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1. Introduction 

 

Engineering systems in buildings, in particular, 

heating, cold and hot water supply systems, as well as the 

system supplying heat to air heaters in air supply ventila-

tion units and external utility lines, for the most part, use 

water as operating fluid. However, there is a risk of pipe-

line freezing during cold winter seasons due to sudden 

gradual drops in temperature and in the event of replacing 

heating systems of heat supply under emergency operating 

conditions. The volume naturally increases in the freezing 

process, leading to increase in pressure within the pipe and 

subsequent destruction thereof Gordon, J. [1] and Gil-

pin, R. [2]. 

The freezing process is usually considered in cas-

es where water does not move in the pipe and the tempera-

ture decreases with time [3]. 

The solution of the aforementioned problem is di-

rectly related to the solution of the Stefan J. [4]. 

In addition to using theoretical-analytical and 

numerical methods, such as variation methods of solving 

the problem of water freezing in pipes and freezing front 

movement [5, 6] based on compiling a heat balance equa-

tion or solving a heat conduction equation, experimental 

research in carried out [7, 8].  

In addition to the above, various effects are taken 

into account, including uneven distribution of ice in the 

cross-section of the pipe [9], the flow of liquid along the 

pipe caused by natural convection inevitably occurring 

during freezing. The latter has been found to have little 

effect on the freezing process. 

Despite the numerous studies mentioned above, of 

great practical interest is the case where water moves in-

side the pipe, i.e. where forced convection occurs. The 

water flow and the release of heat naturally slow down the 

freezing process. However, practice shows that pipelines 

may freeze at low temperatures. 

Various engineering methods are used to prevent 

the process, including laying external pipeline networks to 

an appropriate depth and installing heat insulation; in cer-

tain cases intense forced water circulation in pipes is creat-

ed, resulting in the release of heat due to internal friction.  

However, the likelihood of accidents cannot be 

completely excluded in any situation, and therefore, the 

issue pertaining to the rate of water freezing in pipe-lines 

should be studied. It should be noted that mathematical 

modelling of hydraulic and thermal modes of heating sys-

tem does not take the issue of freezing into account Gil-

pin R. [10]. 

The complexity of solving the aforementioned 

problem lies in size of the areas that vary with time where 

the temperature field is examined. Physical properties of 

this fluid, such as the thermal conductivity coefficient, heat 

capacity, and density change sharply when passing through 

the moving boundary; moreover, at the boundary, heat 

release occurs due to fluid transitions, in our case, ice turn-

ing into water, which complicates solving the problem 

even more. No exact solution for the general case has yet 

been found. There are known specific solutions, for exam-

ple, a number of approximate solutions have been obtained 

for temperature distribution in the case of plane interface in 

a semi-infinite fluid,; it should be noted that the McDonald 

A., at al [3] solves the problem for the pipeline, but for 

simplification purposes it is assumed that external surface 

temperature of the pipe is known and constant which cor-

responds to first-type boundary conditions.  

The purposes of this study are to 1) formulate the 

problem of freezing of moving water in pipes under sharp 

temperature drops taking into account the flowing of water 

in pipes; 2) determine the rate of freezing, which is im-

portant in order to estimate the time required to eliminate 

the damage inevitably done in the process; 3) study the 

ways of reducing the likelihood of accidents. 

 

2. Statement of the problem and mathematical model 

 

In practice, the simplified solution where the tem-

perature at the pipe boundary is specified as the environ-

ment temperature can be considered sufficiently ac-curate 

only in the case of underground, particularly, channel-free 

laying, where pipes come in direct contact with the soil, in 

which case the soil temperature at the pipeline laying level 

can be considered to be the temperature at the pipe bound-

ary. 

 At the same time, situations may emerge, primar-

ily with respect to internal networks, where pipelines are 

laid using open laying methods (Fig. 1), and there-fore, the 

nature of heat exchange with the environment on the sur-

face thereof must be taken into account, which, in turn, 

requires switching to third-type boundary conditions. 

In this case, we will solve the problem of heat 

transfer in zone-inhomogeneous medium. 
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Fig. 1 Ice layer formation inside the pipe that is surrounded 

by air 

Let’s compile for the aforementioned case a rele-

vant system of differential and algebraic equations of heat 

balance, heat exchange, and the heat flow released due to 

internal friction [11]: 

1 2 1 2 1 2, , ,a t t
r

r r

 

   

 
 

 
. (1) 

The boundary condition on the pipe surface takes 
the following form: 

 2l o e surq r t t   . (2) 

For the moving boundary inside the pipe, where 
r = rF, it can be expressed as t = 0

0
: 
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where t1,2 are the temperatures in frozen and non-frozen 

areas; te is the outside air temperature; tsur is the pipe sur-

face temperature; a1,2, m
2
/s - the thermal diffusivity in the 

said areas; r0, m is the pipeline radius; rF, m is the freezing 

front radius changing with time; 2 - water density, kg/m
3
; 

 is the heat conductivity of ice, W/mK; , W/m
2
K – heat 

transfer coefficient. 

Solving the (1)-(3) equation system allows us to 

identify temperature fields in both solid and liquid areas – 

the way it was done by Parfentieva N.A. [12] and Poots G. 

[13]. 

However, our main task is to determine the rate of 

freezing, therefore, we are not addressing the problem of 

identifying the temperature fields. Still, if we know the 

position of the freezing front and boundary conditions, we 

can determine the temperatures in the two areas. 
Let us consider the expression for linear density 

of heat flow ql, W/m, passing through the freezing front 
surface: 
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The expression includes r
’
F = rF/ro – the freezing 

front dimensionless radius of the current relative to the 
pipeline radius ro, m. 

The introduction of the dimensionless radius of 

the freezing front will allow in the future doing the calcula-

tions for any radius of the pipe. 

We assume that the freezing point of water is zero 

degrees, and ignore the difference between the outer and 

inner pipe diameters in this case. Based on the Stefan con-

dition, taking into account that the specific surface area of 

the phase boundary per 1 metre of pipeline equals 2πrF, the 

same density value of the heat flow ql can be written as: 
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The value ql.pf, W/m, represents the linear density 
of the heat flow released in the process of water moving 
inside the pipeline due to viscous friction.  

It can easily be demonstrated that the said param-
eter can be expressed as: 

2 2'

l .pf o Fq Rr r w , (6) 

where w is the speed of flowing water , m/s; and R are spe-
cific friction pressure losses, Pa/m. The following expres-
sion holds true for hydraulically smooth pipes [14]: 
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And finally, on the outer surface of the pipeline, 

the surface heat exchange condition holds true: 

 2l o out surq r t t   . (8) 

The overall heat exchange coefficient α may, at 

the first approximation, be considered constant along the 

pipe length, as, subject to one and the same pipe diameter, 

it primarily depends on the temperature difference  

(tout – tsur), and the said difference should not significantly 

change, as, according to the statement of the problem, 

tout = const, and at the beginning of the freezing tsur will 

also be substantially constant and equal to the temperature 

of the phase transition.  

From (8) and (4) we can receive: 
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then the result substitutes into (4) and after that into (5) as 

a left part, and into the right part (5) – the expression (6) 

taking into account (7), and then we get:  
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where А is cited in (11). This expression follows from (7). 

Value В shows the impact of the liquid friction on heat 

flow ql. It can be shown that, subject to (6)-(7): 
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Then it is possible to get in a non-dimensional 

form: 
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when one may express 
'

Fdr and finally obtain the final solu-

tion as an integral (13). 
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Parameter Fo’ represents a modified Fourier crite-
rion (non-dimensional time), and Bi complex represents a 
non-dimensional Biot criterion characterising the ratio be-
tween the external heat exchange and internal heat conduc-
tion. They are defined in this case by the following expres-
sion: 
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where τ is time, s, calculating from the beginning of freez-

ing.  

The integral (13), with certain simplifications, can 

provide the approximate dependence of moving boundary 

on time, but we find it reasonable to use numerical meth-

ods to obtain such dependence. 

3. Results and discussion 

 

From the Fig. 2 shows calculation results - the 

value of Bi was considered to be equal to 0.67, which cor-

responds to real-life heat exchange conditions for the pipe 

with an outer diameter of 325 mm. Dependence diagrams 

of the freezing radius at various values of В are shown in 

Fig. 2 in solid lines.  

The increase in value of В leads to the increase in 

Fo’ with the given value of freezing front radius, which is 

physically quite obvious, as the heat released due to fric-

tion should slow down the process. 

The dashed line shows the dependence of Fo’ on 

rF  at Bi → ∞ and В = 0, i.e. not taking into account the 

heat released due to friction and under first-type boundary 

conditions for the purposes of comparison with the analyti-

cal solution contained. 

Under the first-type boundary conditions, as we 

can see, we get a significantly lower freezing time value, 

although the nature of the dependence remains the same.  

It is obvious that when solving similar problems 

to obtain numerical time values for practical use, third-type 

boundary conditions should be taken for the outer pipe 

surface. 

 

 

Fig. 2 Dependence of Fo’ value on rF according to equation (13) at various values of B and Bi parameters 

 

4. Conclusions 

 

It is easily seen that at Bi < ∞ the freezing occurs 

more slowly due to the presence of additional resistance to 

heat exchange on the outer pipeline surface. At the same 

time, for each Bi a certain limit value of В is maintained, at 

which Fo’ → ∞, meaning physical termination of further 

freezing as a consequence of external heat loss compensa-

tion with internal heat release occurring due to friction: the 

heat released due to friction is equal to the heat transferred 

to the air by time unit. Therefore, to obtain correct calcula-

tions, friction should by all means be taken into account. 

Obviously, as the value of Bi goes down with decreasing 

rо, pipes of smaller diameter are in a better position than 

larger ones, and considering that the value of В also in-

creases, the effect is enhanced. Therefore, we conclude that 

to ensure additional protection against freezing, it is advis-

able to use reduced diameter pipelines, thus increasing the 

resistance to external heat exchange and share of frictional 

heat. 

This conclusion is not obvious - large pipe diame-

ter must protect the fluid from the complete freezing but 

from our calculations, we can conclude that the friction 

plays an important role in this process, so the flow of the 

fluid in the tube should be Puazeil flow, wherein the heat 

release is going around the pipe section. It is important for 

the above numerical calculations and comparison the re-

sults with Bi   when heat release is ignored by the 

internal friction, causes an error significantly greater than 

100%. 

The simplified formulation of the problem leads 

to the qualitative conclusions, but the solution cannot be 

used for specific engineering calculations. The introduction 

of generalized variables allows to use obtained solutions 
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for any parameters: tube diameter, volume flow rate, sur-

face properties, etc. Additionally solution can be used 

when driving a liquid with non-water properties. 

Thus, the problem of pipeline freezing at tempera-

tures lower than temperatures of phase transition in the 

presence of moving liquid inside them has been solved. 

The obtained solution can be used in calculations not only 

with respect to pipeline freezing, but also for axially sym-

metric structures made of moisture permeable materials. 
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SOLVING THE PROBLEM OF PIPELINE FREEZING 

WITH RESPECT TO EXTERNAL HEAT EXCHANGE  

S u m m a r y 

The paper proposes a solution to the problem of 

freezing of heating pipelines in engineering systems in 

buildings in emergency situations. 

A mathematical process model is proposed, 

wherein heat emissions induced by viscous friction and 

phase transition are taken into account. Formulas for esti-

mating the rate of freezing have been obtained. Calculation 

results obtained by using numerical methods are presented. 

Recommendations on the proper choice of pipe-line diame-

ters to reduce the probability of liquid freezing therein are 

provided as well. 
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