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1. Introduction 

Concrete shrinkage is defined as the decrease in 

concrete volume with time. This volume decrease does not 

depend on external stress and it is not completely reversi-

ble. The shrinkage is associated with a series of factors, 

such as chemical reactions, gradient in temperature, and 

loss of water. Each one of these factors leads to different 

types of shrinkage, such as autogenous, plastic, drying, and 

thermal shrinkage [1, 2]. 

The occurrence of shrinkage leads to the devel-

opment of internal tension stresses that can result in con-

crete cracking if the developed internal tension stresses 

surpass concrete tensile strength. Cracks in concrete create 

pathways for the easier access of aggressive agents that can 

contribute to the reduction in concrete’s structure durabil-

ity and service life. Moreover, the strain resulting from 

excessive shrinkage may reduce bounding tension and in-

crease deflection in asymmetrically reinforced concrete 

structures [2]. 

For these reasons, a reliable prediction of concrete 

shrinkage strain is an important factor in the entire design-

ing process. Predicting shrinkage, especially during the 

period of construction, allows early countermeasures to be 

taken, e.g., premature loading or prestressing to compen-

sate for the negative shrinkage effect. As a result, accurate 

shrinkage prediction helps reduce maintenance costs and 

ensures that the designed structure will meet service life 

and durability requirements. An example that highlights 

the importance of modeling early age concrete time-

dependent behavior is presented by Štemberk and Kalafu-

tová [3]. 

Apart from external factors such as ambient tem-

perature and humidity, concrete shrinkage is caused by 

hydration reaction in the cement paste. When considering 

self-compacting concrete (SCC) mixtures i.e. a high-

performance concrete that can flow under its own weight 

and self-consolidate without any mechanical vibration [4], 

a high volume of cement paste is necessary in the composi-

tion to achieve excellent deformability. However, SCC is 

prone to higher shrinkage strains when compared to con-

ventional concrete. Hence, measuring the shrinkage strain 

is especially important when working with SCC. 

Nonetheless, the experimental measurement of 

shrinkage strain is laborious, time consuming, and expen-

sive. These characteristics, added to short deadlines, tight 

budgets, and the industry’s trend of accelerating the con-

struction processes, sometimes make experimental meas-

urements unfeasible. As a result, construction designers 

tend to use shrinkage prediction models. 

Shrinkage prediction models aim to determine 

concrete shrinkage strain in a faster and less expensive way 

when compared to experimental measurements. Prediction 

models are based either on analytical or empirical ap-

proaches, although the later is used most frequently be-

cause of its simplicity. According to McDonald and Roper 

[5], complex prediction models do not necessarily lead to 

better prediction than simple ones. 

One of several existing shrinkage prediction mod-

els that is frequently used is the EN1992 model, considered 

by the Eurocode. This model consists of a combination of 

CEB FIP 1990 and CEB MC90-99 prediction models and 

its equations are described in [6]. The EN1992 model is a 

standard and its prediction formulas are routinely used by 

the industry’s experts for any concrete, including SCC 

which is not explicitly excluded in the Eurocode. Indeed, 

the European guidelines for SCC [7], state that the values 

and formulas given in the Eurocode for normal concrete 

are still valid in the case of SCC. 

Although prediction models are regularly used, 

the shrinkage curve obtained from the models does not 

necessarily match experimental measurements. To verify 

that, experimental data taken from different authors  

[8-10], were compared with those predicted by the EN1992 

model. 

The error was computed through mean squared 

error (MSE). The obtained results are presented in Table 1. 

The MSE equations are: 
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where N and n relate to the number of data sets and data 

points considered in the analysis, respectively; dj is the 

percent difference between predicted and measured strain 

for the data point i; fj is the MSE for the data set j; and fall 

is the overall MSE. 

 

Table 1 

MSE for EN-1992 prediction model for SCC 
 

Input data: Author, [Ref.] N fmodel, % fall, % 

Guneyisi,  [8]  8 50.1 

62.5 Bouzoubaa, [9]  8 72.4 

Lemann,  [10] 3 63.1 

 

The overall MSE, fall = 62.5% (Table 1), indicates 

that the EN1992 model did not lead to satisfactory results 
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for the analyzed data. The scatter plot of the experimental-

ly measured and predicted strain values for the analyzed 

data is illustrated in Fig. 1. 

From Fig. 1 a considerable scatter can be seen, 

therefore showing the relative error as well as an underes-

timation trend of EN1992 in predicting shrinkage strains. 

Hence, it can be stated that the reliability of EN1992 model 

is open to discussion and improvements appear to be re-

quired. 

 

 

Fig. 1 Comparison of measured and predicted shrinkage 

strain for SCC using the EN1992 model 

 

In light of this, this work aims to propose an ex-

perimental-based prediction model for SCC shrinkage. The 

model is developed based on an independent methodology 

that combines fuzzy logic and genetic algorithm. The hy-

bridization of these techniques is advantageous once they 

complement each other as further discussed in section 2. 

The proposed model aims to predict the behavior 

of concrete for a period of up to 90 days. This corresponds 

to a reasonable construction time during which counter-

measures can be taken. Moreover, the model focuses on 

general applications of SCC when no experimental data is 

available. The final results obtained from the proposed 

model were compared not only to other published data, but 

also to EN1992 as it is the regularly used standard. 

2. Fuzzy logic and evolutionary computing 

Fuzzy theory, first introduced by Zadeh [11] cor-

responds to a natural way of thinking where verbally ex-

pressed rules are applied to deal with vagueness. The abil-

ity to deal with uncertainties makes fuzzy logic reasoning a 

robust and flexible tool that can be used in material model-

ing. For example, Štemberk and Rainová [12] used fuzzy 

logic for simulating hydration heat liberation of concrete. 

Fuzzy logic systems comprise three basic steps: 

fuzzification, decision-making and defuzzification. The 

fuzzification consists of converting the crisp input values 

into degrees of membership through membership func-

tions. This step is followed by the decision-making, which 

involves assigning a degree of membership to the output 

depending on the rule base of the system. Finally, the de-

fuzzification is performed to convert the output fuzzy set 

into a single value. 

The key factors to achieve an acceptable perfor-

mance in a fuzzy logic system are connected to the proper 

determination of the number and shape of the fuzzy sets. 

Commonly, there are m
k
 fuzzy rules, where m and k are the 

number of fuzzy sets and input variables, respectively. In 

the classical fuzzy logic approach, the number of fuzzy 

rules can be reduced by the user’s experience, and to sim-

plify calculations the shape of the fuzzy sets is usually lin-

ear. However, when this approach is implemented to mod-

el the behavior of non-linear materials, the final result is a 

rather rough shaped piecewise curve. Using the classical 

approach is also feasible for material modeling; however, a 

larger number of linear fuzzy sets is required to obtain 

smoothed curves. This leads to a longer data collection 

time and high computational cost. Thus, to improve the 

modeling process a modified approach that includes an 

evolutionary computing method is proposed. 

Evolutionary computing involves robust optimi-

zation methods that can be generally applied without re-

course to domain-specific heuristics. These methods oper-

ate on a population of potential solutions and apply the 

principle of survival of the fittest to produce successively 

better approximations for a solution [13]. 

Among several evolutionary computing methods, 

genetic algorithms (GA) have been successfully applied in 

numerical optimization in civil engineering, e.g. [14]. They 

consist of adaptive heuristic search algorithms based on the 

principles of Darwin’s theory of natural selection. They 

represent an intelligent exploitation of a random search 

that uses historical information to guide the search into the 

region of better performance, within a defined search 

space. The basic form of a GA involves three operators to 

achieve evolution: selection (or reproduction), crossover, 

and mutation [13]. 

The advantage of combining fuzzy logic and ge-

netic algorithms is that they complement each other. Fuzzy 

logic is not capable of adaption or parallel computation, 

which are features found in GA. On the other hand, GA 

lacks knowledge representation and human interaction, 

which are the kernel of fuzzy systems [15]. 

3. Proposed methodology for optimization of fuzzy  

decision-making 

The proposed approach combines fuzzy logics 

and genetic algorithms to optimize fuzzy decision-making, 

which is achieved by optimizing the shape of the member-

ship functions. The proposed methodology is described as 

follows and summarized in Fig. 2. 

First, the user determines the number of repre-

sentative intervals, Nint, of shrinkage strain, εsh, and the 

concrete age, t, of the experimental shrinkage strain curves 

of concrete mixtures with different volumes of cement 

paste, Vcp. The more complex the shape of the curve the 

higher the number of intervals needed to achieve optimal 

results. 

After that, the user specifies the size of the popu-

lation, Spop, to be used in the genetic part of the algorithm. 

From this point on the optimization process is automatic. 

Based on the value set for Nint, the encoding of each indi-

vidual, or chromosome, from the population is defined. It 

comprises a string of nenc = 2 × Nint real numbers, which 

correspond to the exponent values, EL and ER, related to the 

membership function to be optimized (Fig. 3). 

Next, an initial random population is generated 

and the fitness function, f
 
(x), is evaluated. The fitness 

0 

100 

200 

300 

400 

500 

600 

700 

800 

0 100 200 300 400 500 600 700 800 

EN1992 

sh-measured , microstrain 

 s
h
-p

re
d
ic

te
d
 , 

m
ic

ro
st

ra
in

 

 



69 

function corresponds to the MSE shown in Eq. (2). Then, 

three genetic operators (selection, crossover, and mutation) 

are applied to generate a new population. 

The selection operator chooses the chromosomes 

for reproduction. In this case, the tournament selection 

scheme was applied. It selects the best fitness from indi-

viduals chosen at random from the population. 

 

 

Fig. 2 Flowchart of the proposed methodology for optimiza-

tion of fuzzy sets 

 

The selected chromosomes, or parents, are then 

crossed over by one-point crossover scheme, with a proba-

bility, Cprob, set as 90.0%, to create a new individual to be 

included in the population. This scheme sets an independ-

ent randomized crossover point for couples of parents, 

whose data is swapped to create a new population. 

Further, a mutation operator is applied to maintain 

genetic diversity. The mutation is performed by disturb-

ance with a probability, Mprob, set as of 10.0%. This opera-

tor randomly flips some of the values in a chromosome to 

create a mutated version that will be incorporated in the 

population. 

After a new population has been generated, the 

fitness function re-evaluates all individuals from the new 

population. The obtained results, i.e., f
 
(x’), are then com-

pared with those from previous populations, f
 
(x). Subse-

quently, elitism is applied, i.e., the best overall solution is 

stored. In case none of individuals from the new popula-

tion shows better fitness than the stored solution, the indi-

vidual with the worst solution from the new population is 

replaced by the best overall solution. 

The automatic process of generating a new popu-

lation and evaluating the best fit is repeated until conver-

gence occurs. In this case, convergence is considered as 

achieved when more than 200 consecutive runs do not lead 

to any improvements in the fitness function result. 

The final result consists of a group of optimized 

fuzzy sets that will compose the fuzzy decision-making. 

Moreover, the decision-making is also composed by the 

rule base, R
n
, defined in Eq. (3). Finally, the predicted 

shrinkage strain, εsh,output, is computed by means of Eq. (4). 

, ,: IF is THEN isn

cp cp n sh sh nR V V   ; (3) 

, ,1 1

n n

sh output n sh n nn n
   

 
  , (4) 

where n is the number of rules; Vcp is the cement paste vol-

ume input value, in l/m
3
; Vcp,n and sh,n are the optimized 

group of fuzzy sets for cement paste volume and shrinkage 

strain, respectively; μn is the degree of membership as-

signed to each sh,n group from the rule R
n
. 

 

 

Fig. 3 General equation and shape of the membership func-

tions to be optimized 
 

The methodology illustrated in Fig. 2 was applied 

for the experimental data presented by Leemann et al., 

[10], and the results from Loser et al., [16], were used to 

verify the optimized model. 

4. Results and discussion 

In the present analysis the volume of cement paste, 

Vcp, was chosen as input parameter and two experimental 

curves, illustrated in Fig. 4, were considered as training data. 

These curves were taken from the experimental database 

presented by Leemann et al. [10],where further details con-

cerning the materials properties and curing conditions can be 
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verified. 

The number of representative intervals was defined 

as Nint = 3. The population size was set as Spop = 10. The 

proposed methodology, see Fig. 3, was then performed and 

convergence was achieved after around 500 runs. 

 

 
Fig. 4 Shrinkage strain curves of SCC, [11] 

 

The representative intervals of the experimental 

curves and the exponent values, EL and ER, of the group of 

optimized fuzzy sets are listed in Table 2 and 3, respectively. 

Since only two curves were available for the optimization 

process, the fuzzy sets connected to Vcp were set as linear. 

 

Table 2 

Representative intervals of the experimental curves 
 

Vcp, 

l/m3 

t1, 

days 

εsh1, 

microstrain 

t2, 

days 

εsh2, 

microstrain 

230 

0 0 15 175 

15 175 70 305 

70 305 90 325 

328 

0 0 20 315 

20 315 70 500 

70 500 90 530 

Table 3 

EL and ER values of the optimized fuzzy sets 
 

Fuzzy set MF EL ER 

Vcp 
Vcp1 - 1.000 

Vcp2 1.000 - 

εsh1 

 

sh11 - 1.573 

sh12 0.842 1.436 

sh13 0.498 0.726 

sh14 1.144 - 

εsh2 

sh21 - 1.621 

sh22 0.393 1.519 

sh23 0.636 1.512 

sh24 0.762 - 

 

The fuzzy logic prediction model for SCC is then 

composed of the optimized fuzzy sets shown in Table 3, the 

rule base and the final output equation, presented in Eq. (3) 

and (4). The obtained prediction model, named the FL mod-

el, is suitable for predicting shrinkage strain up to 90 days of 

SCC with Vcp ranging from 230 to 378 l/m
3
 and testing con-

ditions designed by Leemann et al., [10]. 

To verify the quality of the FL model in predicting 

shrinkage strain, the experimental data published by Loser et 

al. [16] was used for comparison. This data comprises 

shrinkage curves of five SCC mixtures that were tested in 

conditions compatible with the limits of the developed mod-

el. The Vcp of each SCC mixture is listed in Table 4. The 

experimental and predicted shrinkage strains were compared 

and the MSE values, computed by Eq. (2), are presented in 

Table 5. 

As a complementary analysis, the shrinkage strain 

curve of each SCC mixture from [16] was also compared to 

the strain curves predicted by the EN1992 model. For that, 

the input data listed in Table 4 was taken into account. The 

obtained results are presented in Table 5 together with those 

from FL model to ease the comparison of the models. 

 

Table 4 

Input data used to predict shrinkage strain - EN1992 and FL model, [16] 
 

Input Parameters 
SCC 

1 2 3 4 5 

Cement paste volume, Vcp, l/m
3* 329.0 349.0 316.0 342.0 332.0 

Curing time, tc , days 1 

Relative Humidity, RH, % 70.0% 

Cement type CEM I 42.5 

Design compressive strength, fc’, MPa 53.3 63.1 51.0 49.4 66.0 

Compressive strength at 28 days, fcm28 , MPa 61.3 71.1 59.0 57.4 74.0 

Specimen size, mm 120 × 120 × 360 

Member shape Infinite prism 
* Vcp was only considered by FL model; 

 

Table 5 

MSE values for different shrinkage prediction models 
 

fmodel, 

% 

SCC fall, 

% 1 2 3 4 5 

EN1992 56.8 51.1 57.1 55.9 49.7 54.2 

FL model 6.9 19.1 4.4 16.2 14.1 13.4 

 

From Table 5, it can be seen that the FL model pre-

sented lower MSE in all cases, indicating that the FL model 

is more reliable in predicting SCC shrinkage than EN1992 

for the evaluated data. 

The comparison of experimental shrinkage curve 

for SCC 1 and the correspondent predicted shrinkage strain 

curves obtained from EN1992 and FL models is illustrated 

in Fig. 5. 

Although the MSE presented by FL model was 

lower than EN1992 in all cases, this value is still considered 

high, around 15.0%. The reason for this is probably that only 
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two experimental curves were used as training data, which 

led to linear membership functions for the fuzzy sets con-

nected to Vcp. If an intermediary curve was included as train-

ing data, the linear shape of the Vcp fuzzy set, see Table 3, 

would be optimized. Consequently, the lower MSE of FL 

model would be reached. 

 

 

Fig. 5 Experimental and predicted curves from FL and 

EN1992 for SCC 1 

 

To verify the assumption that additional training 

data would lead to a more reliable model, one of the experi-

mental curves from Loser et al. [16] particularly SCC 4, was 

included as additional training data. The optimization pro-

cess was performed again and the exponent values, ER and 

EL, obtained for the optimized fuzzy sets are indicated in 

Table 6.The experimental data from SCC 4 was only used as 

training data to optimize the shape of the Vcp fuzzy sets, 

therefore the optimized fuzzy sets εsh1 and εsh2, see Table 3, 

remained unchanged. The obtained model was named the 

FL-2 model. 

 

Table 6 

Exponents values, EL and ER, of the optimized group of 

fuzzy sets for FL-2 model 
 

Fuzzy set MF EL ER 

Vcp 
Vcp1 - 0.251 

Vcp2 2.099 - 

εsh1 

 

sh11 - 1.573 

sh12 0.842 1.436 

sh13 0.498 0.726 

sh14 1.144 - 

εsh2 

sh21 - 1.621 

sh22 0.393 1.519 

sh23 0.636 1.512 

sh24 0.762 - 

 

The predicted shrinkage strain from FL-2 model 

was compared to the data from Loser et al. [16] and the 

MSE was computed. The obtained results are listed in Ta-

ble 7 together with those from EN1992 and FL model. 

From Table 7, it can be seen that the overall MSE 

for FL-2 model were considerably reduced when compared 

with the first version of the model. This confirms the as-

sumption that the inclusion of additional training data would 

lead to a prediction model with lower overall error. 

 

Table 7 

Individual and overall MSE values for EN1992, FL, and 

FL-2 shrinkage prediction models 
 

fmodel , 
 % 

SCC fall , 

% 1 2 3 4 5 

EN1992 56.8 51.1 57.1 55.9 49.7 54.2 

FL model 6.9 19.1 4.4 16.2 14.1 13.4 

FL-2 model 8.9 3.8 11.2 –** 3.9 7.6 
** used as training data to develop the FL-2 model. 

 

Moreover, it also indicates that the proposed meth-

odology is able to adjust according to the training data. For 

instance, this allows for including long-term shrinkage ex-

perimental measurements, e.g., up to 365 days, to build a 

model for different applications than the one presented in 

this work. 

Finally, the lower MSE values from FL and FL-2 

models against EN1992 confirm their quality in simulating 

the materials behaviour, and also the success in combining 

fuzzy logics and GA to develop optimized materials models. 

5. Conclusions 

By developing a shrinkage strain prediction model 

for SCC the objective of this paper has been achieved. The 

proposed methodology for optimization of fuzzy decision-

making has shown satisfactory results. 

In addition, the optimized fuzzy sets led to a proper 

prediction of the shrinkage with a reduced number of rules, 

making the modeling process more effective.  

The statistical analysis pointed to an overall MSE 

around 50.0% for EN1992, against ~15.0% for FL model, 

indicating that the FL model better represents the materials 

behaviour and can be used to predict SCC shrinkage within 

the limits of the model. 

The further inclusion of additional training data in 

the optimization methodology contributed to reduce the 

overall error of the FL model from ~15.0% to ~7.0%, 

demonstrating the flexibility of the model in self-adjusting 

according to the training data. Such flexibility is a great ad-

vantage of the FL model when compared to models based 

on defined equations and its constants. 
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OPTIMIZUOTAS NERAIŠKIOSIOS LOGIKOS 

MODELIS VIENODAI PASISKIRSČIUSIO BETONO 

SUSITRAUKIMUI NUSTATYTI 

 

R e z i u m ė 

 

Straipsnio tikslas – sukurti eksperimentinį modelį 

vienodai pasiskirsčiusio betono susitraukimui įvertinti.  

Modelis skirtas nustatyti betono elgsenai 90 dienų periodu, 

atitinkančiu statybos trukmę, per kurią galimi atsakomieji 

veiksmai. Modelis sukurtas taikant nepriklausomą metodo-

logiją, jungiančią neraiškiąją (fuzzy) logiką ir genetinį al-

goritmą. Ši metodologija pritaikyta eksperimento duome-

nims, o naudojantis šiuo modeliu gauti rezultatai palyginti 

su kitais publikuotais rezultatais. Statistinė analizė patvirti-

no pasiūlytojo modelio, vertinamo Eurokodu, patikimumą. 

W. R. L. da Silva, P. Štemberk 

OPTIMIZED FUZZY LOGIC MODEL FOR 

PREDICTING SELF-COMPACTING CONCRETE 

SHRINKAGE 

S u m m a r y 

This paper aims to develop a shrinkage prediction 

model for self-compacting concrete based on experimental 

data. The model focuses on predicting the behavior of con-

crete up to a period of 90 days, which corresponds to a 

construction time during which countermeasures can be 

taken. The model was designed based on an independent 

methodology that combines fuzzy logic and genetic algo-

rithm. This methodology was applied for an experimental 

data set, and the obtained model was compared to other 

published data and the prediction model considered by the 

Eurocode. The results were verified by statistical analysis 

that confirmed the reliability of the proposed model. 
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