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1. Introduction 

 

The job shop scheduling problem (JSSP) is to de-

cide a schedule of jobs that is endowed with pre-set opera-

tion series in a multi-machine atmosphere. In the tradition-

al JSSP, n-jobs are processed to the finishing point on m-

unrelated machines. For each and every task, technology 

limitations spell out an absolute and distinctive routing 

which is set and identified earlier. In addition, processing 

periods are set and identified previously [1]. A number of 

production resources are available which are utilized ac-

cording to diverse methods by the task for processing. In 

fact, each job has its own specific route in the production 

site. Every stage of the routing is a unitary function per-

formed by one/multiple resource (s) in the course of a 

specified processing interval. Nevertheless, a resource is 

incompetent to carry out two operations simultaneously, in 

other words resources are non-cumulative [2]. The prob-

lem of scheduling jobs in FJSP was divided into two sub-

problems. The first one was the routing that allocates every 

task to a machine chosen from among a set of competent 

machine, while the next was the scheduling that includes 

sequencing the allocated tasks on all machines so as to 

achieve a viable schedule to reduce the predefined objec-

tive task [3]. For each task there is a job to which it be-

longs, a machine on which it has to be processed, a prear-

ranged processing interval on that machine as well as a 

preset processing order on the machines. The issue is to 

reduce the makespan simultaneously making certain that 

multiple jobs cannot be processed together on the same 

machine, and also ensuring that when a job is commenced, 

it has to be somehow finished [4]. But, FJSSP is rather 

complicated than the traditional JSP, as it brings in an ad-

ditional decision level in addition to the sequencing one 

such as the job routes. Decision on the job routes includes 

determining, for every task, what machine must be used to 

process it, from among the existing ones [5]. In the con-

temporary flexible manufacturing systems endowed with 

computer-controlled robots, hoists, cranes, and other mate-

rial handling mechanisms, setup and transport intervals  are 

important and have to be given due consideration. Such 

transporting devices are overtly integrated into the analo-

gous scheduling models [6]. A solution was entrusted with 

the task of evaluating the operation series on the machines 

to meet with certain restrictions. In this document, the re-

duction of makespan was deemed as the prominent target. 

It is characterized as the overall time between the com-

mencement of the initial task and the end of the final task 

in all jobs [7]. In the makespan reduction issue under linear 

deterioration of the two-machine flow shop issue is power-

fully NP-hard. It was demonstrated that for the three-

machine flow shop problem with simple linear deteriora-

tion, there was no polynomial-time approximation algo-

rithm with a worst-case ratio bounded by a constant [8]. A 

single-machine scheduling problem with uneven release 

intervals for optimizing the makespan in which the learn-

ing effect and the deteriorating jobs were simultaneously 

taken in to account. Various dominance standards and the 

lower limits are set up to allow the branch-and-bound algo-

rithm for achieving the optimal solution [9]. In predictive-

reactive scheduling technique a production schedule is 

created initially and thereafter revised in the reaction to a 

disruption of real time events so as to reduce its influence 

on system excellence, whereas in reactive scheduling 

scheme only fractional schedules are produced when need-

ed for the instantaneous future in accordance with the ex-

isting system status and restricted data and limitations [10]. 

The dimension robustness is essentially categorized into 

two types such as quality robustness and solution robust-

ness. The former is generally employed to specify the in-

sensitivity of the schedule excellence under ambiguity in 

respect of the objective value, like makespan and tardiness 

while the latter generally signifies the insensitivity of task 

commencement or completion intervals to the ambiguity. 

From the job shop scheduling, the optimization algorithm 

is employed to estimate the least makespan interval within 

the optimal schedule [11]. 

 

2. Abbreviation 

 

AGA  – Adaptive Genetic Algorithm 

BKS   –  Best Known Solution 

FJSP   – Flexible Job Shop Problem 

FJSSP – Flexible Job Shop Scheduling Problem 

GA     –  Genetic Algorithm  

JSSP   – Job Shop Scheduling problem 

OGA  – Opposite Genetic Algorithm 

 

3. Related works 

 

Sureshkumar et al. [12] proposed the unordered 

subsequence exchange crossover in genetic algorithm for 

reducing the makespan interval in the JSSP. To reduce the 

makespan duration and locate the optimal schedule special 

crossover technique, unordered subsequence exchange 

crossover was proposed in genetic algorithm (GA). Using 

the special cross over technique unordered subsequence 

exchange crossover the majority of the standard outcomes 

were assessed and contrasted and the outcomes achieved 

were more or less close to optimal value of the standard 

issues. From the encouraging outcomes, it was clear that 

the innovative algorithm had achieved optimal upshots of 

the standard issues and several of the realized outcomes 

were observed in proximity to optimal and with the em-
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ployment of the unordered subsequence exchange crosso-

ver several benchmark issues outcomes were realized well 

within the minimum number of iterations. 

Antonin Ponsich et al. [13] have proposed a hy-

brid differential evolution-tabu search algorithm for the 

resolution of JSSP. The Differential Evolution (DE) had 

established its unique position as a highly proficient meth-

od for incessant optimization, though it failed miserably to 

yield a superb performance when applied to transformation 

issue. Therefore, an innovative hybridizing DE with Tabu 

Search (TS) was employed to tackle the issues of the JSSP. 

The computational investigations in respect of cases ex-

ceeding 100 JSSP instances illustrated the unquestioned 

fact that the novel hybrid DE–TS algorithm was competent 

to yield stunning performance when compared with those 

of the several high-tech approaches. The amazing out-

comes have illustrated that the width of confidence inter-

vals was less than 0.7% of the reference makespan value, 

establishing the fact that low dispersion of the solutions 

was realized. 

Chen et al .[14] exhibited an innovative flexible 

job shop scheduling with parallel machines by means of 

genetic algorithm and grouping genetic algorithm (GGA). 

This paper possessed two modules such as the machine 

selection module (MSM) and operation scheduling module 

(OSM). The MSM extended a helping hand to an operation 

to choose one of the matching machines to process it and 

the OSM was thereafter employed to organize the series of 

the entire operations allocated to each and every machine. 

The outcomes upheld the preeminence of the combination 

of MSM employing GGA and OSM using GA which went 

on zooming as and when the number of orders augmented. 

The result demonstrated the innovative method using GGA 

and GA were well-equipped to allocate a machine to an 

operation and organize the series of operations at each ma-

chine to bring in lesser tardiness, machine idle interval, and 

makespan.  

DarrellLochtefeld et al. [15] used the helper-

objective optimization strategies for the JSSP. The Multi-

ple Objectives Evolutionary Algorithms (MOEAs) was 

executed on the JSSP and it was proved that they per-

formed superior to the single objective GA. Helper-

objectives, characterizing segments of the fundamental 

goal, were exceedingly helpful in guiding MOEAs in the 

search procedure. The series in which helper-objectives 

were employed which corroborated the fact that problem-

specific skills could be integrated to decide a helper-

objective sequence. Computational outcomes well exhibit-

ed the manner by which cautiously sequenced helper ob-

jectives were competent to step up search excellence. This 

resulted in the summary rejection of the traditional practice 

of picking helper sequence based on arbitrary order on 

account of the deficiency of comprehension about optimal 

sequencing. 

Lin et al. [16] were credited with introducing an 

innovative technique of particle swarm optimization for 

job-shop scheduling. In this paper, a hybrid swarm intelli-

gence algorithm integrating particle swarm optimization, 

simulated annealing technique and multi-type individual 

enhancement scheme was introduced to find viable solu-

tions to the JSSP. It was evident from the outstanding out-

comes that  the difference between the MPSO’s Average 

and the BKS were limited to less than 2% and MPSO were 

competent to achieve the optimal area in the search space 

with lesser population dimension and get better solutions 

by exploiting the superior individual enhancement apti-

tude. 

 

4. Proposed methodologies 

 

A novel algorithm, Opposition Genetic Algorithm 

(OGA) is developed to find the minimum makespan time 

within the optimal scheduling. The minimum makespan 

value is found by using the fitness computation of the algo-

rithm. In opposition based algorithm, the chromosomes of 

the algorithm i.e., solution sets are generated and its oppo-

sition chromosomes are calculated for finding the best 

chromosome of the solution by using the fitness value. The 

opposition chromosomes are finding the two extremes so-

lutions of the chromosomes to find the best solutions. 

Then, the cross over and mutation process of the normal 

genetic algorithm process is applied on it for finding the 

best optimal value for the minimum makespan time. Final-

ly the results are compared with Genetic Algorithm (GA) 

and Adaptive Genetic Algorithm (AGA).  

 

4.1. Constraints of the proposed algorithm to solve JSSP 

 

 Each job must be processed in the allocated 

time. 

 Each job can be processed with the shortest 

time such that it completes within short period of time. 

 At a given time, a machine can execute at most 

one operation. 

 

4.2. Genetic Algorithm (GA) 

 

Fig 1 depicts the GA. In genetic algorithm opti-

mization technique the chromosome in the hidden layer 

and neurons are considered and then the fitness function 

calculated. Based on fitness value, the cross over is creat-

ed. These individuals reproduce the offspring and after that 

the offspring are mutated randomly. Then the fitness value 

is found and checked with the other solutions and the min-

imum error value obtained. 

 

4.3. Adaptive Genetic Algorithm (AGA) 

 

In usual genetic algorithm, the mutation rate or 

probability is stable for all chromosomes to unearth the 

fitness function. So there is no altering in any values for 

the best fitness values for the best chromosomes. The 

adoptive genetic algorithm is used to tune the value near 

the best value with the less time. AGA process crossover 

and mutation based on the rate value is shown in Eqs. (1) 

and (2). 

Cross over rate: 

    ,C max max avg avg
P f f / f f f f .     (1) 

Mutation rate  

   0 5 , ,
C max max avg avg

P . f f / f f f f     (2) 

where fmax represents the maximum fitness value of the 

population, favg the average fitness value of the population, 
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f the fitness value of the solution undergone mutation. f the 

larger of the fitness values of the solutions are to be 

crossed. 

 

 

Fig. 1 Genetic algorithm 

 

4.4. Opposition Genetic Algorithm (OGA) 

 

In OGA, first a population is created with a group 

of individuals randomly.  The individuals in the population 

are then evaluated. The evaluation function is provided by 

the user. Next two individuals are selected based on their 

fitness (higher fitness individuals are selected). Then these 

individuals will reproduce to create one or more offspring. 

After that the offspring are mutated randomly. This process 

continues until a suitable solution has been found or a cer-

tain number of generations have passed, depending on the 

needs of the user. 

 

4.4.1. Making of chromosomes 

 

The initial solutions are generated randomly and 

each solution is called gene. The individual gene is com-

bined as chromosome and it is called the solution set. The 

numbers of genes are combined the chromosomes and cre-

ated the solution set for the population. The population of 

genetic algorithm is composed of chromosomes and the 

population size is initialized as fixed. The numbers of solu-

tions are initialized based on the normal genetic algorithm. 

 

 

Fig. 2 Adaptive Genetic Algorithm 

 

The Opposition based genetic algorithm is varied 

from the normal genetic in this part and calculate the oppo-

sition chromosome solution set by using the following 

formula. 

j j j j
Y p q y   , (3) 

where Y is the opposition vector, y is within the interval of 

[p, q]. The p and q are the boundary conditions. The ‘j’ is 

the number of solutions. The randomly generated solution 

sets are generating its opposition chromosomes by using 

the Eq. (3). 
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Fig. 3 Flow chart for opposition genetic algorithm 

 

The maximum and minimum value of the each 

solution is known and it is used for generating the opposi-

tion based chromosome solution sets. Its population size is 

same for its randomly generated population size. For ex-

ample, the population size is 10 and its opposition based 

solution set is 10 because the opposition based solutions 

are determined by using the its initial solution sets. 

 

4.4.2. Fitness function 

 

The following formula is used to find the fitness 

function for calculating the makespan time and it is: 

  Fitness min Y t , (4) 

where, the Y(t) is the makespan time: 

   1, , 1 ,
,

i j i j i j
Y t max T T T

 
  , (5) 

where the T is the processing time, the ‘i’ is the job order 

and j is the machine order. The fitness function is calculat-

ed for the initial solution sets of the chromosomes and the 

opposition based solution sets for finding the best chromo-

somes. After the solutions sets are evaluated, the cross over 

and mutation function are applied on the chromosomes of 

the solutions sets.  

 

4.4.3. Cross over 

 

In our proposed method, the cross over function is 

based on the job order and the parent chromosomes are 

shown in the Fig. 4. In cross over, the two parent chromo-

somes are taken to exchange their genes within them. The 

following Fig. 4 denotes the parent chromosomes parent 1 

and parent 2. The unordered crossover is used for the 

crossover operation. In parent 1 and 2 chromosomes, the 

bold lettered job orders are unchanged in their positions 

and remaining gene of the chromosomes is exchanged be-

tween the parent chromosomes. After the crossover, the 

chromosome is shown below in the Fig. 5.  

 

3 2 1 3 1 2 3 2 1 

Parent-1 

1 2 3 1 3 2 3 1 2 

Parent-2 

Fig. 4 Parent chromosomes 

 

3 1 2 1 3 2 3 2 1 

New Chromosome-1 

3 2 1 1 2 3 3 1 2 

New Chromosome-2 

Fig. 5 New Chromosomes 

 

2 3 1 2 1 3 3 2 1 

 
 

Off Spring-1 

3 2 1 1 2 3 2 3 1 

 
 

Off Spring-2 

Fig. 6 Mutated off spring 

 

4.4.4. Mutation 

 

After the crossover, the child chromosome is mu-

tated for increasing the efficiency of the solution and the 

bold letter shows the mutated gene of the chromosome. In 

our proposed method mutation, the same job order is se-

lected within the offspring and it is interchanged from its 

position to other place for giving the best optimal solution 

The shift changing mutation method is used in the muta-

tion operation and the job orders are shift to left one step 

and replacing by the new job order. After the shift chang-

ing within the off-spring is shown in Fig. 5. From the 

Fig. 6, the gene of the off spring is shifted one step left and 

the optimized new solution is getting by the mutation pro-

cess. The optimal solution is obtained after the mutation 

function and it shows the final output of the result with 
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their minimal optimized time and it gives the minimum 

makespan time. 

 

4.4.5. Optimal solution 

 

At end of the mutation, the new chromosomes are 

generated for the new solution sets. Then, the fitness value 

is finding for the new solutions. From that, which solution 

is given the minimized makespan time and it is used as 

optimal solution otherwise the above steps are processed 

for the new solution sets. 

 

5. Result and discussion 

 

The different benchmarks problems are used to 

find the minimum make span time and its operation are 

shown below with the minimum make span time. The fol-

lowing FT20 (20X10), LA01 (10X10), LA06 (15X10), 

LA16 (10X20), LA21 (15X20), LA26 (20X20), LA22 

(15X20), LA27 (20X20), LA28 (20X20) and LA31 

(30X20) benchmark problems are used to find the mini-

mum make span time. 

In the tabular columns processing times and com-

pletion times of the each job is separately shown. In com-

pletion time tabular columns, the process sequence is 

shown as the operation sequence which is denoted as the 

O11, O12….up to its end of the number of operations. In 

all benchmark problem minimum make span time pro-

duced in Opposition Genetic Algorithm (OGA). The fol-

lowing tables are shows that the processing time of each 

problem size with their jobs and machines. The minimum 

make span time calculating processing matrix for GA, 

AGA and OGA and minimum time attained in OGA. In the 

above tables are shown the different benchmark problem 

processing time durations and the minimum make span 

time of the OGA process. The job sequences furnish the 

minimum make span time for all the jobs and they have the 

input possessing time durations which are added with those 

of the other jobs. The minimum make span time is given at 

the end of the complete operation of the all the jobs. After 

all the jobs are finished, the opposite genetic algorithm 

(OGA) yields the minimum time with the corresponding 

job sequence. These job sequences are processed to give 

the minimum make span time, which is added to their cor-

responding job sequence input time. Here, if the problem 

size varies, the processing time is also found to vary based 

on the number of the machine operated. For FT20 (20X10) 

the minimum make span time of the process viz. 1147 is 

attained in 9 jobs performed in 20 machines in the OGA 

algorithm and is compared to the other two algorithms as 

shown in Table 1. For LA01 (10X10) the target and pre-

dicted values are 666 and 658 respectively for 5 machines. 

The corresponding job sequence is different for 10X10 and 

it is brought along with the minimum number of iterations 

for all the problems in Fig. 7. The minimum make span 

time is obtained at the above job sequence and added with 

their corresponding job sequence input times. For LA22 

(15X20) and LA06 (15X10) the minimum make span time 

values are attained in the OGA technique in 15 jobs per-

formed in 9 machines and they are 868 and 920 respective-

ly. These job sequences are processed to yield the mini-

mum make span time. Similarly the minimum make span 

time is obtained in the OGA technique compared to the 

GA and AGA processes. 

Table 1 

Comparison of bench mark problems - GA, AGA  

and OGA 

Sl.No Instance Size 

n × m 
BKS GA AGA OGA 

1 ft06 6 × 6 55 59 62 56 

2 ft10 10 × 10 930 1105 1087 925 

3 ft20 20 × 5 1165 1170 1147 1035 

4 la01 10 × 5 666 698 671 658 

5 la02 10 × 5 655 742 826 653 

6 la03 10 × 5 597 647 682 597 

7 la04 10 × 5 590 692 702 590 

8 la05 10 × 5 593 685 715 593 

9 la06 15 × 5 926 928 876 868 

10 la07 15 × 5 890 987 847 890 

11 la08 15 × 5 863 965 947 863 

12 la09 15 × 5 951 1219 1248 951 

13 la10 15 × 5 958 1325 1352 958 

14 la11 20 × 5 1222 1398 1402 1222 

15 la12 20 × 5 1039 1210 1185 1039 

16 la13 20 × 5 1150 1324 1344 1150 

17 la14 20 × 5 1292 1457 1482 1292 

18 la15 20 × 5 1207 1420 1455 1207 

19 la16 10 × 10 945 1057 1083 941 

20 la17 10 × 10 784 962 987 784 

21 la18 10 × 10 848 991 1020 848 

22 la19 10 × 10 842 984 1014 842 

23 la20 10 × 10 902 1065 1074 902 

24 la21 15 × 10 1046 1276 1352 1044 

25 la22 15 × 10 927 1254 1284 920 

26 la23 15 × 10 1032 1287 1302 1032 

27 la24 15 × 10 935 1112 1144 935 

28 la25 15 × 10 977 1025 1035 977 

29 la26 20 × 10 1218 1766 1592 1211 

30 la27 20 × 10 1235 1692 1657 1227 

31 la28 20 × 10 1216 1715 1612 1215 

32 la29 20 × 10 1152 1345 1247 1152 

33 la30 20 × 10 1355 1457 1366 1355 

34 la31 30 × 10 1784 1998 1952 1772 

35 la32 30 × 10 1850 2014 1989 1850 

36 la33 30 × 10 1719 1857 1892 1719 

37 la34 30 × 10 1721 1951 1976 1721 

38 la35 30 × 10 1888 2089 1988 1888 

39 la36 15 × 15 1268 1931 1893 1118 

40 la37 15 × 15 1397 1549 1452 1397 

41 la38 15 × 15 1196 1246 1168 1196 

42 la39 15 × 15 1233 1412 1386 1233 

43 la40 15 × 15 1222 1397 1287 1222 

 

Table 1 illustrates the minimum make span time 

for the various benchmark problems along with their make 

span time. The minimum make span time is estimated only 



615 

after the entire operations are finished. It is clear from the 

graph that the best minimum make span time is realized in 

the OGA technique vis-à-vis the AGA and GA. The opti-

mal make span time is subjected to analysis and compari-

son with the identified optimal makespan time. It is grati-

fying to note that the innovative technique has ushered in 

an optimal makespan time value which goes hand in hand 

with the identified optimal value.   

Fig. 7 elegantly exhibits that the proposed OGA 

performs well than GA, and AGA for several benchmark 

problems. In respect of FT20 (20X10) the minimum make 

span time is 1035 which is attained in the OGA in the  

42-th iteration. When it is compared with the GA, the time 

difference is 135 and the minimum time of the GA is at-

tained in the 41-th iteration. In the case of the AGA also 

the minimum time is attained in the 45-th iteration. For this 

problem the maximum time is 1170 in the GA. In respect 

of the problem size LA01 (10X10), the minimum 

makespan time achieved for the GA is 698. Here, the orig-

inal time is 666 and the minimum time is attained in the 

39-th iteration in the OGA process. In LA06, the original 

time is found to be 926, and for GA and AGA the differ-

ence is 2 and 50 while for OGA is 58. Similarly for LA16 

(10X20) also, the minimum processing time is 941 for 

OGA and when compared with the original processing 

time it is the minimum time for the job scheduling process. 

Finally for the problem size LA21 (15x20), when the make 

span time of the OGA is compared with the GA the differ-

ence is found to be 232. Similarly for the AGA the mini-

mum time of 308 is attained in the 44th iteration of the 

AGA process. For the problem size LA22 (15X20). It is 

crystal clear from the graph that the minimum make span 

time achieved is 920 for the AGA in the 47 iteration. When 

it is compared with that of the (OGA) the difference is 73. 

 

 

Fig. 7 Makespan time comparison for bench mark problems 

 

In respect of the problem size LA26 (20X20) the 

maximum time for OGA is estimated as 1211. As far as the 

problem size LA27 (20X20) is concerned ,the original time 

and the minimum make span time are 1235 and 1227 re-

spectively and the time difference in the OGA with the 

original time is found to be 99.23%. For LA28 (20X20) the 

minimum makespan time is estimated as 1215 for the OGA 

technique which is achieved in the 45-th iteration. In re-

spect of the LA31 (20X20) also, the minimum make span 

time of 1772 is realized in OGA technique. 

 

6. Conclusion 

 

The proposed opposite genetic algorithm has 

achieved the least make-span interval vis-à-vis those of the 

rivals such as the adaptive genetic algorithm and genetic 

algorithm. The make-span interval is estimated for various 

standard challenges like FT20 (20X10), LA01 (10X10), 

LA06 (15X10), LA16 (10X20), LA21 (15X20), LA26 

(20X20), LA22 (15X20), LA27 (20X20), LA28 (20X20) 

and LA31 (30X20) and they are assessed and contrasted 

with those of the rival methods. The fascinating results 

substantiate the fact the ground-breaking opposite genetic 

algorithm has come out with flying colors by ushering the 

least make-span interval for all standard issues addressed. 

The makespan time is minimized by using the different 

algorithms such as genetic algorithm, adaptive genetic al-

gorithm. The different benchmark problems are applied for 

finding the minimum makespan time. The developed algo-

rithms can be integrated with other heuristics algorithms to 

develop hybrid algorithms in future.  
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A NOVEL ALGORITHM FOR SOLVING JOB-SHOP 

SCHEDULING PROBLEM  

 

S u m m a r y 

 

Of late, Scheduling optimization is the highly sig-

nificant hassles in the job shop. The supreme advantage of 

the job shop scheduling is that the conclusion period of the 

entire tasks is cutback to the minimum possible. The job 

shop scheduling problem takes its origin from the conven-

tional job shop scheduling problem, which is equipped 

with extensive accessibility of machines for all the entire 

tasks to be completed. Taking into account the two phases 

of the issue, two diverse definitions such as total flexibility 

and partial flexibility are envisaged to segregate the di-

verse accessibility data of machines. It is cheering that the 

efficiency has been scaled up by means of the opposite 

genetic algorithm which has proved its mettle as an effec-

tual and proficient mechanism for successfully addressing 

the pointed issue of job-shop scheduling. Moreover, it is 

effectively employed to find out the least optimal make-

span time with the optimal solution. 

 

Key words: Job shop scheduling, makespan time, adaptive 

genetic algorithm, opposite genetic algorithm. 
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