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1. Introduction 

 

Due to their high rigidity-to-weight ratio and 

economical cost, stiffened plate and shell structures are 

used extensively in various engineering applications such 

as bridges, ship hulls and decks, and aircraft structures. In 

the past few decades, many researchers have discussed the 

performance of stiffened plates under dynamic loading, 

which may lead to a wide implementation in the field of 

vibration and noise control. Determining the free vibration 

characteristics of a structural system is a fundamental task 

in dynamic analysis. 

Recently, the propagation of elastic or acoustic 

waves in artificial periodic composite structures known as 

phononic crystals (PCs) has received a great deal of atten-

tion [1-4]. One of the most attractive characteristics of PCs 

is that the propagation of sound and other vibrations is 

forbidden in their elastic wave band gaps. PCs are essen-

tially periodic structures, and they have inherent relations 

with periodic structures widely used in traditional engi-

neering. Introducing the theoretical and calculation meth-

ods of PCs into the investigation of the dynamic behavior 

of periodic structures in engineering will provide a new 

technique for the control of vibration and noise. So far, 

vibration band gaps in periodic beam [5], grid [6, 7], and 

plate [8] structures have been researched. These studies are 

theoretically significant, but the structures studied are less 

practical than those structures widely used in engineering, 

such as stiffened plate structures. Moreover, the theoretical 

methods for calculating the band gaps of PCs such as the 

plane wave expansion (PWE) method, the Fi-

nite-difference-time-domain (FDTD) method, the multi-

ple-scattering theory (MST) method, and the lumped-mass 

method, are valid for a periodic beam or plate structure. 

However, by using the above methods, it is difficult to 

calculate the band gaps of more complicated engineering 

structures, such as the stiffened plate. 

In the late 1980s, Mead and his collaborators[9] 

studied propagating wave motion in regularly stiffened 

plates and stiffened cylindrical shells using the hierarchical 

finite element method. Mead et al. [10] modelled the 

beams as simple line supports and analysed free vibration 

of an orthogonally stiffened flat plate. Later, they [11, 12] 

also determined the propagation frequencies of elastic 

waves by computing phase constant surfaces for a number 

of different cylinder-stiffener configurations. Cheng Wei 

and Zhu Dechao [13] analysed the characteristics of wave 

propagation in a periodic plate reinforced by regular or-

thogonal stiffeners and discussed the effect of the ratio of 

length to width, the parameters of the stiffeners, and 

boundary conditions. 

However, there are two main problems with these 

studies. First, the stiffened plate structures must be divided 

into small finite elements to ensure that the stiffeners are 

always located on the boundaries of these elements. As a 

result, the number of the finite elements will dramatically 

increase as the number of stiffeners with different orienta-

tions increases or those with a small spacing between them 

increases. Second, the theory to predict the vibration re-

sponse of the stiffened plate structures has been primarily 

applied to analyse periodic structures as pass band and stop 

band. However, the physical mechanism of the band gaps 

has not been exhaustively explained [9]. 

The present work presents an improved finite el-

ement model for periodic stiffened plate structures with 

any number or orientation of stiffeners. Using the model, 

we analyse flexural vibration band gaps and study the 

physical mechanism for their formation in these periodic 

structures. 

This paper is organized as follows. In section 2, 

we summarized the fundamentals of the technique used to 

analyse the propagation of waves in 2-D periodic struc-

tures. Moreover, we established a finite element model of 

the stiffened plate by considering the unit cell of the infi-

nite periodic structure discussed. Within the model, any 

number of stiffeners is allowed to take on an arbitrary ori-

entation, and they need not necessarily follow the nodal 

lines of the mesh division. In section 3, the flexural vibra-

tion band gaps of the periodic grid structure and the peri-

odic stiffened plate structures with different skin thick-

nesses are calculated and comparatively analysed. Finally, 

the main conclusions of this work are discussed in sec-

tion 4. 

 

2. Finite element description 

 

2.1. Analysis of free wave motion 

 

A generic 2-D periodic structure is assembled by 

identically connecting a base unit or cell along the x-y 

plane. According to Bloch’s theorem, a wave propagating 

in a 2-D periodic structure can be described by the motion 

of a single cell and by a propagation vector defining the 

wave amplitude and phase change from one cell to the next 

[14]. A schematic of the stiffened plate structure configu-

ration and associated unit cell is shown in Fig. 1. 

Wave motion in the 2-D periodic structure can be 

expressed as follows 

  0

r, e w r n w


 (1) 

where w is the generalized displacement of point r belong-

ing to the unit cell at location n, while w0 describes the 
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motion of the unit cell. Also, x y      is the vector 

of the propagation constants. The propagation constants 

are complex numbers and control the nature of elastic 

wave propagation in the 2-D periodic structure. 
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Fig. 1 a - schematic of the periodic stiffened plate structure; 

b - corresponding unit cell 

 

The behaviour of the unit cell can be conveniently 

described by defining the cell’s interaction with its neigh-

bours and using a discretized equation of motion. For plane 

harmonic waves at frequency ω, the equation of motion for 

the unit cell can be written as 

 2 K M F  (2) 

where the matrices K and M denote the assembled global 

stiffness and mass matrix of the unit cell respectively. The 

vectors δ and F are the nodal displacements and forces 

respectively. 

From Bloch’s theorem, the following relation-

ships are obtained for the unit cell interfaces [7, 15] 
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where the subscripts l, r, b, t, rb, lb, rt, lt, and i respectively 

indicate the generalized displacements at the left, right, 

bottom, top, right-bottom, left-bottom, right-top, left-top, 

and internal nodes of the unit cell, as shown in Fig. 2. 
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Fig. 2 A generic unit cell for a two-dimensional periodic 

structure 

 

Using the above relationships, one can define the 

following transformation 

1 redT   (4) 

where δred denotes the displacement of the nodes in the 

Bloch reduced coordinates defined by 

 
T

red i b l lb      (5) 

and T1 is a linear transformation parameterized by μx and 

μy. 

For free wave motion, Eq. (2) would be written as 

 2

1 0H

red red red  K M T F  (6) 

where the superscript H denotes the Hermitian transpose 

and Kred and Mred are the reduced stiffness and mass ma-

trices according to Bloch’s theorem and defined by 

1 1 1 1,H H

red red K T KT M T MT  (7) 

Eq. (7) is the desired eigenvalue problem para-

meterized by ω and defines the dispersion relations of the 

infinite periodic structure. 

 

2.2. Finite element modeling of the unit cell 

 

The unit cell of an infinite periodic stiffened plate 

structure consists of a base structure forming the “skin” as 

well as local reinforcement elements called “stiffeners” 

which are periodically collocated. Therefore, based on 

Mindlin plate theory and Timoshenko beam theory, the 

dynamic characteristic of the unit cell can be accurately 

described by establishing an efficient finite element model 

of the stiffened plate using eight-node isoparametric plate 

bending elements and three-node isoparametric beam ele-

ments. 

According to the Mindlin plate theory, the stiff-

ness and mass matrices of the eight-node isoparametric 

plate bending element are given [16, 17] by 

1 1

1 1

1 1

1 1

T T

p p p p p p p

T T

p p p p p p p

dxdy det d d

dxdy det d d

 

 

 

 

  

 


  

  

K B D B B D B J

M N m N N m N J

 (8) 

where J is the Jacobian matrix, Bp is the strain-displace-

ment relationship matrix, Dp is the constitutive matrix, Np 

is the mapped shape functions of the plate element, and mp 

is defined as 
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m  (9) 

where ρp is the density of the plate material and hp is the 

thickness of the plate element. 

The Timoshenko beam element has three nodes 

and each node has three degrees of freedom, (wb, θbs, θbt). 

The stiffness and mass matrices of the isoparametric beam 

element are then given by 
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where Bb is the strain-displacement relationship matrix, Db 

is the constitutive matrix, Nb is the mapped shape functions 

of the beam element, and mb is defined as 

0 0

0 0

0 0

b

b b bz

b

A

I

J



 
 


 
  

m  (11) 

where ρb is the density of the beam material, Ab is the 

cross-sectional area of the beam, Ibz is the second moment 

of the beam cross-sectional area about the z-axis, and Jb is 

the polar moment of inertia of the beam. 

The displacement field of the stiffener element is 

expressed using the plate element degrees of freedom 

[18, 19] as 

   
3 8
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where Λ is the orientation matrix, φ is the stiffener inclina-

tion with respect to the plate x-axis, T2 is the transfor-

mation matrix of the nodal displacements from the beam 

element nodes into the plate element nodes, and (Nr I)i 

(i = 1, 2, 3) are the shape functions of the eight-node plate 

elements defined at the 3 points (m, n, p) in the ξ-η coor-

dinate system, as shown in Fig. 3. The stiffener node coor-

dinates in the ξ-η coordinate system are obtained using the 

plate shape functions themselves, and the solution can eas-

ily be calculated using Newton’s iteration method. 
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Fig. 3 Mapping of the stiffened plate element from the 

global coordinate system to the local coordinate 

system 

 

Furthermore, the stiffness and mass matrices of a 

stiffener element can be expressed in terms of the plate 

nodal degrees of freedom as 

2 2

2 2

T T

s b

T T

s b

 


 

K T Λ K ΛT

M T Λ M ΛT
 (15) 

Finally, the combined stiffness and mass matrices 

of the stiffened plate for the unit cell are calculated by 

adding those of the plate elements and of the stiffener ele-

ments. Using above approach, any number or orientation 

of stiffeners within the unit cell can be easily modelled 

without the need to change the ground mesh of the plate. 

 

3. Results and discussion 

 

3.1. Flexural vibration band gaps of periodic grid struc-

tures 

 

In order to compare with the flexural vibration 

band gap characteristics of periodic stiffened plate struc-

tures, it is necessary to analyse the characteristics of peri-

odic grid structures. 

The grid structure has the same geometry and 

material properties of the stiffened plate structures but does 

not have the same skin. The material parameters used are 

ρsteel = 7780 kg/m
3
, Esteel = 21.06×10

10
 Pa and νsteel = 0.3. 

The lattice constant of the unit cell is 0.25 m, and the grid 

section parameters are b = 0.015 m and h = 0.015 m. The 

flexural vibration band structure of the grid structure using 

the above finite element method (FEM) is shown in 

Fig. 4, a. It is well known that the frequency response 

function (FRF) of vibration can be used to effectively de-

scribe the band gaps. The FRF of the flexural vibration was 

determined with the FEM software, MSC Nastran, for a 

16×16 grid and is illustrated in Fig. 4, b. There are no 

complete band gaps in the band structure or any large at-

tenuation in the FRF. 
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Fig. 4 a - flexural wave band structure of the periodic grid 

structure, b - corresponding FRF 

 

3.2. The influence of the skin thickness on flexural vibra-

tion band gaps of periodic stiffened plate structures 
 

The material parameters of the skin in the period-

ic stiffened plate structures are ρepoxy = 180 kg/m
3
, 

Eepoxy = 4.35×109 Pa, νepoxy = 0.3679, and depoxy = 0.02. The 

thickness parameters of the skin are varied to analyse the 

influence of the skin thickness on flexural vibration band 

gaps of the periodic stiffened plate structures. 

Fig. 5 shows the flexural vibration band structure 

and the finite structure FRF of the periodic stiffened plate 

structure with a 1 mm-thick skin. It can be clearly seen 

from the band structure in Fig. 5, a that there are numerous 

dispersion curves which are almost flat along all three 

boundaries of the irreducible Brillouin zone. The frequen-

cies of the flat bands are approximately the eigenvalues of 

the localized vibration modes of the stiffener-surrounded 

skin (which can be considered a four-sides-clamped plate) 

especially in the 0~0.4 kHz region, as shown in Fig. 6. 

An enlarged figure of the dashed rectangular re-

gion in Fig. 5, a is shown in Fig. 7. The mode shapes of the 

stiffeners  and  the skin corresponding to the four points 



 189 

 
F

re
q
u

en
cy

, 
f 

(k
H

z)
 

FRF, H (dB) Wake vector, k 
-150 -100 -50 0 50 100 M Γ 

 

X M 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0 

(a) (b) 
 

 a b 

Fig. 5 a - flexural wave band structure of the periodic 

stiffened plate structure; the skin thickness is 1 mm; 

b - corresponding FRF 
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Fig. 6 a - flexural wave band structure of the periodic 

stiffened plate structure from 0~0.4 kHz; the skin 

thickness is 1 mm; b - natural frequencies of the 

four-sides-clamped plate 
 

(marked as A, B, C, and D) of the dispersive curves in 

Fig. 7 are plotted in Fig. 8. It is clearly seen that the skin is 

in localized vibration modes and the flexural vibration dis-

placement of the stiffeners is much smaller than that of the 

skins at A and B, although not at C or D. Hence, the curves 

are considered the same as the dashed lines shown in Fig. 7. 

In fact, if the flat bands are ignored, the dispersion curves 

for the system with a 1 mm-thick skin are quite similar to 

those of the periodic grid structure. In other words, the 

vibrations of the skin and the stiffeners are uncoupled, and 

the vibration of the stiffeners plays a major role in the 

stiffened plate system. 

Similar to the periodic grid structure, there also is 

no complete band gap in the band structure or any large 

drop in the FRF. 

The band structure and the FRF corresponding to 

the 8 mm-thick skin are shown in Fig. 9. Due to the in-

crease of the skin to stiffener thickness ratio, the number of 

flat curves is relatively smaller in the range of 0 ~ 3 kHz 

and the four-sides-clamped boundary condition is wea-

kened such that the curves are no longer flat. This means 

that  the vibration coupling between the skin and the stif- 
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Fig. 7 The enlarged drawing of the specified dashed rec-

tangular region in Fig. 5, a 
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Fig. 8 The mode shapes of the skin and the stiffeners: a and 

b refer to point A; c and d refer to point B; e and f 

refer to point C; and g and h refer to point D in 

Fig. 7 

 

feners is strengthened. Moreover, there are large drops in 

the FRF. The frequency ranges, 0.520 ~ 0.540 kHz, 

0.786 ~ 1.351 kHz, and 1.781 ~ 2.740 kHz are labelled as I, 

II, and III and shown in Fig. 9, b. The first drop agrees 

with the first complete band gap (0.534 ~ 0.564 kHz) in 

band structure. There is a series of peaks within the other 

two large drops. These peaks are primarily a result of two 

phenomena. The first is that the vibration of the stiffeners 

couples with the skin and the amplitudes of the mode 

shapes of the skin and the stiffeners are both larger. For 

example, the mode shapes of the skin and the stiffeners at 

points marked E and F are shown in Fig. 10. The second is 

that the FRF is not that of an infinite periodic structure. 

The results measured at the 14th period and the 16th period 

of the 16×16 structure are shown in Fig. 9, b as the dashed 

line and the solid line respectively. It is clearly seen that 

the attenuation at the 14th period is larger than that at the 

16th period. That is to say, the effect of boundary condi-

tion of finite structure at the 14th period is smaller than 

that at the 16th period. 

The corresponding results of the stiffened plate 

structure, which show that the thickness of the skin is the 

same as those of the stiffeners, are given in Fig. 11, a and c. 

The natural frequencies of the four-sides-clamped plate are 

plotted in Fig. 11, b. In this case, the boundary conditions 

for the four-sides-clamped plate are no longer applicable 

for the stiffeners-surrounded skin and all of the dispersive 
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Fig. 9 a - flexural wave band structure of the periodic 

stiffened plate structure; the skin thickness is 8 mm; 

b - corresponding FRF 
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Fig. 10 The mode shapes of the skin and the stiffeners; a 

and b refer to point E, and c and d refer to point F 

in Fig. 9, a 

 

curves are distinctly flexural. The vibrations of the skin 

and the stiffeners are strongly coupled. This is evidence 

that there is not a complete band gap in the band structure, 

and this conclusion can also be made from the FRF result. 
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Fig. 11 a - flexural wave band structure of the periodic 

stiffened plate structure; the skin thickness is 

15 mm; b - natural frequencies of the skin which is 

clamed along four sides; c - corresponding FRF 

 

The flexural vibration band gaps of the stiffened 

plate structures in which the thickness of the skin varies 

from 1 mm to 15 mm are calculated, and the frequency 

ranges of the former six complete band gaps are plotted in 

Fig. 12. It can be seen that, while the skin to stiffener 

thickness ratio increases, several complete band gaps ap-

pear and when the thickness of the skin is close to that of 

the stiffener, the complete band gaps gradually disappear. 
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Fig. 12 Variation of the frequency ranges of the former six 

complete band gaps with skin thickness from 1 mm 

to 15 mm 

 

4. Conclusion 

 

An improved finite element model of the periodic 

stiffened plate structures is established and used to analyze 

flexural wave propagation in periodic stiffened plate 

structures. The model demonstrates that the skin and the 

stiffeners are vibration coupled. When the height of the 

cross section of the stiffeners is much larger than the 

thickness of the skin, the coupling between them is rela-

tively weak and the stiffeners play a major role in the band 

gap characteristics of the stiffened-plate system. As the 

thickness ratio between the skin and stiffeners increases, 

the four-sides-clamped boundary condition weakens. 

Therefore, the vibration coupling between the skin and the 

stiffeners is strengthened and several complete band gaps 

are generated. These band gaps primarily correspond to the 

frequency ranges of vibration attenuation. When the thick-

ness of the skin is equal to that of the stiffeners, the vibra-

tions of the skin and the stiffeners are strongly coupled and 

the homogeneous skin weakens the impedance matching of 

the periodic stiffeners so that the complete band gaps van-

ish. These results show that the vibration coupling between 

the skin and stiffeners influence the formation of the com-

plete band gap. By optimizing the thickness ratio of the 

skin and the stiffeners, large attenuation can be expected in 

various frequency ranges. 
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Jianwei Wang, Gang Wang, Jihong Wen, Xisen Wen 

 

LENKIMO SVYRAVIMŲ DAŽNIO JUOSTŲ TRŪKIAI 

PERIODIŠKAI SUSTANDINTŲ PLOKŠČIŲ 

KONSTRUKCIJOSE 

 

R e z i u m ė 

 

Remiantis Mindlino plokščių ir Timošenko sijų 

teorijomis bei Blohso teorema sukurtas patikslintas baigti-

nių elementų modelis tampriųjų bangų sklidimui lenkimo 

svyravimų veikiamose periodiškai sustandintų plokščių 

konstrukcijose su bet kokiu skaičiumi bet kaip orientuotų 

standumo elementų apskaičiuoti. Naudojant baigtinių ele-

mentų modelį palyginti ir išanalizuoti lenkimo svyravimų 

dažnių juostos trūkiai periodinių tinklų konstrukcijose ir 

įvairiose periodiškai sustandintų plokščių konstrukcijose su 

skirtingo storio dangomis. Rezultatai rodo, kad dangos ir 

standumo elementų svyravimų sąveika turi įtakos lenkimo 

svyravimų dažnio juostų trūkimui. 

 

 

Jianwei Wang, Gang Wang, Jihong Wen, Xisen Wen 

 

FLEXURAL VIBRATION BAND GAPS IN PERIODIC 

STIFFENED PLATE STRUCTURES 

 

S u m m a r y 

 

Based on Mindlin plate theory, Timoshenko beam 

theory and Bloch’s theorem, an improved finite element 

model for periodic stiffened plate structures with any 

number or orientation of stiffeners is developed to describe 

the propagation of elastic waves in the periodic structures 

undergoing flexural vibration. Using the finite element 

model, the flexural vibration band gaps of a periodic grid 

structure and several periodic stiffened plate structures 

with different skin thicknesses are compared and analyzed. 

The results indicate that the vibration coupling between the 

skin and the stiffeners influences the formation of flexural 

vibration band gaps. 

 

Keyword: phononic crystals; band gaps; periodic struc-

tures; stiffened plates; vibration and noise control. 
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