
610

ISSN 13921207. MECHANIKA. 2017 Volume 23(4): 610616

A novel algorithm for solving job-shop scheduling problem

A. Muthiah*, R. Rajkumar**
*Department of Mechanical Engineering, P.S.R. Engineering College, Sivakasi, India E-mail: amuthiah68@gmail.com

**Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India

 http://dx.doi.org/10.5755/j01.mech.23.4.14055

1. Introduction

The job shop scheduling problem (JSSP) is to de-

cide a schedule of jobs that is endowed with pre-set opera-

tion series in a multi-machine atmosphere. In the tradition-

al JSSP, n-jobs are processed to the finishing point on m-

unrelated machines. For each and every task, technology

limitations spell out an absolute and distinctive routing

which is set and identified earlier. In addition, processing

periods are set and identified previously [1]. A number of

production resources are available which are utilized ac-

cording to diverse methods by the task for processing. In

fact, each job has its own specific route in the production

site. Every stage of the routing is a unitary function per-

formed by one/multiple resource (s) in the course of a

specified processing interval. Nevertheless, a resource is

incompetent to carry out two operations simultaneously, in

other words resources are non-cumulative [2]. The prob-

lem of scheduling jobs in FJSP was divided into two sub-

problems. The first one was the routing that allocates every

task to a machine chosen from among a set of competent

machine, while the next was the scheduling that includes

sequencing the allocated tasks on all machines so as to

achieve a viable schedule to reduce the predefined objec-

tive task [3]. For each task there is a job to which it be-

longs, a machine on which it has to be processed, a prear-

ranged processing interval on that machine as well as a

preset processing order on the machines. The issue is to

reduce the makespan simultaneously making certain that

multiple jobs cannot be processed together on the same

machine, and also ensuring that when a job is commenced,

it has to be somehow finished [4]. But, FJSSP is rather

complicated than the traditional JSP, as it brings in an ad-

ditional decision level in addition to the sequencing one

such as the job routes. Decision on the job routes includes

determining, for every task, what machine must be used to

process it, from among the existing ones [5]. In the con-

temporary flexible manufacturing systems endowed with

computer-controlled robots, hoists, cranes, and other mate-

rial handling mechanisms, setup and transport intervals are

important and have to be given due consideration. Such

transporting devices are overtly integrated into the analo-

gous scheduling models [6]. A solution was entrusted with

the task of evaluating the operation series on the machines

to meet with certain restrictions. In this document, the re-

duction of makespan was deemed as the prominent target.

It is characterized as the overall time between the com-

mencement of the initial task and the end of the final task

in all jobs [7]. In the makespan reduction issue under linear

deterioration of the two-machine flow shop issue is power-

fully NP-hard. It was demonstrated that for the three-

machine flow shop problem with simple linear deteriora-

tion, there was no polynomial-time approximation algo-

rithm with a worst-case ratio bounded by a constant [8]. A

single-machine scheduling problem with uneven release

intervals for optimizing the makespan in which the learn-

ing effect and the deteriorating jobs were simultaneously

taken in to account. Various dominance standards and the

lower limits are set up to allow the branch-and-bound algo-

rithm for achieving the optimal solution [9]. In predictive-

reactive scheduling technique a production schedule is

created initially and thereafter revised in the reaction to a

disruption of real time events so as to reduce its influence

on system excellence, whereas in reactive scheduling

scheme only fractional schedules are produced when need-

ed for the instantaneous future in accordance with the ex-

isting system status and restricted data and limitations [10].

The dimension robustness is essentially categorized into

two types such as quality robustness and solution robust-

ness. The former is generally employed to specify the in-

sensitivity of the schedule excellence under ambiguity in

respect of the objective value, like makespan and tardiness

while the latter generally signifies the insensitivity of task

commencement or completion intervals to the ambiguity.

From the job shop scheduling, the optimization algorithm

is employed to estimate the least makespan interval within

the optimal schedule [11].

2. Abbreviation

AGA – Adaptive Genetic Algorithm

BKS – Best Known Solution

FJSP – Flexible Job Shop Problem

FJSSP – Flexible Job Shop Scheduling Problem

GA – Genetic Algorithm

JSSP – Job Shop Scheduling problem

OGA – Opposite Genetic Algorithm

3. Related works

Sureshkumar et al. [12] proposed the unordered

subsequence exchange crossover in genetic algorithm for

reducing the makespan interval in the JSSP. To reduce the

makespan duration and locate the optimal schedule special

crossover technique, unordered subsequence exchange

crossover was proposed in genetic algorithm (GA). Using

the special cross over technique unordered subsequence

exchange crossover the majority of the standard outcomes

were assessed and contrasted and the outcomes achieved

were more or less close to optimal value of the standard

issues. From the encouraging outcomes, it was clear that

the innovative algorithm had achieved optimal upshots of

the standard issues and several of the realized outcomes

were observed in proximity to optimal and with the em-

http://dx.doi.org/10.5755/j01.mech.23.4.14055

611

ployment of the unordered subsequence exchange crosso-

ver several benchmark issues outcomes were realized well

within the minimum number of iterations.

Antonin Ponsich et al. [13] have proposed a hy-

brid differential evolution-tabu search algorithm for the

resolution of JSSP. The Differential Evolution (DE) had

established its unique position as a highly proficient meth-

od for incessant optimization, though it failed miserably to

yield a superb performance when applied to transformation

issue. Therefore, an innovative hybridizing DE with Tabu

Search (TS) was employed to tackle the issues of the JSSP.

The computational investigations in respect of cases ex-

ceeding 100 JSSP instances illustrated the unquestioned

fact that the novel hybrid DE–TS algorithm was competent

to yield stunning performance when compared with those

of the several high-tech approaches. The amazing out-

comes have illustrated that the width of confidence inter-

vals was less than 0.7% of the reference makespan value,

establishing the fact that low dispersion of the solutions

was realized.

Chen et al .[14] exhibited an innovative flexible

job shop scheduling with parallel machines by means of

genetic algorithm and grouping genetic algorithm (GGA).

This paper possessed two modules such as the machine

selection module (MSM) and operation scheduling module

(OSM). The MSM extended a helping hand to an operation

to choose one of the matching machines to process it and

the OSM was thereafter employed to organize the series of

the entire operations allocated to each and every machine.

The outcomes upheld the preeminence of the combination

of MSM employing GGA and OSM using GA which went

on zooming as and when the number of orders augmented.

The result demonstrated the innovative method using GGA

and GA were well-equipped to allocate a machine to an

operation and organize the series of operations at each ma-

chine to bring in lesser tardiness, machine idle interval, and

makespan.

DarrellLochtefeld et al. [15] used the helper-

objective optimization strategies for the JSSP. The Multi-

ple Objectives Evolutionary Algorithms (MOEAs) was

executed on the JSSP and it was proved that they per-

formed superior to the single objective GA. Helper-

objectives, characterizing segments of the fundamental

goal, were exceedingly helpful in guiding MOEAs in the

search procedure. The series in which helper-objectives

were employed which corroborated the fact that problem-

specific skills could be integrated to decide a helper-

objective sequence. Computational outcomes well exhibit-

ed the manner by which cautiously sequenced helper ob-

jectives were competent to step up search excellence. This

resulted in the summary rejection of the traditional practice

of picking helper sequence based on arbitrary order on

account of the deficiency of comprehension about optimal

sequencing.

Lin et al. [16] were credited with introducing an

innovative technique of particle swarm optimization for

job-shop scheduling. In this paper, a hybrid swarm intelli-

gence algorithm integrating particle swarm optimization,

simulated annealing technique and multi-type individual

enhancement scheme was introduced to find viable solu-

tions to the JSSP. It was evident from the outstanding out-

comes that the difference between the MPSO’s Average

and the BKS were limited to less than 2% and MPSO were

competent to achieve the optimal area in the search space

with lesser population dimension and get better solutions

by exploiting the superior individual enhancement apti-

tude.

4. Proposed methodologies

A novel algorithm, Opposition Genetic Algorithm

(OGA) is developed to find the minimum makespan time

within the optimal scheduling. The minimum makespan

value is found by using the fitness computation of the algo-

rithm. In opposition based algorithm, the chromosomes of

the algorithm i.e., solution sets are generated and its oppo-

sition chromosomes are calculated for finding the best

chromosome of the solution by using the fitness value. The

opposition chromosomes are finding the two extremes so-

lutions of the chromosomes to find the best solutions.

Then, the cross over and mutation process of the normal

genetic algorithm process is applied on it for finding the

best optimal value for the minimum makespan time. Final-

ly the results are compared with Genetic Algorithm (GA)

and Adaptive Genetic Algorithm (AGA).

4.1. Constraints of the proposed algorithm to solve JSSP

 Each job must be processed in the allocated

time.

 Each job can be processed with the shortest

time such that it completes within short period of time.

 At a given time, a machine can execute at most

one operation.

4.2. Genetic Algorithm (GA)

Fig 1 depicts the GA. In genetic algorithm opti-

mization technique the chromosome in the hidden layer

and neurons are considered and then the fitness function

calculated. Based on fitness value, the cross over is creat-

ed. These individuals reproduce the offspring and after that

the offspring are mutated randomly. Then the fitness value

is found and checked with the other solutions and the min-

imum error value obtained.

4.3. Adaptive Genetic Algorithm (AGA)

In usual genetic algorithm, the mutation rate or

probability is stable for all chromosomes to unearth the

fitness function. So there is no altering in any values for

the best fitness values for the best chromosomes. The

adoptive genetic algorithm is used to tune the value near

the best value with the less time. AGA process crossover

and mutation based on the rate value is shown in Eqs. (1)

and (2).

Cross over rate:

 ,C max max avg avg
P f f / f f f f . (1)

Mutation rate

 0 5 , ,
C max max avg avg

P . f f / f f f f (2)

where fmax represents the maximum fitness value of the

population, favg the average fitness value of the population,

612

f the fitness value of the solution undergone mutation. f the

larger of the fitness values of the solutions are to be

crossed.

Fig. 1 Genetic algorithm

4.4. Opposition Genetic Algorithm (OGA)

In OGA, first a population is created with a group

of individuals randomly. The individuals in the population

are then evaluated. The evaluation function is provided by

the user. Next two individuals are selected based on their

fitness (higher fitness individuals are selected). Then these

individuals will reproduce to create one or more offspring.

After that the offspring are mutated randomly. This process

continues until a suitable solution has been found or a cer-

tain number of generations have passed, depending on the

needs of the user.

4.4.1. Making of chromosomes

The initial solutions are generated randomly and

each solution is called gene. The individual gene is com-

bined as chromosome and it is called the solution set. The

numbers of genes are combined the chromosomes and cre-

ated the solution set for the population. The population of

genetic algorithm is composed of chromosomes and the

population size is initialized as fixed. The numbers of solu-

tions are initialized based on the normal genetic algorithm.

Fig. 2 Adaptive Genetic Algorithm

The Opposition based genetic algorithm is varied

from the normal genetic in this part and calculate the oppo-

sition chromosome solution set by using the following

formula.

j j j j
Y p q y , (3)

where Y is the opposition vector, y is within the interval of

[p, q]. The p and q are the boundary conditions. The ‘j’ is

the number of solutions. The randomly generated solution

sets are generating its opposition chromosomes by using

the Eq. (3).

Start

Initial Solution

Fitness Computation

Apply Cross Over

Cross Over

Apply Mutation

Mutation Rate

Fitness Computation for

Mutated Solution

Best

Optimal

Solution

Optimal Solution

Stop

Start

Initial Solution

Fitness Computation

Cross Over

Mutation

Find the Fitness in

Mutated Solution

Best Optimal

Solution

Optimal Solution

Stop

613

Fig. 3 Flow chart for opposition genetic algorithm

The maximum and minimum value of the each

solution is known and it is used for generating the opposi-

tion based chromosome solution sets. Its population size is

same for its randomly generated population size. For ex-

ample, the population size is 10 and its opposition based

solution set is 10 because the opposition based solutions

are determined by using the its initial solution sets.

4.4.2. Fitness function

The following formula is used to find the fitness

function for calculating the makespan time and it is:

 Fitness min Y t , (4)

where, the Y(t) is the makespan time:

 1, , 1 ,
,

i j i j i j
Y t max T T T

 , (5)

where the T is the processing time, the ‘i’ is the job order

and j is the machine order. The fitness function is calculat-

ed for the initial solution sets of the chromosomes and the

opposition based solution sets for finding the best chromo-

somes. After the solutions sets are evaluated, the cross over

and mutation function are applied on the chromosomes of

the solutions sets.

4.4.3. Cross over

In our proposed method, the cross over function is

based on the job order and the parent chromosomes are

shown in the Fig. 4. In cross over, the two parent chromo-

somes are taken to exchange their genes within them. The

following Fig. 4 denotes the parent chromosomes parent 1

and parent 2. The unordered crossover is used for the

crossover operation. In parent 1 and 2 chromosomes, the

bold lettered job orders are unchanged in their positions

and remaining gene of the chromosomes is exchanged be-

tween the parent chromosomes. After the crossover, the

chromosome is shown below in the Fig. 5.

3 2 1 3 1 2 3 2 1

Parent-1

1 2 3 1 3 2 3 1 2

Parent-2

Fig. 4 Parent chromosomes

3 1 2 1 3 2 3 2 1

New Chromosome-1

3 2 1 1 2 3 3 1 2

New Chromosome-2

Fig. 5 New Chromosomes

2 3 1 2 1 3 3 2 1

Off Spring-1

3 2 1 1 2 3 2 3 1

Off Spring-2

Fig. 6 Mutated off spring

4.4.4. Mutation

After the crossover, the child chromosome is mu-

tated for increasing the efficiency of the solution and the

bold letter shows the mutated gene of the chromosome. In

our proposed method mutation, the same job order is se-

lected within the offspring and it is interchanged from its

position to other place for giving the best optimal solution

The shift changing mutation method is used in the muta-

tion operation and the job orders are shift to left one step

and replacing by the new job order. After the shift chang-

ing within the off-spring is shown in Fig. 5. From the

Fig. 6, the gene of the off spring is shifted one step left and

the optimized new solution is getting by the mutation pro-

cess. The optimal solution is obtained after the mutation

function and it shows the final output of the result with

614

their minimal optimized time and it gives the minimum

makespan time.

4.4.5. Optimal solution

At end of the mutation, the new chromosomes are

generated for the new solution sets. Then, the fitness value

is finding for the new solutions. From that, which solution

is given the minimized makespan time and it is used as

optimal solution otherwise the above steps are processed

for the new solution sets.

5. Result and discussion

The different benchmarks problems are used to

find the minimum make span time and its operation are

shown below with the minimum make span time. The fol-

lowing FT20 (20X10), LA01 (10X10), LA06 (15X10),

LA16 (10X20), LA21 (15X20), LA26 (20X20), LA22

(15X20), LA27 (20X20), LA28 (20X20) and LA31

(30X20) benchmark problems are used to find the mini-

mum make span time.

In the tabular columns processing times and com-

pletion times of the each job is separately shown. In com-

pletion time tabular columns, the process sequence is

shown as the operation sequence which is denoted as the

O11, O12….up to its end of the number of operations. In

all benchmark problem minimum make span time pro-

duced in Opposition Genetic Algorithm (OGA). The fol-

lowing tables are shows that the processing time of each

problem size with their jobs and machines. The minimum

make span time calculating processing matrix for GA,

AGA and OGA and minimum time attained in OGA. In the

above tables are shown the different benchmark problem

processing time durations and the minimum make span

time of the OGA process. The job sequences furnish the

minimum make span time for all the jobs and they have the

input possessing time durations which are added with those

of the other jobs. The minimum make span time is given at

the end of the complete operation of the all the jobs. After

all the jobs are finished, the opposite genetic algorithm

(OGA) yields the minimum time with the corresponding

job sequence. These job sequences are processed to give

the minimum make span time, which is added to their cor-

responding job sequence input time. Here, if the problem

size varies, the processing time is also found to vary based

on the number of the machine operated. For FT20 (20X10)

the minimum make span time of the process viz. 1147 is

attained in 9 jobs performed in 20 machines in the OGA

algorithm and is compared to the other two algorithms as

shown in Table 1. For LA01 (10X10) the target and pre-

dicted values are 666 and 658 respectively for 5 machines.

The corresponding job sequence is different for 10X10 and

it is brought along with the minimum number of iterations

for all the problems in Fig. 7. The minimum make span

time is obtained at the above job sequence and added with

their corresponding job sequence input times. For LA22

(15X20) and LA06 (15X10) the minimum make span time

values are attained in the OGA technique in 15 jobs per-

formed in 9 machines and they are 868 and 920 respective-

ly. These job sequences are processed to yield the mini-

mum make span time. Similarly the minimum make span

time is obtained in the OGA technique compared to the

GA and AGA processes.

Table 1

Comparison of bench mark problems - GA, AGA

and OGA

Sl.No Instance Size

n × m
BKS GA AGA OGA

1 ft06 6 × 6 55 59 62 56

2 ft10 10 × 10 930 1105 1087 925

3 ft20 20 × 5 1165 1170 1147 1035

4 la01 10 × 5 666 698 671 658

5 la02 10 × 5 655 742 826 653

6 la03 10 × 5 597 647 682 597

7 la04 10 × 5 590 692 702 590

8 la05 10 × 5 593 685 715 593

9 la06 15 × 5 926 928 876 868

10 la07 15 × 5 890 987 847 890

11 la08 15 × 5 863 965 947 863

12 la09 15 × 5 951 1219 1248 951

13 la10 15 × 5 958 1325 1352 958

14 la11 20 × 5 1222 1398 1402 1222

15 la12 20 × 5 1039 1210 1185 1039

16 la13 20 × 5 1150 1324 1344 1150

17 la14 20 × 5 1292 1457 1482 1292

18 la15 20 × 5 1207 1420 1455 1207

19 la16 10 × 10 945 1057 1083 941

20 la17 10 × 10 784 962 987 784

21 la18 10 × 10 848 991 1020 848

22 la19 10 × 10 842 984 1014 842

23 la20 10 × 10 902 1065 1074 902

24 la21 15 × 10 1046 1276 1352 1044

25 la22 15 × 10 927 1254 1284 920

26 la23 15 × 10 1032 1287 1302 1032

27 la24 15 × 10 935 1112 1144 935

28 la25 15 × 10 977 1025 1035 977

29 la26 20 × 10 1218 1766 1592 1211

30 la27 20 × 10 1235 1692 1657 1227

31 la28 20 × 10 1216 1715 1612 1215

32 la29 20 × 10 1152 1345 1247 1152

33 la30 20 × 10 1355 1457 1366 1355

34 la31 30 × 10 1784 1998 1952 1772

35 la32 30 × 10 1850 2014 1989 1850

36 la33 30 × 10 1719 1857 1892 1719

37 la34 30 × 10 1721 1951 1976 1721

38 la35 30 × 10 1888 2089 1988 1888

39 la36 15 × 15 1268 1931 1893 1118

40 la37 15 × 15 1397 1549 1452 1397

41 la38 15 × 15 1196 1246 1168 1196

42 la39 15 × 15 1233 1412 1386 1233

43 la40 15 × 15 1222 1397 1287 1222

Table 1 illustrates the minimum make span time

for the various benchmark problems along with their make

span time. The minimum make span time is estimated only

615

after the entire operations are finished. It is clear from the

graph that the best minimum make span time is realized in

the OGA technique vis-à-vis the AGA and GA. The opti-

mal make span time is subjected to analysis and compari-

son with the identified optimal makespan time. It is grati-

fying to note that the innovative technique has ushered in

an optimal makespan time value which goes hand in hand

with the identified optimal value.

Fig. 7 elegantly exhibits that the proposed OGA

performs well than GA, and AGA for several benchmark

problems. In respect of FT20 (20X10) the minimum make

span time is 1035 which is attained in the OGA in the

42-th iteration. When it is compared with the GA, the time

difference is 135 and the minimum time of the GA is at-

tained in the 41-th iteration. In the case of the AGA also

the minimum time is attained in the 45-th iteration. For this

problem the maximum time is 1170 in the GA. In respect

of the problem size LA01 (10X10), the minimum

makespan time achieved for the GA is 698. Here, the orig-

inal time is 666 and the minimum time is attained in the

39-th iteration in the OGA process. In LA06, the original

time is found to be 926, and for GA and AGA the differ-

ence is 2 and 50 while for OGA is 58. Similarly for LA16

(10X20) also, the minimum processing time is 941 for

OGA and when compared with the original processing

time it is the minimum time for the job scheduling process.

Finally for the problem size LA21 (15x20), when the make

span time of the OGA is compared with the GA the differ-

ence is found to be 232. Similarly for the AGA the mini-

mum time of 308 is attained in the 44th iteration of the

AGA process. For the problem size LA22 (15X20). It is

crystal clear from the graph that the minimum make span

time achieved is 920 for the AGA in the 47 iteration. When

it is compared with that of the (OGA) the difference is 73.

Fig. 7 Makespan time comparison for bench mark problems

In respect of the problem size LA26 (20X20) the

maximum time for OGA is estimated as 1211. As far as the

problem size LA27 (20X20) is concerned ,the original time

and the minimum make span time are 1235 and 1227 re-

spectively and the time difference in the OGA with the

original time is found to be 99.23%. For LA28 (20X20) the

minimum makespan time is estimated as 1215 for the OGA

technique which is achieved in the 45-th iteration. In re-

spect of the LA31 (20X20) also, the minimum make span

time of 1772 is realized in OGA technique.

6. Conclusion

The proposed opposite genetic algorithm has

achieved the least make-span interval vis-à-vis those of the

rivals such as the adaptive genetic algorithm and genetic

algorithm. The make-span interval is estimated for various

standard challenges like FT20 (20X10), LA01 (10X10),

LA06 (15X10), LA16 (10X20), LA21 (15X20), LA26

(20X20), LA22 (15X20), LA27 (20X20), LA28 (20X20)

and LA31 (30X20) and they are assessed and contrasted

with those of the rival methods. The fascinating results

substantiate the fact the ground-breaking opposite genetic

algorithm has come out with flying colors by ushering the

least make-span interval for all standard issues addressed.

The makespan time is minimized by using the different

algorithms such as genetic algorithm, adaptive genetic al-

gorithm. The different benchmark problems are applied for

finding the minimum makespan time. The developed algo-

rithms can be integrated with other heuristics algorithms to

develop hybrid algorithms in future.

References

1. Fattahi, P.; Jolai, F.; Arkat, J. 2009. Flexible job

shop scheduling with overlapping in operations, Ap-

plied Mathematical Modelling 33: 3076-3087.

http://dx.doi.org/10.1016/j.apm.2008.10.029.

https://doi.org/10.1016/j.apm.2008.10.029

616

2. Prot, D.; Bellenguez-Morineau, O. 2012. Tabu search

and lower bound for an industrial complex shop sched-

uling problem, Computers and Industrial Engineering

62: 1109-1118.

http://dx.doi.org/10.1016/j.cie.2012.01.003.

3. Guohui Zhang.; Liang Gao.; Yang Shi. 2011. An

effective genetic algorithm for the flexible job-shop

scheduling problem, Expert Systems with Applications

38: 3563-3573.

http://dx.doi.org/10.1016/j.eswa.2010.08.145.

4. Heinonen, J.; Pettersso, F. 2007. Hybrid ant colony

optimization and visibility studies applied to a job-shop

scheduling problem, Applied Mathematics and Compu-

tation 187: 989-998.

http://dx.doi.org/10.1016/j.amc.2006.09.023.

5. Pezzella, F.; Morganti, G.; Ciaschetti, G. 2008. A

genetic algorithm for the Flexible Job-shop Scheduling

Problem, Computers & Operations Research 35: 3202-

3212.

http://dx.doi.org/10.1016/j.cor.2007.02.014.

6. Levner, E.; Kats, V.; Alcaide D.; De Pablo, L.;

Cheng, T.C.E. 2010. Complexity of cyclic scheduling

problems: A state-of-the-art survey, Computers & In-

dustrial Engineering 59: 352-361.

http://dx.doi.org/10.1016/j.cie.2010.03.013.

7. Liang Gao; Guohui Zhang; Liping Zhang; Xinyu Li

2011. An efficient memetic algorithm for solving the

job shop scheduling problem, Computers & Industrial

Engineering 60: 699-705.

http://dx.doi.org/10.1016/j.cie.2011.01.003.

8. Xiao-Yuan Wang; Ming-Zheng Wang; Ji-Bo Wang

2011. Flow shop scheduling to minimize makespan

with decreasing time-dependent job processing times,

Computers & Industrial Engineering 60: 840-844.

http://dx.doi.org/10.1016/j.cie.2011.02.003.

9. Yu-Hsiang Chung; Lee-Ing Tong 2012. Bi-criteria

minimization for the permutation flow shop scheduling

problem with machine-based learning effects, Comput-

ers & Industrial Engineering 63: 302-312.

http://dx.doi.org/10.1016/j.cie.2012.03.009.

10. Li Nie; Liang Gao; Peigen Li; Xinyu Shao 2013.

Reactive scheduling in a job shop where jobs arrive

over time, Computers & Industrial Engineering

66: 389-405.

http://dx.doi.org/10.1016/j.cie.2013.05.023.

11. Jian Xiong.; Li-ning Xing.; Ying-wu Chen. 2013.

Robust scheduling for multi-objective flexible job-shop

problems with random machine breakdowns, Interna-

tional Journal of Production Economics 141: 112-126.

http://dx.doi.org/10.1016/j.ijpe.2012.04.015.

12. Antonin Ponsich; Carlos A. Coello 2013. A hybrid

Differential Evolution—Tabu Search algorithm for the

solution of Job-Shop Scheduling Problems, Applied

Soft Computing 13: 462-474.

http://dx.doi.org/10.1016/j.asoc.2012.07.034.

13. James C. Chen; Cheng-Chun Wu; Chia-Wen Chen;

Kou-Huang Chen 2012. Flexible job shop scheduling

with parallel machines using Genetic Algorithm and

Grouping Genetic Algorithm, Expert Systems with Ap-

plications 39: 10016-1002.

http://dx.doi.org/10.1016/j.eswa.2012.01.211.

14. Darrell F. Lochtefelda; Frank W. Ciarallo 2011.

Helper-objective optimization strategies for the Job-

Shop Scheduling Problem, Applied Soft Computing

11: 4161-4174.

http://dx.doi.org/10.1016/j.asoc.2011.03.007.

15. Tsung-Lieh Lin; Shi-Jinn Horng; Tzong-Wann

Kao; Yuan-Hsin Chen; Ray-Shine Run;Rong-Jian

Chen; Jui-Lin Lai; I-Hong Kuo 2010. An efficient

job-shop scheduling algorithm based on particle swarm

optimization, Expert Systems with Applications

37: 2629-2636.

16. Amjad Iqbal; Naveed Kazim Khan; Arfan Jaffar;

Ramzan; Rauf Bai 2010. Opposition based Genetic

Algorithm with Cauchy Mutation for Function Optimi-

zation, in proceedings of IEEE Information Science and

Applications, p.1-7.

A. Muthiah, R. Rajkumar

A NOVEL ALGORITHM FOR SOLVING JOB-SHOP

SCHEDULING PROBLEM

S u m m a r y

Of late, Scheduling optimization is the highly sig-

nificant hassles in the job shop. The supreme advantage of

the job shop scheduling is that the conclusion period of the

entire tasks is cutback to the minimum possible. The job

shop scheduling problem takes its origin from the conven-

tional job shop scheduling problem, which is equipped

with extensive accessibility of machines for all the entire

tasks to be completed. Taking into account the two phases

of the issue, two diverse definitions such as total flexibility

and partial flexibility are envisaged to segregate the di-

verse accessibility data of machines. It is cheering that the

efficiency has been scaled up by means of the opposite

genetic algorithm which has proved its mettle as an effec-

tual and proficient mechanism for successfully addressing

the pointed issue of job-shop scheduling. Moreover, it is

effectively employed to find out the least optimal make-

span time with the optimal solution.

Key words: Job shop scheduling, makespan time, adaptive

genetic algorithm, opposite genetic algorithm.

Received January 28, 2016

Accepted August 04, 2017

https://doi.org/10.1016/j.cie.2012.01.003
https://doi.org/10.1016/j.eswa.2010.08.145
https://doi.org/10.1016/j.amc.2006.09.023
https://doi.org/10.1016/j.cor.2007.02.014
https://doi.org/10.1016/j.cie.2010.03.013
https://doi.org/10.1016/j.cie.2011.01.003
https://doi.org/10.1016/j.cie.2011.02.003
https://doi.org/10.1016/j.cie.2012.03.009
https://doi.org/10.1016/j.cie.2013.05.023
https://doi.org/10.1016/j.ijpe.2012.04.015
https://doi.org/10.1016/j.asoc.2012.07.034
https://doi.org/10.1016/j.eswa.2012.01.211
https://doi.org/10.1016/j.asoc.2011.03.007

