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1. Introduction 
 
 For computer-aided analytic research of complex 
vibrating systems with a large finite number of degrees of 
freedom, including linear stationary systems, various 
methods, for example, the method of finite elements and so 
on, are applied [1-5]. 

In the Paper, the mentioned linear vibrating sys-
tems are discussed upon. They are described by linear dif-
ferential equations with constant coefficients. For digital 
integration of such equations, Runge-Kutta and other 
methods are applied. In a majority of cases, such systems 
have a very wide spectrum of natural frequencies; how-
ever, an investigator takes an interest in the much narrower 
range of the lowest natural frequencies within the said 
spectrum only. The high natural frequencies considerably 
increase the time of digital integration, so it is important to 
have a system of differential equations for describing the 
object under investigation where such frequencies are ab-
sent in the roots of its characteristic equations. Such equa-
tions can be obtained by reducing the number of degrees of 
freedom in the dynamical model of object under investiga-
tion. However, in many case, this task is difficult or even 
impossible. For example, such a problem appears when the 
method of finite elements is applied.  

Other methods of elimination of high natural fre-
quencies are obtained on the relevant reduction of the 
equations describing the vibrating system [6-14]. Among 
those methods, the method of modal truncation where the 
initial system of equations is divided to a number of inde-
pendent equations is widely used; each of such indepen-
dent equations describes modal vibrations of one natural 
frequency and then the equations corresponding to high 
natural frequencies are rejected (see, for example [10-14]). 
It is considered that the errors appearing in this case would 
be permissible, if the frequencies of the rejected modal 
vibrations are at least 1.5-2 times higher than the natural or 
resonance frequencies the investigator takes an interest in 
[15]. In some methods (see, for example, [16]), the errors 
of calculation appearing because of the rejected modal 
vibrations are counterbalanced by special components in 
the equations. 

Although the known methods of modal truncation 
are effective, they are applicable only to vibrating systems 
with a proportional damping, when in the matrix equation 
describing the system, the elements of the damping matrix 
are proportional to the mass and stiffness matrixes or any 
of them. However, in many cases, damping cannot be con-
sidered proportional. This statement is applicable, for ex-
ample, to complex mechatronical, mechanical and other 

systems where modal truncation is important for their in-
vestigation.  

The purpose of the paper: to propose a method for 
reduction of the equations used for describing linear sta-
tionary vibrating systems with any damping in state vari-
ables and reducing the time of digital integration. The 
method is based on formation of the equations of the sys-
tem in state variables [17-19] using the normal Bulgakov’s 
coordinates [20, 21] and application of modal truncation 
when the equations corresponding to high natural frequen-
cies are eliminated (see below). The value of the error re-
sulted by the truncation is assessed by comparing the fre-
quency response of the vibrating system before and after 
the reduction in the frequency range under the interest of 
the investigator. 
 
2. Initial version of the equations used for describing 

the system in state variables  
 
Let’s consider that such a nonreduced system of 

differential equations describing vibrations of the system 
(object) under investigation is formed  

[ ] [ ] [ ]{ } { })t(hqCqBqA =+
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where  

{ } { }T
nq,...,q,qq 21=      (2) 

the vector of the generalized coordinates iq (i = 1, 2, ..., n) 

defining motions of the system; { }q
dt
dq =
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; t is time or, more rarely, another argu-

ment; [A], [B], [C] are square matrixes of the n-th degree 
with constant (stationary) elements; the – matrix [A] may 
include r ≤ n zero lines and columns with the same serial 
numbers, i.e. in the system (1),  r is differential equations 
of the first degree that include only those generalized coor-

dinates jq ( j = 1, 2, ..., r) and their fluxions jq
•

 not pre-

sented in the equation of the second fluxions jq
••

 (Eq. (1)) 

can exist; ( ){ } ( ) ( ) ( ){ } T
n th,,th,thth …21=  is the vector 

of the n–th degree of external generalized forces involved 
in excitation of the system. 

For examination of the vibrating system in state 
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variables, the Eq. (1) are reduced to the normal (Cauchy) 
form, i.e. when the generalized coordinates iq  are re-
placed for other variables, the system of equations is re-
duced to a system of differential equations of the first de-
gree solved in respect of the first derivates of the said vari-
ables. Such variables are considered phase or state vari-
ables of the system described by the Eq. (1) defining all 
states of the system in the time t  ≥ 0t  ( 0t  is the initial 
time of observance of the system). For investigation of the 
said equations, special softwares are used [19, 21]. 

The most frequently applied method of introdu-
cing variables defining the states of a system under inves-

tigation is based on replacing the derivates kq
•

 of the gene-
ralized coordinates kq  (with their derivates of the second 

degree kq
••

 included in the Eq. (1)) for new variables. It is 
may be carried out as described in [21]. 

New variables are introduced 

1 2 11 2 1

1 2 21 2

, , , , , , ,

, , ,

r r nr r n

n n n r sr r n

x q x q x q x q x q

x q x q x x q

+ +
• • •

+ + −+ +

= = = = =

= = = =

… …

…

 

(3)

 

Their vector 

{ } { }T
snnrr x,...,x,x,...,x,x,...,x,xx 1121 ++=      (4) 

To simplify the following description, it is con-
sidered that r equations having no second-degree derivates 
of coordinates are in the beginning of the system (1), so the 
matrixes [ ]A  and [ ]B  can be divided into the following 
submatrixes. 

[ ] 1,1 1,2

2,1 2,2
;O OA O A

⎡ ⎤= ⎢ ⎥⎣ ⎦
 [ ] [ ]21 BBB =    (5) 

where [ ] 11,O , [ ] 21,O , [ ] 12 ,O

 

are zero matrixes of rr × , 
( )rnr −× , ( ) rrn ×−  degree; [ ] 22 ,A  is nonsingular square 

matrix of the ( )rn−  degree; [ ]1B , [ ] 2B

 

are matrixes of the 
rn×  ir ( )rnn −×  degree. 

Taking into account the Eqs. (3) and (5), we ob-
tain the following instead of the system of Eq. (1) 
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here the derivates rq,...,q,q
••••••

21  are specified only for-

mally. They are multiplied by the zero submatrixes [ ] 11,O  
and

 

[ ] 12 ,O of the matrix [ ]A , so really they are not pre-
sented in the equations (6). These zero submatrixes are 
replaced for the submatrix [ ]1B , and the derivates 

rq,...,q,q
••••••

21  are replaced for the derivates 

rx,...,x,x
•••

21 . Then instead of the Eq. (6), we find 
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From it, we find 
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here the square matrix of the nth degree 
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[ ]1G , [ ] 2G  are the submatrixes where the lines are formed 
of r first lines and the remained ( )rn−  lines of the matrix 
[ ]G . It is accepted that the inverse matrix it nonsingular 
and the Eq. (9) is valid. In such a case, the matrix [ ] 22 ,A  as 
well as the matrix [B]1,1, formed of r first lines of the ma-
trix [ ]1B  should be nonsingular. 

In addition, the system of Eq. (8) does not include 
the equations defining the values of the fluxions 

nrr x,...,x,x
•

+

•

+

•

21 . They are obtained from the part 

nsrn qx,,qx
•

+

•

+ == …11  of the Eq. (3) taking into account 

that nnrr xq,,xq
••

+

•

+

•
== …11 . Then 

srnnnrnr xxx,,xx,xx ==== −

•
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•
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•

22211 …     (10) 

After uniting the Eqs. (8) and (10), we obtain the 
following normal equations describing the system under 
examination in its state variables instead of the Eq. (1) 

[ ]{ } ( ){ }tkxRx +=
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   (11) 

where { }x  is the vector defined by the Eq. (4); its compo-
nents are the coordinates describing the location of the 
system in its state variables 
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The square matrix of srn =−2  degree consists 
of: the zero submatrix [ ] 2O  of ( ) nrn ×−  degree and the 
unit submatrix [ ]1E  of (n – r) degree; the submatrixes 
[ ] [ ]CG 1  and [ ] [ ]21 BG nr ×  of ( )rnr −×  degree; the sub-
matrix [G]2[C] of ( ) nrn ×−  degree and the square subma-
trix [G]2[B]2 of ( )rn−  degree 

( ){ } [ ] ( ){ }thGtk *=    (13) 

The vector of srn =−2  degree; [ ]∗G is the ma-
trix of ( ) nsnrn ×=×−2  degree obtained from the matrix 
[ ]G  by inserting ( )rn−  zero lines between its submatrixes 
[ ]1G  and [ ] 2G . 

On investigation of the vibrating system in its 
state variables, its output coordinates (output signals) ey  
( m,,,e …21= ) (that describe the state of the object as 
well) bound with its variables { }x  by linear algebraic equa-
tions are added to its equation of state [18, 19] 

{ } [ ]{ } [ ] ( ){ }thHxDy +=    (14) 

where { }y  is m  dimensional vector ( )…,,m 21= ; 
[ ]D , [ ]H  are matrixes of sm×  and nm×  degree with 
constant or varying in course of time elements; the values 
and character of variation of such elements depend on a 
system under investigation. 

 
3. The proposed version of the equations of state  

variables and their reduction 
 
The obtained mathematical model Eqs. (11) and 

(14) of the system under investigation in its state variables 
is based on the application of variables for defining the 
state of the system provided in the Eq. (4). 

As it was mentioned above, on investigation of 
the vibrating systems described herein (Eq. (1)), it is not 
reads Eq. (11) because of a considerable time of integra-
tion, when the spectrum of natural frequencies of the sys-
tem includes the range of high natural frequencies (out of 
the interests of the investigator), not only the range of low 
natural frequencies. It would be purposeful to reduce the 
Eq. (11) by eliminating components with high natural fre-
quencies from their solutions and simultaneously maintain-
ing an adequacy of the obtained results with a permissible 
error. 

For such reduction of the Eq. (11) and saving the 
computer time, it is proposed in this paper to use the nor-
mal Bulgakov’s coordinates for variables of the system’s 
state of variables and the method of modal truncation on 
the base of [20, 21]. For this purpose, the below-described 
procedure is used. 

The method is applicable, if the matrix [ ]R  has 
multiple natural values; in such a case, the element divisors 
related to them should be linear (this condition is equiva-
lent to the condition on absence of any secular terms in the 
solutions of homogenous Eqs. (1) and (11), when { } 0≡h . 

In addition, the vector x
•⎧ ⎫

⎨ ⎬
⎩ ⎭

 should have no zero compo-

nents, i.e. the systems of Eqs. (1) and (11) should include 
no algebraic equations. It is considered that the said condi-
tions were satisfied (if secular members appear in solutions 
of the equations, they usually may be avoided by a slight 
correction of the dynamic model of the system under ex-
amination without losing its adequacy). 

It is considered that the matrix included in the 
Eq. (11) has s  natural values jλ  ( )s,,,j …21= , includ-

ing 's  real natural values σσ χλ =  ( )'s,,, …21=σ  and 
''s couples of complex conjugates roots hhhs

i' ωελ +=
+

, 

hhhss
i''' ωελ −=

++
; where hε , hω  are real and imaginary 

parts of roots, ''s,,,h …21= , 1−=i . 
The natural values jλ  of the matrix [ ]R  are also 

the roots of the characteristic equations of the systems of 
Eqs. (1) and (11), the values hω  is the natural frequencies 
of the system under investigation; hε  is defines damping 
of free vibrations with frequency hω  and σχ defines ape-
riodical nonvibrating processes. It can be seen that 

rnsss ''' −=+= 22 . 
Each real natural value σλ  of the matrix [ ]R  cor-

responds to its own vector { } { }σσ υ=V  with s  compo-

nents, each complex couple of roots 
hs' +

λ  and 
hss ''' ++

λ  – to 

own vectors { } { } { } hsshshs ''''' iV ++++ += υυ  with s  com-

ponents and, correspondingly, { } { }' '' 's s h s h
V υ

+ + +
= − . 

{ } ' '' .
s s h

i υ
+ +

−  The natural values 
hss ''' ++

λ  and the own 

vectors { } hss '''V ++  corresponding to them hereinafter will 
not be used.  

Each natural vector { } hs'V +  is simultaneously 
the mode of natural vibrations corresponding to the natural 
frequency hω  of the homogenous part of the system under 
investigation Eq. (1) according to the generalized coordi-
nates nq,...,q,q 21  and the mode of speeds of natural vi-
brations according to the derivates of the generalized coor-

dinates nrr q,...,q,q
•

+

•

+

•

21 . The complex form of these vec-
tors shows that they were formed taking into account the 
damping in the system; however, no special requirements 
are set for the character of the latter [20, 21]. Each natural 
vector { }σV  is simultaneously the mode of aperiodic mo-

tions corresponding to the real root σλ  of the homogenous 
part of the system under investigation (1) according to the 
generalized coordinates 1 2, , ... , nq q q  and their derivates 

nrr q,...,q,q
•

+

•

+

•

21 . 
When the natural vectors are known, a square 

modal matrix of the s -th degree [ ]υ  consisting of 's col-

umns of the vectors { }συ  and ''s2  columns of the real 

{ } hs' +υ  and imaginary { } hss ''' ++υ  parts of the vectors 

{ } hs'V +  is formed [15] .When the said columns are laid 

out in the way where 's  first columns of the matrix [ ]υ  
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are the vectors { }συ  and then couples of the vectors 

{ } hs' +υ  and { } hss ''' ++υ  follow, the following structure of 

this matrix is obtained [20, 21] 
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υ
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22111

2222221212212

1121211111111

        (15) 

 
Considering that the matrix [ ]R  satisfies the 

above-mentioned conditions, a replacement of the vari-
ables of the system (11) is carried out [20, 21] 

{ } [ ]{ }ξυ=x    (16) 

where  
 

{ }ξ = { ……… ,,,,,, '''' ssss 111 +++
ξξξξξ σ   

}Tssshsshs
,,,, ''''''' ξξξξ

++++
……    (17) 

is the vector of s th degree in the normal Bulgakov’s coor-
dinates (NBC). 

After inserting the value Eq. (16) of the vector 
{ }x  into the Eq. (11), we find [15] 

[ ]{ } [ ] ( ){ }thzQ +=
⎭
⎬
⎫

⎩
⎨
⎧ •

ξξ    (18) 

where, if the order of components of the vector { }ξ  pro-
vided in the Eq. (17) is preserved 

[ ] [ ] [ ][ ] ⎥
⎦

⎤
⎢
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⎡
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Ω
χ

υυ
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31

O
O
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[ ]3O , [ ]4O  are zero submatrixes of the ''' ss 2×  and 
''' ss ×2  degree; 

[ ] { }'s
,,diag χχχ …1=    (20) 

[ ]Ω  is the block square submatrix of the ''s2  degree; 
square submatrixes  

⎥
⎦

⎤
⎢
⎣

⎡
− hh

hh

εω
ωε

, ''s,,,h …21=    (21) 

are situated along its diagonal and all remained elements of 
the said submatrix are zero elements; 

[ ] [ ] [ ]*Gz 1−= υ    (22) 

matrix of the ( ) nsnrn ×=×−2  degree. 
The scalar expression of the Eq. (18) will be as 

follows. To each real root σχ , an equation not bound with 
other equations  
 

)t(σσσσ Φζχζ =−
•

, ( )'s,,, …21=σ    (23) 

will correspond, and to each complex joint root hh iωε ± , 
a couple of equations not bound with other equations  

( )
' ' ' '' '

' '' ' ' '' ' ''
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•
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⎨
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  (24) 

will correspond, where 
 

,
1

n

k k
k

z hσ σΦ
=

= ∑  ' ' ,
1

n

ks h s h k
k

z hΦ
+ +

=

= ∑ ; 

' '' ' '' ,
1

n

ks s h s s h k
k

z hΦ
+ + + +

=

= ∑    (25) 

So, the initial system of equations was divided to 
independent equations with easily findable solutions. The 
variables { }x  as well as the coordinates{ }q , if the normal 
Bulgakov’s coordinates { }ξ  are known, should be found 
from the Eq. (16). It should be noted that the division of 
the equations of the system under investigation into inde-
pendent equations was carried out without applying any 
limitations to the structure and elements of the matrix [ ]B  
included in an equation of the system (1). 

The other version of equations of the system un-
der investigation in the state variables consists of the sys-
tem of Eq. (18) with the joined system of algebraic linear 
Eq. (14) where the value of the vector { }x  is taken from 
the Eq. (16) 

{ } [ ][ ]{ } [ ] ( ){ }thHDy += ξυ    (26) 

This version differs from the above-mentioned 
one (see the Eqs. (11) and (14)) in a considerably simpler 
structure of the differential equations; in addition, it pro-
vides an opportunity of a major reduction of these equa-
tions using the method of modal truncation. 
 It may be made sure that upon investigating of a 
dynamical system in its state variables and solving the 
equations that describe it by numerical integration, the 
process of the integration will be longer when the natural 
frequencies of the system are higher and processes of 
higher frequencies are explored (the step of integration 
becomes smaller). If the range of natural frequencies of the 
system under investigation is very large and the investiga-
tor takes an interest in the range of low frequencies only, 
the process of integration can be shortened considerably by 
eliminating the systems of Eqs. (24) that correspond to 
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higher natural frequencies hω from the process of calcula-
tion, i.e. by applying the method of modal truncation. In 
addition, often all Eq. (23) or a part of them can be ne-
glected. In such a case, instead on the matrix (19) and the 
system of Eq. (18), we obtain 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

*

*
* O

O
Q

Ω
χ

6

5     (27) 

[ ] { } [ ] ( ){ }thzQ ***
*

+=
⎭
⎬
⎫

⎩
⎨
⎧ •

ξξ    (28) 

where { }*ξ  is the vector obtained from the vector { }ξ  
after elimination  of the neglected  NBCs; [ ]*χ ; [ ]*Ω  are  

square submatrixes of the α  and β2  degree obtained 
from the submatrixes (19) and (20) when a part of the 
Eqs. (23) and a part of the couples of Eqs. (24) are ne-
glected; 's<α , ''s<β  – the number of the remained 
Eqs. (23) and, correspondingly, the remained couples of 
Eqs. (24); [ ]5O , [ ]6O  are zero submatrixes; [ ]*Q  is the 

square matrix of ( )βα 2+  degree analogous to the matrix 
[ ]Q , but without the excluded elements of the Eqs. (23) 
and (24); [ ]*z is the matrix of ( ) n×+ βα 2  degree ob-

tained from the matrix [ ]z  after elimination of the lines 
with the serial numbers corresponding to the eliminated 
coordinates σξ , 

hs'+
ξ , 

hss ''' ++
ξ .  

 

 
 

Fig. 1 The scheme of formation of reduced equations of a vibrating system in state variables 
 

The approximate values of the variables px , 

i.e. '
px  ( s,,,p …21= ), are found from the equation that is 

analogous to the Eq. (16) 

{ } [ ] { }**
'x ξυ=   (29) 

where { }'x  is the vector of the approximate variables '
px  

of the state variables, [ ]*υ  is the reduced modal matrix of 

( )βα 2+×s  degree found from the matrix [ ]υ  where only 
the columns corresponding to the assessed natural values 

jλ of the matrix [ ]R  are left. 

The v  – dimensional vector { }'y  of approximate 
coordinates of the output of the system is found from the 

equation that is analogous to the Eq. (14) 

{ } [ ] { } [ ] ( ){ }thHxDy '
*

' +=   (30) 

After insertion of the value of the vector { }'x  from 
Eq. (29) into the equation, we find 

{ } [ ] [ ] { } [ ] ( ){ }thHDy ***
' += ξυ    (31) 

So, the reduced version of the equations of the system un-
der investigation with NBCs in the state variables consists 
of the systems of Eqs. (28) and (31).  

The issue of the numbers α  and β2  remained in 
NBC jξ  is important. In a majority of cases, a reduction 
of  the number α  of the Eqs. (23) can be avoided and only 

The initial system of Eqs. (1) 
 

Normalization of the Eqs. (1)  

Calculation of natural values and natural vectors of the matrix [ ]R ; formation of the modal 

matrix [ ]υ  and the matrixes [ ]Q , [ ]z   

The Eqs. (18), (26) prepared for reduction in the state variables 
 

Calculation of AFRs and PRs for the nonreduced and reduced system; their compari-
son; choosing the left NBCs  

The reduced Eqs. (28), (31) in the state variables 
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Fig. 2 The scheme of the dynamic al model of the example 
 

the number β  of the Eqs. (24) can be reduced; however, a 
specific decision should be passed for each individual sys-
tem under investigation. For defining the number of the 
remained NBC, it is proposed to compare the amplitude-
frequency responses (AFRs) and the phase responses (PRs) 
obtained upon certain selection of the components of the 
vector ( ){ }th  for the non-reduced system (1) or (11), 
(18) with the respective responses of the reduced system 
(28) calculated in the range of frequencies the investigator 
is interested in. Nonzero components of the vector 

( ){ }th  can be following 
 

( ) tcosBtsinAth aaa νν +=  
( )n,,,a …21=    (32) 

here the values of the constant the coefficients aA , aB  and 
the range νΔ  of changing of the excitation frequencies ν  
are chosen by the investigator. Upon comparison of AFRs 
and PRs of the whole and reduced systems, the value of 
inadequacy is a base for making a conclusion on the level 
of the errors of the reduction and the required number of 
remained NBC. One of the possible algorithms for AFRs 
and PRs calculation that does not require much time for the 
calculation is provided in [15]. The algorithm is based on 
the application of solutions of the equations (18) in the 
analytic form and the equation (16) in the case of harmonic 
excitation of the system. The scheme of formation of the 
reduced equations in Bulgakov’s coordinates is shown in 
Fig. 1. 
 
4. Example  
 

In our paper [22], a system of equations of the 
type Eq. (18) for investigating transversal vibrations of the 
unit of plate cylinders and blanket cylinders in a section of 
offset printing press was described and used. Using the 
results of the said work, we’ll show an efficiency of the 
proposed reduction. The above-mentioned unit (Fig. 2) 
consists of two plate cylinders 1, 2 with printing forms 
attached to them (Fig. 2, not shown herein) and two blan-
ket cylinders 3, 4 covered by a special elastic textile (blan-
ket) 5. The blankets are fixed to the said cylinders by spe-
cial oblong locks along the generatrices of the cylinders. 

 

 
 

 

 

 
 
 

 

 
 

Fig. 3 Transverse vibrations of the middle of the blanket cylinder of the model: a, b – the amplitude and phase responses 
versus frequency (1 – for the whole system, 2 – for the simplified system); c, d – vibrations caused by shocks of the 
blanket fixing locks for the whole system (c) and the simplified system (d) 
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The length of all cylinders is 1040 mm, the diameter - 
∅200 mm. The printing process runs as follows: while the 
cylinders connected with gearwheels 7 and pressed against 
each other along their generatrices rotate and deform the 
blanket, the prints from the ink-moistened printing forms 
are transferred to the blankets 5 and from them – to the 
both sides of the paper tape 8 moving between the blanket 
cylinders 3, 4. The position of the blanket cylinders 3, 4 
pressed against each other through the blanket 5 is regu-
lated in such a way that ensures getting of the locks 6 into 
collision while rotation of the cylinders. It causes blows 
and transversal vibrations of the cylinders pressed against 
each other (similar vibrations appear on getting of the 
locks into collision with surfaces of plate cylinders; how-
ever, the intensity of such vibrations is lower). For descrip-
tion of the vibrations, the equations of the type (1), then 
also the equations of the types (11), (18) are used; in [17], 
these equations are further used nonreduced. For formation 
of the equations, all cylinders are divided into finite ele-
ments. In addition, elasticity and damping of the blankets 5 
as well as deformation of the bearing units of cylinders are 
taken into account. Thus, a system with 168 degrees of 
freedom is formed. Its natural frequencies are situated in 
the 171.5 - 530183 Hz range. Blows are simulated by rec-
tangular 100 N force impulses with duration of 0.003 s (the 
period 0,1 s); the said impulses impact the pressed against 
each other plate cylinders in the radial direction in units of 
finite elements entering into contact in the zones of the 
plate cylinders (each of two plate cylinders is impacted by 
10 impulses). The transversal vibrations generated by the 
said impulses in the middle of the plate cylinder 2 are cal-
culated. 

It is accepted that a person engaged in the calcula-
tion takes an interest in vibrations with the frequencies up 
to 700 Hz, so only 12 couples of equations in normal Bul-
gakov’s coordinates are left in the reduced system. 

They correspond to all natural frequencies of the 
system up to 750 Hz. 

Amplitude-frequency and phase responses of the 
complete and the reduced system are calculated for the 
range 0-1000 Hz, where the force impulses are replaced by 
harmonic excitation. The calculations were carried out 
using the mathematical simulation set MATLAB. When 
the equation (11) is applied for the calculations, the time of 
numerical integration equals to 14 min 14 s (the step 5e-7), 
and when the reduced equation of the type (30) is applied, 
it equals to 8 s (the step 1e-5), i.e. the time reduces 106 
times. The conversion of the system (11) into equations of 
the type (18) took 1.5 s, and the calculation of the fre-
quency responses took 2 s. 

The obtained results are shown in the Fig. 3. It 
can be seen that the error of the reduction in the range 0-
750 Hz is very small. 
 
5. Conclusions 
 

1. For shortening the time of numerical integra-
tion of the differential equations usable for describing lin-
ear stationary vibrating systems with a wide spectrum of 
their natural frequencies, it is purposeful to convert the 
said equations in to the normal Bulgakov’s coordinates and 
then to reduce them eliminating the equations to high natu-
ral frequencies by the method of modal truncation. 

2. For the proposed method of calculation, no 

limitations for dissipation of the vibrating system are re-
quired. 

3. The value of the error appeared during the re-
duction is assessed by a comparison of the amplitude-
frequency and phase responses of the system under inves-
tigation obtained from the initial and reduced equations 
with harmonic excitation. 
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V.-K. Augustaitis, V. Gičan, N. Šešok, I. Iljin 
 
NETURINČIŲ DISIPACIJOS APRIBOJIMŲ TIESINIŲ 
STACIONARIŲJŲ VIRPAMŲJŲ SISTEMŲ LYGČIŲ 
PRASTINIMAS MODALINĖS ATKIRTOS BŪDU 

R e z i u m ė 

 Siūlomas tiesines stacionariąsias virpamąsias sis-
temas su baigtiniu laisvės laipsnių skaičiumi aprašančių 
diferencialinių lygčių supaprastinimo metodas šių lygčių 
skaitmeninio integravimo laiko sumažinimo tikslu, kai 
virpamosios sistemos dinaminis modelis turi platų savųjų 
dažnių spektrą, o tyrėją domina tik jame esantis žemų sa-
vųjų dažnių intervalas. Tuo tikslu lygtys sudaromos siste-
mos būsenų erdvėje taikant normalines Bulgakovo koordi-
nates ir po to modalinės atkirtos būdu atmetant aukštiems 
saviesiems dažniams atitinkančias lygtis. Metodas nereika-
lauja nagrinėjamųjų sistemų slopinimo apribojimų. Pavyz-
dyje parodyta, kad tiriant 168 laisvės laipsnių sistemą 
skaitmeninio integravimo trukmė po supaprastinamo su-
trumpėja apie 100 kartų esant mažoms supaprastinamo 
paklaidoms. 
 
 

V.-K. Augustaitis, V. Gičan, N. Šešok, I. Iljin 
 
A REDUCTION OF THE EQUATIONS OF THE 
LINEAR STATIONARY VIBRATING SYSTEMS 
WITHOUT LIMITATIONS OF DISSIPATION USING 
THE METHOD OF MODAL TRUNCATION 

S u m m a r y 

 A method for reduction of differential equations 
describing linear stationary vibrating systems with a finite 
number of degrees of freedom usable for shortening the 
time of digital integration of such equations, when the dy-
namic model of the vibrating system has a wide spectrum 
of natural frequencies and the investigator takes an interest 
in the range of low natural frequencies within the said 
spectrum only, is proposed herein. For this purpose, the 
equations are formed in the state variables of the system 
using the normal Bulgakov’s coordinates and then are re-
duced by rejecting the equations bound with higher natural 
frequencies according to the method of modal truncation. 
The method does not require any limitations of damping of 
the systems under the investigation. In the example, it is 
shown that in case of a system of 168 degrees of freedom, 
the time of digital integration was reduced after simplifica-
tion about 100 times upon small reduction errors. 
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