allows for including, 

within analytical description of the beam deflection, a local 

change in stiffness and strain caused by transverse piezoe-

lectric effect. 

In order to verify the correctness of the developed 

method, it is required to compare the obtained results with 

experimental data, or results obtained using other methods. 

Therefore the obtained particular solutions for the bimorph 

converter were compared with the literature-derived solu-

tion. For converters of diversified material and geometric 

structure the FEM simulations were prepared and these were 

compared with the obtained analytical results.  

2. Analytical simulations 

 

2.1. Basic assumptions 

 

Converters as analysed in this work were treated as 

a homogeneous (one-layer) beam with locally implemented 

piezoelectric bimorph segments PBS (Fig. 1). The PBS 

comprises two components – piezoelectric and non-piezoe-

lectric element. The non-piezoelectric layer thickness is the 

same as the beam thickness. The beam and the PBS both 

have the same width. In order to reduce the mathematical 

model, the following assumptions were made: 

I) bending of the element takes place according to 
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the Euler's hypothesis, and radii of curvatures of the de-

flected components are identical; 

II) in the component connection plane there is no 

intermediate layer, and no sliding occurs, 

III) in the piezoelectric layer transverse piezoelec-

tric effect 1-3 takes place, causing clear bending. 

 

2.2. General solution for piezoelectric converter with imple-

mented PBS segment  

 

The task is to consider a section of piezoelectric 

converter (Fig. 2) subjected to mechanical bending moment 

M(x) and electric moment Me (following the occurrence of 

the piezoelectric effect). 

 

 

Fig. 2 Section of piezoelectric converter 

 

In the analysed element subjected to bending, it is 

possible to determine three characteristic ranges, related ta 

change in load and stiffness. Within the x1 < x < x2 range 

there is piezoelectric bimorph segment PBS (generating 

Me) with flexural stiffness EpJo. The other two ranges are 

homogeneous beam with stiffness EbJb. When there are sev-

eral characteristic ranges on the beam, it is convenient to 

apply to the equation generalised functions that are deter-

mined with ranges, e.g. Heaviside function. Thus, including 

the PBS presence in the beam, the deflection line can be de-

scribed using the following dependence: 

      
2

1 22
,

b b

y
M x / E J Me H x x H x x

x





      (1) 

where 
            

    

b b p o

b b p o

E J Me M x - E J M x

E J E J Me



  - factor 

including change in stiffness with applied formal notation 

of the Heaviside function;  i
H x x  - Heaviside function; 

Ep, Eb - Young's modules of piezoelectric and non-piezoe-

lectric element; Jb, Jo - moments of inertia (described in 

Chapter 2.3). 

As determining the mechanical moment M(x) in 

general does not pose any problems, determining electrical 

load Me, generated by the PBS, is very burdensome and re-

quires solving the two-dimension issue of the PBS bending. 

 

2.3. Piezoelectric bimorph segment PBS 

 

The task is to consider the bimorph segment PBS 

(Fig. 3), with constant width b, consisting of non-piezoelec-

tric 1 and piezoelectric element 2. 

 

 

Fig. 3 Distribution of forces and conditions for strain of piezoelectric bimorph segment PBS 

 

The bimorph is not subjected to any mechanical 

load, and longitudinal forces Ni and bending moments Mi 

occurring on individual layers are result of the applied volt-

age V. Basing on equilibrium equation of forces condition 

the following can be noted: 

1 2
N N N 

 
 (2) 

The sum of moments in relation to interface must 

be zero, therefore: 
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Substituting dependences (4) to (3) and providing 

simple transformations resulted in the following: 

 

 
1

.
2    

p b

b b p p

N t t

E J E Jr





 (5) 

Including the relation between radius of curvature 

ρ and deflection w(x): 

2

2

1
.

w

x



r 
  (6) 

Differential equation for converter bending can be 

notified as follows: 

 

 

2

2
2    

p b

b b p p

N t tw
.

x E J E J




 
 (7) 

Constitutive equations for lower and upper con-

verter layers, including the piezoelectric effect in layer 2 

gave the following: 

1
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 (8) 

where Ab, Ap - layers cross sectional areas;  

d31 - piezoelectric constant. 

Following relocation continuity condition (Fig. 3) 

it was found that: 

2 1
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
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 (9) 

Solving differential Eqs. (7) and (8), with the fol-

lowing boundary conditions: 

   

   1 2

0 0; 0 0;

0 0; 0 0,
x x

w
w

x

u u






  


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 (10) 

and applying dependence (9) longitudinal force N can be de-

termined: 

 3 3

31

,
bb p b p pb

bE E Vd t E t E
N

t




   (11) 

where  2 4 2 4 2 2

b b p p b p b p b b p p
2 2 3E t E t E E t t t t t t      . 

Differential equation for bending PBS, in the Me, 

moment function, can be notified as follows:

 

2

2
.

 
p o

w Me

E Jx






  (12) 

On basis of comparing dependences (7) and (12) it 

is possible to determine bending moment Me which is the 

result of the piezoelectric effect: 

 

 
,

2

p o b p

b b p p

E J Nt Nt
Me
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
 


 (13) 

where moments of inertia for the individual layers are, re-

spectively: 
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The averaging value of the moment of inertia Jo 

can be calculated using the method of transformation of the 

cross sectional area [17]. Two materials of different stiffness 

modules and the same width b (Fig. 4, a) are replaced with 

one material of the section composed of two parts of differ-

ent widths (Fig. 4, b). 

 

 

 a b 

Fig. 4 Original (a) and transformed (b) section in piezoelec-

tric bimorph segment PBS 

The sought moment of inertia, calculated in rela-

tion to neutral layer, is: 

 12
o

p b b p p

b
.

E E t E t
J




  (15) 

Substituting the formula (13) with dependences 

(11), (14) and (15) results in electric bending moment value 

in the function of the applied voltage V: 
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2.4. Particular solutions 

 

This part of the work is concerned with application 

use of the proposed method, based on implementing PBS 

segments into single-layer beam to determine analytical de-

pendences describing converters' bending of fixed geometry 

and known boundary conditions. Solutions for converters of 
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different support and position conditions and PBS quantity 

shall be presented.   

 

2.4.1. Cantilever converter subjected to concentrated force 

F of single PBS segment  
 

In the converter as shown on Fig. 5, the left side is 

fix-mounted, and the right can move freely. The load results 

from external force F and electric moment Me generated by 

the applied voltage V. Based on conditions for equilibrium 

of forces and moments values for the reaction in mounting 

were established, and are as follows:

; 0;
y x F

R F R M FL   . 

 

 

Fig. 5 Cantilever converter of single PBS segment 

Mechanical moment M(x) takes the following 

form: 

  F y
M R xM L .x F Fx      (17) 

Substituting dependences (16) and (17) to the gen-

eral solution, described with formula (1), upon double inte-

gration, gives a dependence describing function of bending 

of the analysed converter (18):  

  1 1
,y x AV B F   (18) 

where 
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Integration constants are determined on basis of the 

following boundary conditions:  

   0 0; 0 0
y

y .
x




   (19) 

Assuming in the obtained solution x1 = 0 and x2 = L 

gives a solution which is identical as provided in work [10]. 

 

2.4.2. Cantilever converter subjected to concentrated force 

F of two PBS segments 

 
For the converter shown on Fig. 6 conditions of 

mounting and mechanical load are identical as the described 

in Chapter 2.4.1. Electrical load is generated by two PBS 

segments powered by voltage V1 and V2. 

 

 

Fig. 6 Cantilever converter of two PBS segments 

Differential equation for bending is as follows: 
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In the above dependence mechanical moment M(x) 

is described by Eq. (17), while electrical moments are: 
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Solving differential Eq. (20), assuming boundary 

conditions (19) gives function describing the bending of the 

analysed converter (22): 

  1 1 2 2 2
,y x AV A V B F    (22) 

where 
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2.4.3. Converter resting on two supports subjected to  

concentrated force F 

 

In the converter shown on Fig. 7, the left and right 

sides are mounted resting on two supports. Alike the previ-

ously presented converters, the load derives from external 

force F and electric moment Me.  

 

 

Fig. 7 Converter resting on two supports of single PBS segment 
 

Based on conditions for equilibrium of forces and 

moments values for reaction in supports were determined, 

and are as follows: 3 3; ;  0
Ay By Ax

Fx Fx
R F R R

L L
     and 

mechanical moment M(x) takes the following form: 

 3 3
( .) [ ]

Ay
R x F xx H xM x x    (23) 

Solving differential Eq. (1) - assuming mechanical 

(23) and electric moment (16) – gives Eq. (24) describing 

bending of the analysed converter: 
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Integration constants are determined on basis of the 
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3. Numerical calculations 

 

In order to verify the obtained particular solu-

tions, it was necessary to perform numerical analyses. 

These tests were aimed at determining bending line of 

the converters for arbitrarily assumed material con-

stants and geometry. Tested converters, shown on 

Figs. 5-7, were modelled using the FEM, with use of 

the ANSYS application [18]. Plane components were 

described using grid of quadrangular, eight-node finite 

elements, with increased concentration at critical 

points, such as sharp corners, mounting points and 

places at which mechanical load was applied. For the 

piezoelectric component the PLANE223 type ele-

ments were applied, and non-piezoelectric material 

was meshed with the PLANE183 elements. The size 

of finite elements was tp
 / 4. The plane issue was solved 

for two variants of stresses and strains: plane stress and 

plane strain conditions. 

In calculations the following geometrical and 

material data were assumed: 
 Young's modulus: Ep = 2.0 × 109, Eb = 4.0 × 109 N/m2; 

 Poisson's ratio: υp = 0.29, υb = 0.33; 

 Shear modulus: Gp = 0.775 × 109 N/m2; 

 Piezoelectric strain coefficients: d31 = 2.2 × 10-11 C/N; 

d32 = 0.3 × 10-11 C/N, d33 = -3.0 × 10-11 C/N; 

 Relative permittivity at constant stress: (ε33)T = 12; 

 Beam length L = 60 mm; 

 Layers thickness: tp = 0.5; tb = 1 mm; 

 Values of applied load were: 

- electrode voltage V = -100 Volts; 

- force F = 100 N. 

Coordinates xi (Figs. 5÷7), defining the PBS 

position and force F application point were given in 

Chapter 4. 
 

4. Results of tests 

 

This part of work shall present graphs of bending 

of converters for which the resulting special solutions were 

given in Chapter 2.4. Results obtained from analytical solu-

tions were compared with the FEM solutions. In analytical 

equations, materials and geometrical data identical as the 

data given in Chapter 3 were applied. 

Comparison of the analytical solution (18) with the 

FEM - for cantilever converter of single PBS segment 

(Fig. 5) - were provided on Figs. 8 and 9. 

 

  

 a b 

Fig. 8 Deflection of cantilever converter of single PBS segment for x1 = 0, x2 = 2/3L: a - subjected only to electrical  

voltage, V = 100 V, F = 0; b - subjected only to force, V = 0, F = 100 N 

  

 a b 

Fig. 9 Deflection of cantilever converter of single PBS segment for x1 = 1/6L, x2 = 5/6L: a - subjected only to electrical volt-

age, V = 100 V, F = 0; b - subjected only to force, V = 0, F = 100 N 

Fig. 10 shows strain of cantilever converter of two 

PBS segments (Fig. 6), analytical solution for which is de-

scribed as dependence (22). 

Fig. 11 shows strain of converter resting on two 

supports of single PBS segment (Fig. 7), analytical solution 

for which is described as formula (24).  

Basing on the obtained results, it was found that in 

case of cantilever converters better compatibility of analyt-

ical and numerical solutions was acquired when applied in 

the FEM modelling of the plane strain conditions, and for 
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converter resting on two supports – plane stress. 

  

 a b 

Fig. 10 Deflection of cantilever converter of two PBS segments for x1 = 1/12L, x2 = 5/12L, x3 = 7/12L, x4 = 11/12L: 

a - subjected only to electrical voltage, V1 = 100 V,V2 = 200 V, F = 0; b - subjected only to force, V1 = V2 = 0, 

F = 100 N 

 

   

 a b 

Fig. 11 Deflection of cantilever converter of single PBS segment for x1 = 1/3L, x2 = 1/2L, x1 = 1/3L, x3 = 11/12L:  

a - subjected only to electrical voltage, V = 100 V, F = 0; b - subjected only to force, V = 0 V, F = 100 N 

Generally the difference between analytical and 

numerical solutions was approx. 1% for electrical load, and 

2% for mechanical load. Departure from the rule was the 

case of converter resting on two supports, for which the er-

ror at mechanical loading was approx. 9% when applying 

plane strain conditions (Fig. 11b) for the FEM. It is probably 

caused by the way of modelling of supports for 2D beam. In 

present paper the supports were modelled as special bound-

ary conditions. Vertical (or vertical and horizontal) dis-

placement was blocked for only one node. For the other 

nodes (on left and right edges of beam) the same angle of 

rotation about the z axis was applied as a constraint. Such 

change in a local stiffness probably generated errors in the 

numerical solution. 

 
4. Summary and conclusions 

 

The work dealt with the issue of bending, two-layer 

piezoelectric converters subjected to electric field and me-

chanical load. A general solution has been developed, based 

on implementation of piezoelectric segments PBS to a bend-

ing beam. Working mechanism and conditions for strain of 

PBS segment were determined  

Basing on the general solution, for arbitrarily se-

lected three different types of converters, special solutions 

were developed (for cantilever converter of single and two 

PBS segments and converter resting on two supports of sin-

gle PBS segment). The resulting analytical solutions were 

compared with literature data, and the developed FEM so-

lution. 

On basis of the performed analytical and numerical 

tests it was found that: 

– the developed method involving implementation of 

PBS segments into bending beams allows for obtaining so-

lutions for piezoelectric converters: 

a) of either type of mounting and external load; 

b) of diverse lengths and heights of piezoelectric 

and non-piezoelectric layers; 

c) with any numbers of piezoelectric components;  

– the obtained particular solution for cantilever con-

verter of single PBS segment, assuming the layers are of the 

same length, conforms to the solution provided in [10]; 

– other analytical particular solutions conform to the 

results obtained from the FEM (for electrical load maximum 

difference is approx. 1%, and for mechanical load – approx. 

2%). 
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G. Mieczkowski 

 

ELECTROMECHANICAL CHARACTERISTICS OF PI-

EZOELECTRIC CONVERTERS WITH FREELY  

DEFINED BOUNDARY CONDITIONS AND  

GEOMETRY 

 

S u m m a r y 

 

This work presents test results for usable charac-

teristics of two-layer, bending piezoelectric converters sub-

jected to electric field and mechanical load. A general solu-

tion has been developed, based on implementation of piezo-

electric segments PBS to a bent beam. Working mechanism 

and conditions for strain of PBS segment were determined. 

Basing on the general solution, for cantilever converter (of 

single or two PBS segments) and converter resting on two 

supports of one PBS segment particular solutions were de-

veloped. The resulting analytical solutions were compared 

with literature data, and the developed FEM solution. 

 

Keywords: piezoelectric bender, constitutive equations, de-

flection, analytical solutions. 
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