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1. Introduction 

 

Glass Fiber Reinforced Polymer (GFRP) compo-

site structural shapes manufactured by the pultrusion pro-

cess have grown rapidly in the civil engineering industry in 

recent years [1]. These types of composite materials have 

been improved by progress in technology and started to be 

investigated from all perspectives [2]. GFRP profiles made 

from pultrusion process are frequently used as a design 

alternative where significant corrosion protection and 

chemical resistance is required [3]. Likewise, where acces-

sibility is limited and lightweight structures are essential 

[4, 5] or where electromagnetic transparency is necessary, 

the pultruded GFRP profiles have come forward. Beside, 

their high strength to weight ratios, GFRP profiles can be 

used together with other construction materials accounting 

their benefits for improving the structural behaviour [6]. 

Since GFRP profiles can be produced in number of differ-

ent section shapes similar to those used in the steel struc-

tures by several manufacturers around the world and can 

be cut to any desired length, it became an alternative mate-

rial for the structural design [1]. However, beside these 

advantages, GFRP profiles are viscoelastic and show time-

dependent behaviour. This issue is a disadvantage for the 

GFRP profiles which is required to be studied [1, 7].  

In the literature, there are limited numbers of 

long-term tests for pultruded GFRP materials exist which 

is not sufficient to assess the creep behaviour of pultruded 

GFRP structures from different perspectives. Tests for 

time-dependent behaviour of GFRP profiles under static 

loads are often performed by coupon tests [8-10] and lim-

ited studies are performed on full-scale structures that are 

formed by pultruded GFRP profiles [11]. However, coupon 

tests are practical and cost-effective for investigating the 

time-dependent behaviour whereas full-scale tests provide 

more realistic results for determining the structural perfor-

mance. In support of investigating time-dependent behav-

iour of structures that are formed with pultruded GFRP 

profiles, more studies are required to be performed for ob-

taining time-dependent strain redistributions within the 

cross-section of structural systems. 

In this study, an analytical method is presented to 

investigate the creep behaviour of plane frame structures 

that are made of GFRP profiles under sustained loads and a 

full-scale test is performed using plane frame structure that 

is constructed using pultruded GFRP profiles and test re-

sults are compared with numerical analysis outcomes. In 

full-scale test frame, static load is applied from midpoint of 

the beam of the frame structure for 100 days and beam 

midpoint deflection and strains for particular points of the 

frame are monitored. Analytical results and test data are 

compared and satisfactory outcomes are observed. 

 

2. Stress – strain – time relationship of viscoelastic 

structures 

 

Stress – strain – time relationship for nonlinear 

viscoelastic material is accounted as below [12]: 
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where σ(t) is time-dependent stress function; Bi (ε) is me-

chanical properties of the material related to deformation 

level; gi (t) is time function selected to reflect the behav-

iour. Bi (ε) and gi (t) functions are shown as in Eq. (2) and 

Eq. (3), respectively. 
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where t is time, ki, pi and λi are material properties, ε is 

strain. Similarly, for variable strain Eq. (1) is written as 

Eq. (4) [12]: 

         

      

0

1

1 0

.

n

i

i

tn

i i

i

σ t ε t  B ε t B ε t

ε τ  B ε τ  g t τ dτ
τ









 
   

 

 



   (4) 

If gi(t) is equal to unity and Bi (ε) is accounted as 

constant for Eq. (4), then Hooke law as given in Eq. (5) 

can be obtained: 
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Likewise, if βi is assumed as linear viscoelastic 

and the mechanical properties as deformation level 

B i(ε) = βi = constant,   0
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mann superposition principle can be achieved as Eq. (6): 
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3. Application of moment-curvature relationship to a 

frame member 

 

Stress and moment functions are derived by using 

strain and curvature relationship given in Eq. (7). Since 

stress – strain – time relation is given in Eq. (4), stress and 

moment functions are derived as in Eq. (8) and Eq. (9) as 

follows: 

 
 

 
2

2 x

Ω t
ε t z zΩ t

x




    ; (7) 

 

                   0

1 1 0

tn n

x x i x x i x i

i i

σ t zΩ t B zΩ t B zΩ t zΩ τ  B zΩ t g t τ dτ
τ



 


        


   ; (8) 

                0

1 1 0

tn n

x x i x x i x i

i iA

M z Ω t B z Ω t B z Ω t z Ω τ B z Ω t g t τ dτ z dA
τ



 

           
   , (9) 

 

where σ(t) is time-dependent stress function, Bi (ε) is me-

chanical properties of the material related to deformation 

level, gi (t) is time function selected to reflect the behav-

iour, Ωx(t) is time-dependent curvature function, z distance 

to the neutral axis. 

If functions given with Eq. (2) are inserted into 

Eq. (9) and calculations steps are performed with writing 

Eq. (10) into the equations, moment – curvature relation-

ship can be calculated using Eq. (11). In order to calculate 

curvature for a section from a moment value, Eq. (11) is 

written as in Eq. (12): 
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where M bending moment; t time; ki material coefficients; 

E modulus of elasticity; b width of section; d height of 

section; pi material coefficient; I0 is moment of inertia of 

the section; Ipi is a value that is related with section proper-

ties and Ωx(t) is time-dependent curvature function. 

Moment curvature relationship is calculated on 

the first step for the time-dependent analysis of viscoelastic 

frame system. Viscoelastic frame member with member 

length Lc is assumed and the moment value for any arbi-

trary section in 0 ≤ x ≤ Lc is known, then curvature is de-

termined as in Eq. (12). In order to have more general 

form, Eq. (12) is written for different sections of 

x = 0, 1, 2,…, kΔx and curvature at any section of frame 

member for any time is defined by Eq. (13): 
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where m iteration number; k section number; r number of 

time interval; Δx and Δt change in location and time. In 

Eq. (13), curvature without a superscript Ωx means that it’s 

real value that is calculated before and remains same dur-

ing the iteration. Similarly, if curvature with a superscript 
m

x
  is the investigated curvature value and 

x

x
  is the new 

curvature value after iteration. 

Curvature value at any section at any time can be 

calculated using the moment values and Eq. (13). In order 

to calculate rotation values for a frame member as given in 

Fig. 1, moment value for an arbitrary section is determined 

by Eq. (14): 
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where Mj (t) and Mk (t) are end moment values for the time, 

Lc is length of frame member, x is location and t is time.  

 

 

Fig. 1 Frame member 

Virtual work is given as Eq. (15) and it is used for 

determination of end rotations for a member: 
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where j (t) is time-dependent rotation at j end; ε strain; σv 

is stress for virtual system; V is volume. 

Eq. (7), Eq. (8) and Eq. (12) are put into Eq. (15) 

and consequently Eq. (16) is obtained. Integral that is in 

Eq. (16) is similar with Eq. (11) and this is accounted as 

virtual moment on the arbitrary section of the frame and 

Eq. (16) is derived as Eq. (17). Virtual moment is written 

into Eq. (17) for j. and k. ends of the member and Eq. (18) 

and Eq. (19) are obtained accordingly. 
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where Ωx(x, t) location and time-dependent curvature; 
j

(t) and k
 (t) are time-dependent end rotations for j and k 

ends of frame member; Lc length of the member; E modu-

lus of elasticity; x location; t time; z distance to neutral 

axis; ki, pi and λi material coefficients. 

If the end moments of a frame member and loads 

acting on the frame member are known, curvature is calcu-

lated by Eq. (13). Consequently, curvature results are used 

in Eqs. (18) and (19) in order to calculate end rotations of 

the frame member. Viscoelastic member is given in form 

of equivalent linear elastic member and rigidity coeffi-

cients of the equivalent linear member are given in 

Eqs. (20) and (21). In these equations also, member section 

is accounted constant in the length of the member and in 

order to have the equation in more general form Δ dis-

placement term is added. 
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where Mj and Mk are moment values for the j and k ends of 

the member; Δ is displacement between frame ends; Lc is 

the length of the member; θj(t) and θk(t) are time-dependent 

rotations for the j and k ends of the member; s1 and s2 are 

rigidity coefficients of member. These rigidity coefficients 

are dependent to moment values and are calculated for 

frame members. The viscoelastic deformation approach is 

applied for analysis. Mi value, which is calculated at the 

end of calculation, should be equal to the moment value 

that is accepted to be known prior to the calculation pro-

cess. However, in the beginning of the calculation, since 

moment value is not known in advance, a trail Mi
1 value is 

accepted. For a trail value, linear elastic analysis results 

can be used. Moment value Mi
x that is calculated at the end 

of the calculation, is not equal to Mi
1 accounting a tole-

rance value, same process is performed accounting Mi
2 as 

Mi
x value and this process is repeated up to the calculated 

moment value is equal to Mi
m in adequate tolerance. This 

process is repeated for t = 0, Δt, 2Δt,…, rΔt and time-

dependent changes in internal forces and joint displace-

ments of viscoelastic frame system is calculated.  

In order to investigate time-dependent behaviour 

of plane frame structures a computer program is developed 

using the procedure described in this section. A GFRP 

frame is modelled and analysed under sustained loads for 

the time period of 100 days.  

 

4. Time-dependent tests under sustained loads  

 

A plane frame that is formed with GFRP profiles 

is tested for 100 days under sustained loads. Static load is 

applied from the midpoint of the beam of the frame and 

strain, displacement values for some selected points are 

monitored during the test. Likewise, three point beam 

bending test is performed in order to evaluate the behavior 

and results of this test is used for determination of material 

coefficients for the analytical function. In order to perform 

creep tests and eliminate possible geometric influences on 

the structural behavior, GFRP profiles are supplied from 

same stock having same material and section properties 

[13]. Since, it is important to keep stress level same for 

determining creep behavior [14], static loads are used in-

stead of hydraulic loading systems to keep the stress level 

constant during the test period. Time independent mechan-

ical properties of the GFRP profiles are also determined 

using three point bending test described in ASTM standard 

[15]. Elasticity modulus is 21058 MPa, shear modulus is 

855 MPa, and flexural strength is 464 MPa for coupons 

that are taken from GFRP profiles.  

Three point bending test of GFRP beam with 

40 mm × 40 mm × 4 mm box section under sustained load 

is performed at first as shown in Fig. 2. Beam clear length 

is 3200 mm and load is applied from the midpoint of the 

beam and section stress is 23.2 MPa.  

 

 

Fig. 2 Three point bending test model for GFRP box beam 

Midpoint deflection is monitored by using LVDT 

and strain value is monitored by strain gauges for time-

dependent three point bending test for 30 days in Fig. 3. 
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Fig. 3 Three point bending test setup for GFRP beam  

A plane frame made of GFRP profiles is used for 

testing the time-dependent behaviour for 100 days under 

sustained loads. Static load is applied from the midpoint of 

the beam member of the plane frame and structural behav-

iour is monitored during the test with the relevant time 

intervals. Column and beam members are formed with 

40 mm × 40 mm × 4 mm box GFRP sections as given in 

Fig. 4. Beam length and column height is 1800 mm. Beam 

to column connection is made with top-and-seat angles 

with L 100 mm × 10 mm GFRP section and steel M12 

(8.8) bolts are used as shown in Fig. 5. Since connection is 

formed with relatively high angle sections than beam 

member as presented in Fig. 6 and relatively low load level 

is used in the test, the connection behaviour is assumed as 

rigid. Moreover, a strain-gauge is used at theoretical mo-

ment zero location in the test frame and the strain value is 

controlled for validating rigid connection assumption. 

 

 

Fig. 4 GFRP frame model  

Midpoint deflection of the beam of the frame and 

strain of four locations on the frame are monitored using 

LVDT and stain-gauges as given in Fig. 4. Since, it is a 

characteristic point, midpoint deflection is reported. Be-

sides, strain values are monitored for station points; S1 at 

the midpoint of the beam member of the frame, S2 and S3 

on the column at 300 mm below the beam-column connec-

tion and 300 mm above the base plate. Also, S4 is placed at 

theoretical zero strain point on the beam. 

 

Fig. 5 GFRP frame test setup  

Applied load level is selected accounting the ser-

viceability limits of ASCE as L/180 where L is the length 

of the beam [16]. After loading is performed, the vertical 

deflection of midpoint of the beam is 10.34 mm. The stress 

value for this load level is calculated as 21.6 MPa which is 

approximately 5% of the beam bending capacity. This val-

ue is lower than the 20% limit which is suggested for 

GFRP systems in many studies [1]. 

 

    

                                         a                      b 

Fig. 6 GFRP frame details: a) beam-column connection; 

b) static loads 

This load is kept for 100 days and data is recorded 

for the time intervals as 10 seconds for the first hour, and 

hourly readings for remaining 23 hours and daily for fol-

lowing 99 days. 

 

5. Evaluation of test results with analytical approach  

 

Test results are evaluated using stress – strain – 

time relationship derived in the analytical part of the study. 

Material coefficients are determined from time-dependent 

three point beam bending test and these coefficients are 

used in analytical solving of one bay frame numerically. 

Test results of one bay frame are compared with the ana-

lytical study results and outcomes are discussed. 

In order to determine material coefficients for the 

analytical approach, three point beam bending test results 

are used. GFRP beam’s midpoint strain and time relation is 

plotted and nonlinear least-squares method is used for 

curve fitting as in Fig. 7. Material coefficients are deter-

mined as k0 = 3482, k1 = 3505, p0 = 1.086, p1 = 1.101, 

λ1 = 11.75. 

 

Fig. 7 Midpoint strain – time relationship for three point 

bending test of beam member 

 

Fig. 8 Vertical displacement of S1 point of the frame – time  
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Test results and analytical calculations for time-

dependent behaviour of one bay frame are compared. Ver-

tical deflection of beam midpoint – time graphic is given in 

Fig. 8, strain – time graphics for selected points on the 

GFRP frame are presented in Figs. 9-11. Also, analytical 

calculation results are given for bending moment – time 

graphics for the selected points in Figs. 12-14. 

Increase in the vertical displacement of the mid-

point of the frame’s beam for 100 days is given in Fig. 8 

and determined as 11.5% and 11.6% from test and analyti-

cal results. Strain of the midpoint of the frame’s beam is 

also monitored and results are presented in Fig. 9. These 

results show that strain increase for the test period of 100 

days for the midpoint of the frame’s beam are 12.9% and 

12.8% for test data and analytical results. 

 

Fig. 9 Strain of S1 point of the frame – time  

 

Fig. 10 Strain of S2 point of the frame – time 

 

Fig. 11 Strain of S3 point of the frame – time  

Stain values for S2 and S3 strain-gauges which are 

placed on the column at 300 mm below the beam-

connection and 300 mm over the base plate, are also given 

in Figs. 10 and 11 for comparing the test data with the ana-

lytical results. Strain increase for S2 point is 13.1% and 

12.6% and for S3 point is 12.6% and 12.2% for test data 

and analytical results at the end of the 100 days test. All 

strain values that are monitored for 100 days show an in-

crease in lowering trend. 

Bending moment values are calculated using ana-

lytical method for the same sections that strain values are 

monitored. Bending moment – time relationship for beam 

midpoint, the column sections at 300 mm below the beam-

column connection and 300 mm above the base plate are 

presented using analytical calculation results in  

Figs. 12-14. 

 

Fig. 12 Bending moment of S1 point of the frame – time 

 

Fig. 13 Bending moment for S2 point of the frame – time 

 

Fig. 14 Bending moment for S3 point of the frame – time  

Results show that bending moment value for the 

midpoint of the beam of the frame decreases with time 

under sustained loading. However, bending moment of the 

column sections, which are for 300 mm lower from beam-

to-column connection and 300 mm over the base plate of 

the column, increases. These results shows that time-

dependent behaviour of GFRP profiles are affecting the 

structural behaviour of frames. These values present the 

moment redistribution in viscoelastic member sections of 

the GFRP frame under long term loads.  

 

6. Conclusions  

 

Time-dependent behaviour of GFRP profiles un-

der sustained loads is investigated using both analytical 

approach and test data. A plane frame made of GFRP pro-

files is tested under sustained loads and strain, deflections 

are monitored. Also, an analytical method is presented for 
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calculation of strain and deflections for the GFRP frame. 

Results of the analytical calculation and test data are eval-

uated and the following conclusions are drawn. 

1. Structures that are formed with GFRP profiles 

are viscoelastic and vertical midpoint deflection are in-

creased 11.5% for 100 days for the current test. The in-

crease is in lowering trend and this shows the nature of 

viscoelastic behaviour under sustained loads. Likewise, 

strain values are monitored from different locations on the 

frame members and strain values are in the trend of an in-

crease. Strain values, where the vertical displacement is 

monitored, show an increase of 12.9% for 100 days at the 

end of the test.  

2. Analytical calculation results show good com-

pliance with full-scale test data in displacement values and 

also in strain data. The difference between analytical re-

sults and test data are not more than 1% for all compared 

station points.  

3. Since all the sections on a frame cannot be re-

ported from full-scale tests, analytical calculation give en-

gineers an opportunity to foreseen the time-dependent val-

ues of displacement and strain for any desired location on 

the frame. Furthermore, bending moment values can be 

determined by analytical calculation and structural design 

can be performed accounting possible time-dependent ef-

fects for GFRP frame structures. 

4. Bending moment values for GFRP frame 

member sections, increase or decrease due to time regard-

ing the loading of the frame. However, changes in bending 

moment values are not more than 1% for all sections at 

particular locations of the frame. 

5. Since, coupon tests are generally focused in the 

literature, this study contributes to full-scale tests of the 

time-dependent behaviour of frame structures formed us-

ing GFRP profiles from both analytical and experimental 

perspective. 
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M. Secer, M.E. Kural 

CREEP BEHAVIOUR OF PLANE FRAME 

STRUCTURES MADE OF GFRP PROFILES 

S u m m a r y 

A methodology is presented for analytical calcu-

lation of creep behavior of plane frames made of glass fi-

ber reinforced polymer (GFRP) profiles and an experi-

mental study is carried out in order to evaluate the analyti-

cal calculation results. In order to account nonlinear visco-

elastic material behavior, stress – strain – time relationship 

of plane frame is given and creep behavior of plane frame 

structure is investigated. Material coefficients for the creep 

functions are determined using three point beam bending 

test results. In order to validate the analytical approach, a 

plane frame made of GFRP profiles is tested under sus-

tained loads for 100 days and displacements, strains are 

monitored. Strain and displacement values that are calcu-

lated using analytical method show good agreement with 

the full-scale test data. 
 

Keywords: viscoelastic behaviour, creep, glass fiber rein-

forced polymer profiles, GFRP frame. 
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