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1. Introduction 
                                

The classification problem has been addressed in 
many contexts and by researchers in many disciplines. This 
reflects its broad appeal and usefulness as one of the steps 
in exploratory data analysis [1]. For explicit classification, 
it is not necessarily desirable to accurately represent the 
energy distribution of a signal in time and frequency. In 
fact, such a representation may conflict with the goal of 
classification, generating a time–frequency representations 
(TFR) that maximizes the separability of TFRs from dif-
ferent classes. It may be advantageous to design TFRs that 
specifically highlight differences between classes [2]. 
Since all TFRs can be derived from the ambiguity plane, 
no a priori assumption is made about the smoothing re-
quired for accurate classification. Thus, the smoothing 
quadratic TFRs retain only the information that is essential 
for classification [3, 4]. 

Technically, a feature represents a distinguishing 
property, a recognizable measurement, and a functional 
component obtained from a section of a pattern. Extracted 
features are meant to minimize the loss of important in-
formation embedded in the signal. In addition, they also 
simplify the amount of resources needed to describe a huge 
set of data accurately. This is necessary to minimize the 
complexity of implementation, to reduce the cost of infor-
mation processing, and to cancel the potential need to 
compress the information. 

At the interface between the rotor and the stator, 
the ball bearing is also having a relatively rapid aging. 
Typically this type of fault is diagnosed by the spectrum of 
measurement acoustic or vibration [5, 6]. For improved 
and authentic fault diagnosis using vibration analysis tech-
niques it is necessary that the acquired vibration signals is 
‘clean’ enough that small changes in signal attributes due 
to an impending fault in any component can be detected [7, 
8]. To tackle this problem, we have developed a method 
based on cloud point dispersion parameter. Since, we used 
the analytical signals normalized by Hilbert transform of 
healthy and faulty bearing of induction motor, then extract-
ing vectors forms from time–frequency representation 
dependant class signal (TFRDCS). Fisher contrast is used 
to design the kernel nonparametric TFRDCS, It is deliber-
ately designed to maximize separability between classes 
and minimize the intra-class variance. Recently, the opti-
mization of the size of these vectors realized by particle 
swarm optimisation (PSO). 
 

2. Analytic signals and Hilbert transform  

 
This representation is commonly used in image 

processing, where the phase of signal contains more rele-
vant information as the module. Therefore on this principle 
and for the diagnostic necessary of the asynchronous ma-
chine [9] used a phase analysis of the spectrum, and con-
cluded that the information by the phase may be relevant 
indicative a presence of a fault in the time domain, The 
Hilbert transform is the convolution of the signal with 
( )t/1  and can underline local properties, as follows: 
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where t is time, )(tx  is a signal in the time domain and 

[ ])(txH  is Hilbert transformed.  

From a signal )(tx  and its Hilbert transform 

[ ])(txH  is obtained the amplitude of signal: 
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The amplitude of the analytical representing the 
instantaneous amplitude of signal (or envelope) of signal 
when the signal represents the instantaneous phase, which 
formulas are given their by:  
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The use of the Hilbert transform for the phase 
analysis is applied to the modulus of the spectrum of the 
Fourier transform of the signal ( )tx . Indeed, its analytical 

signal is given by: 

 [ ] [ ])()()( fxjHfxfxA += .   (5)   

The phase of the analytic signal can be expressed 
by: 
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3. Time-frequency analysis 

 

The problem of diagnosis systems is that they use 
signals either in the time or frequency domain. In our ap-
proach, instead of using a time or a frequency approach, it 
is potentially more informative to use both time and fre-
quency. Time-frequency analysis of the motor current 
makes signal properties, related to fault detection, more 
evident in the transform domain [10]. 

It is now well accepted that the representations of 
a signal jointly in time and frequency offer a real interest: 
they provide a description of the signals non-  
stationary, that is to say the analysis of laws frequencies 
signal behaviour over time. The relation between ambi-
guity plane and TFR has been recognized for a long time. 
Any bilinear (Cohen class) TFR can be expressed as the 
two-dimensional Fourier transform of the product of the 
ambiguity plane of the signal and a kernel function: 
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where t  represent time, f  represent frequency, η  repre-

sents continuous frequency shift, and τ  represent con-
tinuous time lag.   
 For a given signal )(tx  the ambiguity plane 

( )τξ ,
x

A  is defined as: 
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where ( )τ+tx  present the signal at a future time ( )τ+t , 

( )τ+∗ tx  present the complex conjugate of ( )τ+t .  

For diagnosis, the optimization procedure of TFR 
Eq. (7) via parameter kernel is computationally very pro-
hibitive. It would be better to use the optimal TFR that can 
be classified directly in ambiguity plane.  

We propose to design and use the classifier di-
rectly in the ambiguity plane of Doppler delay. It is possi-
ble to view the class dependent TFR and observe the time–
frequency structure being exploited by the classifier: 

 [ ] [ ] [ ]{ }{ }1
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4. Feature extraction 

 

We transform the Fisher’s discriminate ratio 
(FDR) to 

opt
φ  kernel in a binary matrix by replacing the 

maximum N  points with 1 and the other points with 0, is 
shown in Fig. 1. 

Features can be extracted directly from 

[ ] [ ]
opt

, A ,φ η τ η τo  where o is an element-by-element ma-

trix product. The kernel has the same dimensions as the 
ambiguity plane. By multiplying the 

opt
φ  kernel with a 

certain signal’s ambiguity plane, we will find k feature 
points for this signal. We put them into a vector in order to 

create the training feature vector ( ) ( )kFV
C

train
of classC : 
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Fig. 1 Kernel design 
 

Feature points are ambiguity plane points of loca-

tions ( )τη, where ( )[ ] 1, =τηφ C

opt . Selection of points in the 

Doppler-delay plane is interpreted as masking of the ambi-
guity function of the signal by an adapted binary function 
providing an optimal kernel. 

 

5. Particle swarm optimization (PSO) 

 
Particle Swarm Optimization (PSO) was invented 

by Kennedy and Eberhart1 in the mid 1990s while attempt-
ing to simulate the choreographed, graceful motion of 
swarms of birds as part of a socio-cognitive study investi-
gating the notion of “collective intelligence” in biological 
populations. In PSO, a set of randomly generated solutions 
(initial swarm) propagates in the design space towards the 
optimal solution over a number of iterations (moves) based 
on large amount of information about the design space that 
is assimilated and shared by all members of the swarm. 
PSO is inspired by the ability of flocks of birds, schools of 
fish, and herds of animals to adapt to their environment, 
find rich sources of food, and avoid predators by imple-
menting an “information sharing” approaches, hence, de-
veloping an evolutionary advantage. References 1 and 2 
describe a complete chronicle of the development of the 
PSO algorithm form merely a motion simulator to a heuris-
tic optimization approach [11, 12]. 

The basic PSO algorithm consists of three steps, 
namely, generating particles’ positions and velocities, 
velocity update, and finally, position update. Here, a parti-
cle refers to a point in the design space that changes its 
position from one move (iteration) to another based on 
velocity updates. First, the positions
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using upper and lower bounds on the design variables 
values 

min
x

 
and 

max
x  , as expressed in Eqs. (1) and (2). The 

positions and velocities are given in a vector format with 
the superscript and subscript denoting the th

i  particle at 
time k . In Eqs. (1) and (2), rand is a uniformly distributed 
random variable that can take any value between 0 and 1. 
This initialization process allows the swarm particles to be 
randomly distributed across the design space. 

 ( )0

i

min max min
x x rand x x= + −     (12) 

 
( )

0

min max mini
x rand x x

v
tΔ

+ −

=      (13) 

The second step is to update the velocities of all 
particles at time 1+k  using the particles objective or fit-
ness values which are functions of the particles current 
positions in the design space at time k . The fitness function 
value of a particle determines which particle has the best 
global value in the current swarm g

kΡ , and also determines 

the best position of each particle over time i
Ρ , i.e. in cur-

rent and all previous moves. The velocity update formula 
uses these two pieces of information for each particle in 
the swarm along with the effect of current motion

 
i

k
v , to 

provide a search direction i

kv 1+
, for the next iteration.  

The velocity update formula includes some ran-
dom parameters, represented by the uniformly distributed 
variables, rand, to ensure good coverage of the design 
space and avoid entrapment in local optima. The three 
values that effect the new search direction, namely, current 
motion, particle own memory, and swarm influence, are 
incorporated via a summation approach as shown in equa-
tion 3 with three weight factors, namely, inertia factor w , 
self confidence factor 

1c
, and swarm confidence factor 

2
c , 

respectively [13, 14]: 

( ) ( )
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+

− −
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The original PSO algorithm1 uses the values of 1, 
2 and 2 for w , 

1c
, and 

2c
 respectively, and suggests upper 

and lower bounds on these values as shown in Eq. (3) 
above. However, the research presented in this paper found 
out that setting the three weight factors w  

1c
, and 

2c
 at 

0.5, 1.5, and 1.5 respectively provides the best conver-
gence rate for all test problems considered. Other combina-
tions of values usually lead to much slower convergence or 
sometimes non-convergence at all.  

The tuning of the PSO algorithm weight factors is 
a topic that warrants proper investigation but is outside the 
scope of this work. For all the problems investigated in this 
work, the weight factors use the values of 0.5, 1.5 and 1.5 
for w , 

1
c  and 

2
c  respectively. The position update is the 

last step. The Position of each particle is updated using its 
velocity vector as shown in Eq. (4) and depicted in Fig. 2: 

1 1

i i i

k k k
x x v tΔ

+ +
= + .          (15) 

 
Fig. 2 Depiction of the velocity and position updates in 

particle swarm optimization 
 

The three steps of velocity update, position up-
date, and fitness calculations are repeated until a desired 
convergence criterion is met. In the PSO algorithm imple-
mented in this study, the stopping criteria is that the maxi-
mum change in best fitness should be smaller than speci-
fied tolerance for a specified number of moves, S  , as 
shown in Eq. (16) [12]. In this work, S  is specified as ten 

moves and ε  is specified as 5
10

− for all test problems. 

 ( ) ( ) 1 2
g g

k k qf P f P q , ,...,Sε
−

− ≤ =    (16) 

The main advantages of the PSO algorithm are 
[13]: simple concept, easy implementation, robustness and 
computational efficiency compared with the mathematical 
algorithm and other heuristic optimization techniques. 
These superior features make PSO a highly viable candi-
date to be used to solve the multi-objective optimization 
problems. In this chapter we will use the PSO to optimize 
the size of the vectors extracted from the forms TFRDCS. 

 
6. Experiment results 

 
6.1. The experimental test bed PRONOSTIA 

The proposed method is verified on experimental 
vibration signals taken from the test bed PRONOSTIA, 
designed and realized within FEMTO-ST institute [15]. 
This test bed has been developed to test and validate the 
fault detection, diagnostic and prognostic algorithms of 
ball bearings. The aim of the test bed PRONOSTIA is to 
provide realistic data which characterize the natural degra-
dation of bearings throughout their useful life. This test 
bed helps to accelerate the aging of bearings by applying 
severe operating conditions by varying the rotation speed 
and by applying a radial force greater than that one rec-
ommended by the manufacturer. These constraints allow 
simulating the degradation of ball bearings in few hours.  

The test bed is composed of a ball bearing of type 
NSK 6804RS installed on a shaft, as shown in Fig. 3. The 
characteristics of this bearing are given in Table.  
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1- Test bearing                       2- Accelerometers 
3- Force sensor                      4- Pneumatic jack 

          5- Pneumatic regulator          6- Pulleys 
          7- Speed recorder                  8- AC motor 
          9- Acquisition system           10-Coupling 
 

Fig. 3 The experimental test bed PRONOSTIA [15] 

 
                                                             Table 

Characteristics of the studied bearing 
 

Diameter of rolling elements, mm 3.5 
Number of rolling element 13 
Diameter of the outer race, mm 29.1 
Diameter of the inner race, mm 22.1 
Bearing mean diameter, mm 25.6 

 
Fig. 4 depicts an example of what one can ob-

serve on the ball bearing components before and after an 
experiment, as well as a vibration raw signal gathered 
during a whole experiment. Note that the degradation of 
bearings depicts very different behaviors leading to very 
different experiment duration (until the fault). 

 

 
 

Fig. 4 Normal and degraded bearings 

6.2. Training set 
 

The vibration signals are composed of 2560 sam-
ples recorded every 10 seconds with a sampling frequency 
equal to 25.6 kHz. We cannot use the vibration signals 
directly due to their very low values. We have proposed a 

method for calculating a parameter very interesting, the 
dispersion parameter of the cloud of pointsξ . This pa-

rameter is used to calculate the TFR and extraction feature 
vectors. 
 
6.3. Data treatment by Hilbert transforms 
 

We can easily conclude that the signatures in-
duced in vibration signal analyzed by the Hilbert transform 
are more pronounced than those induced in the spectrum of 
signal. 

We have proposed a method based a pretreatment 
Data by Hilbert transform for calculating a very interesting 
parameter to know the cloud points dispersion parame-
terξ : 

( )( )
1

TNva

K Re,Im K Re,Im
K

' '
A V a A V aξ

=

= − −∑ % % ,   (17) 

where 
Re

'
V a% , 

Im

'
V a% are coordinates of point

K
A . 

This parameterξ  is used to calculate the TFR and 

extraction vectors forms.  
  As a side from a representation of the cloud points 
dispersion ξ  of Analytics Vibration Signal for a healthy 

machine and bearing faults (Fig. 5) to remark that the 
cloud points dispersion ξ for bearing fault are much sepa-
rated compared with a healthy machine while the points of 
the same classes are very approximations. 
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Fig. 5 Representation cloud points dispersion of analytical 
vibration signals (AVS) 

6.4. Vectors forms optimization by PSO 
 

The optimization of analytical vibration signal 
will be do by PSO method,  With the optimization crite-
rion, the optimization of vectors form will be fitting and 
executing to extract pertinent points. We were able to re-
duce the size of point in the vector from twenty to ten 
points. Thus the analytical vibration signal with healthy 
(Figs. 6 and 7) or bearing failure (Figs. 8 and 9) is charac-
terized by ten points each relevant also called scores or 
high contrast in the sense of Fisher. These vectors can be 
easily used by beings classification techniques or artificial 
intelligence. 
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Fig. 6 Vector forms of healthy machine before optimiza-
tion 
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Fig. 7 Vector forms optimize by PSO of healthy machine  
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Fig. 8 Vector forms of bearing fault before optimization 
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Fig. 9 Vector forms optimize by PSO of bearing fault   

      Figs. 10 and 11 have respectively a representation 
of vectors forms before optimization and optimized by 
PSO. Theses figure Shawn clearly classes position for 
vector forms of analytical vibration signals. These figures 
give us a separation between healthy machine and bearing 
fault class. 

 

Fig. 10 Classes position for vector forms before optimi-
zation 

 

Fig. 11 Classes position for vector forms optimized by 
PSO 
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7. Conclusion 

 
       In this paper, we have proposed a new method for 
calculating a very interesting parameter, that dispersion of 
cloud parameter of points. Since we cannot use the vibra-
tion signals directly due to their very low values.. This 
parameter is used to calculate the TFR and extraction fea-
ture vectors.  
  The simulation results have shown a representation 
of the dispersion of cloud points of Vibration Analytics 
Signal (AVS) for a healthy and faulty bearing that the dis-
persion parameter confirms the separability of classes 
(healthy bearing class and faulty bearing class). then we 
made the extraction of the vector formed by the RTF and 
the separation of classes by filtering (kernel Fischer) and 
the following we have optimized by PSO; these processing  
gives us a separation between healthy bearing and faulty. 
The main advantages of the PSO algorithm are simple con-
cept, easy implementation, robustness and computationnal 
efficiency compared with the mathematical algorithm and 
other heuristic optimization techniques. These superior 
features make PSO a highly viable candidate to be used to 
solve the multi-objective optimization problems. 
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A. Bouguerne, A. Lebaroud 
 
ELEKTROS MAŠINŲ GUOLIŲ DIAGNOSTIKOS 
VEKTORIŲ FORMŲ KLASIFIKAVIMAS DALELIŲ 
SPIEČIAUS OPTIMIZAVIMO (PSO) ALGORITMO 
PAGRINDU 

R e z i u m ė 

Išankstinis guolių defektų išaiškinimas ir diagno-
zavimas operatyviai užkerta kelią nenormaliam defekto 
progresavimui ir guolio produktyvumo praradimui. Guolio 
virpesių signalų analizė dėka savo efektyvumo ir nesudė-
tingo valdymo yra vienu iš plačiausiai taikomų metodų 
guolių diagnostikoje. Per paskutinius kelis dešimtmečius 
guolio laiko-dažnio charakteristikos analizė plačiai taiko-
ma guolių defektų nustatyme. Pagrindiniu šios procedūros 
veiksniu yra informatyvių savybių išskyrimas iš laiko-
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dažnio diagramos. Tyrimo rezultatai remiasi šiam tikslui 
įgyvendinti išplėtotu dispersinės analizės metodu. Reikia-
mo požymio išskyrimo esmė yra ta, kad sugedusio mecha-
nizmo laiko-dažnio diagrama analizuojama pagal skirtin-
gas gedimų klases. Individualus laiko-dažnio diagramos 
sudarytos kiekvienai gedimų klasei. Išskirto požymio vek-
toriaus dydis yra optimizuotas panaudojant Dalelių Spie-
čiaus Optimizavimo metodą. Šis priartėjimas yra taikomas 
bendruoju atveju ir po to patikrinamas PRONOSTIA eks-
perimentine įranga. 

 
 

A. Bouguerne, A. Lebaroud 
 
CLASSIFICATION VECTORS FORMS DEDICATED 
TO BEARINGS FAULT DETECTION OF ELECTRICAL 
MACHINES BASED ON PSO ALGORITHM 
 
S u m m a r y 
 

Early detecting and diagnosing bearing defects 
during operation aid in preventing abnormal fault progres-
sion and decrease productivity loss. Vibration signal analy-

sis is one of the most widely applied methods for bearing 
problem diagnosis, for its effectiveness and easy manipula-
tion. Time-frequency analysis has received considerable 
interest in the field of bearing fault detection over the past 
few decades. A key element of this procedure is extracting 
informative features from the TFRs. In this report, we have 
developed a method based on cloud point dispersion pa-
rameter. The essence of the feature extraction is to project 
from faulty machine to a low size signal time-frequency 
representation (TFR), which is deliberately designed for 
maximizing the separability between classes, a distinct 
TFR is designed for each class. The feature vectors size is 
optimized using Particle Swarm Optimization method 
(PSO). This approach is validated on an academic case and 
then tested on real data taken from the PRONOSTIA ex-
perimental platform. 

 
Keywords: Time-frequency representations, analytic vi-
bration signal, dispersion parameter, Hilbert transform 
particle swarm optimization. 
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