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1. Introduction 
 
Usually, mechanical solution of mobile robot 

namely "two-wheel differential drive mobile robot" has 
minimum three wheels. The two "drive wheels" have a 
common horizontal axis, fixed on the robot body. One or 
more free wheels (or "castor" wheels) assure the robot 
equilibrium [1]. Therefore, while three wheels introduce 
isostatic equilibrium for the robot body, more that three 
wheels introduce hyper static equilibrium, which ensures a 
better stability on complex trajectories including curved 
segments [2]. Each castor wheel is independently mounted 
on a vertical non driven axis of the body and it is automati-
cally and free aligned on the route as a result of the forces 
developed by the two "drive wheels". The entire control of 
the mobile robot on trajectories is assured controlling an-
gular velocities of the two drive wheels [3]. There are three 
fundamental cases. 

• If the angular velocities are identical, as values 
and relative senses, the robot makes a spin mo-
tion; the spin motion produces the robot body ro-
tation around a vertical axis passing through the 
geometrical   symmetry   point   (or  the  centre  of  

gravity). There is a particularity of this mechani-
cal configuration, because only the two-wheel dif-
ferential drive mobile robot can do this type of 
motion. 

• If the angular velocities are identical as values but 
opposite as senses, the robot makes a linear mo-
tion; the direction of the linear motion, forward or 
backwards, depends on the senses of the driven 
wheels angular velocities. 

• If the angular velocities are different as value, the 
robot makes a curved motion. Of course, the char-
acteristics of the curve motion, i.e. the curvature 
coefficient k of the curve-segment trajectory de-
pends on the differences between the values and 
senses of the two drive wheels. 
This mechanical solution of mobile robot namely 

"two-wheel differential drive mobile robot" is extensively 
used in practice now. The explanation is that it assures a 
good balance between large capabilities in locomotion (or 
tracking possibilities) and mechanical complexity (or con-
struction costs) [4]. So, as we see above, the two-wheel 
differential drive mobile robot is the single structure which 
can make spin motion. 
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Fig. 1 Coordinate systems and notations used for the two-wheel differential drive mobile robot 

2. Models for the two-wheeled differential drive mobile 
robot 

 
 To characterize the current localization of the 
mobile robot in its operational space of evolution, we must 
define at first its position and orientation.  
 The position of the mobile robot on a plane sur-
face is given by the vector , which contains Cartesian 

coordinates of its characteristic point P (see Fig. 1). This 
characteristic point P is placed in the middle of the com-
mon axis of the driven wheels. 

( y,x )

As we can see in Fig. 1, the orientation (or direc-
tion) of the mobile robot is given by the angle θ  between 
instant linear velocity of the mobile robot v  (or the  
axis) and local vertical axis. 
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noted by v  and is attached and defined relatively to the 
characteristic point P. 

As Eq. (1) denotes, this velocity is the result of 
linear velocities of the left driven wheel Lv  and the right 
driven wheel Rv  respectively. These two drive velocities 

Lv  and Rv  are permanently two parallel vectors and, in 
the same time, they are permanently perpendicular on the 
common mechanical axis of these two driven wheels 
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Eqs. (2) and (3) give the two Cartesian compo-
nents of linear velocity 
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 The position, orientation and linear velocities of 
the two driven wheels define the robot state as a five ele-
ments vector 

 ( )   (3) T
RL vvyx ,,,, θ

 The input vector contains two accelerations of the 
left Sa  and the right Da  driven wheels respectively. In-
serting Eq. (1) into Eq. (2), the next Eq. (4) are obtained. 
They give finally the first two state equations (for linear 
velocity components of the mobile robot) 
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 If we note by ( ) Cartesian positions 
of the driven wheels in the global references attached to 
the operational space, we can write the next two equations 
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and respectively the associate equations 
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Whereas the vectors for linear velocity of the 
wheels Sv  and Rv  are orthogonal on the common axis of 
the driven wheels (see Fig. 1), we can write the third state 
Eq. (7), representing angular velocity of the robot 
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The last two state equations denoting linear accel-

erations of the two drive wheels are evident 
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 The curvature coefficient k associated for a spe-
cific trajectory-segment is defined as inverse ratio of the 
radius of that trajectory–segment. The equation for the 
curvature can be obtained because radius of the trajectory–
segment can be written as the ratio of linear and angular 
velocities of the robot body.  

Therefore, dividing Eq. (7) by Eq. (1) we obtain 
the equation for the curvature coefficient k of a segment-
trajectory as 

 
ARL

RL

lvv
vv

v
k 21

⋅
+
−

===

•
θ

ρ
   (9) 

 As Eqs. (4) is nonlinear, we must introduce some 
assumptions to obtain a linear model for the mobile robot. 
There are some different solutions. A possible method is to 
introduce the hypothesis that the two instant drive wheel 
accelerations,  and respectively , are equals in mod-
ule. If their sense is the same, the mobile robot executes a 
linear motion and if it is opposite, the mobile robot exe-
cutes a special curve namely "clotoide" [5].  
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The most common actuator used to energize lo-
comotion system of the mobile robots is direct current 
(DC) motor. An associated encoder, as common speed and 
position sensor, is currently attached. In the same normal 
hypothesis (electrical constants have the lower values me-
chanical constants), the DC servomotor is a first order sys-
tem with the transfer function 
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where ω  represents angular velocity of the DC servomo-
tor and U is the applied voltage. 
 So, considering two DC servomotors, as right (R) 
and left (L) actuators for the two driven wheels of the mo-
bile robot, and the associated simplest transfer function 
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we can obtain, finally, a first kinematical model for the 
two-wheel differential drive mobile robot, which is de-
picted in Fig. 2. 

If our target is to simplify the mathematical 
model, we can introduce the evident assumption that the 
two DC servomotors are practically identical in their be-
havior. 
 So, in addition, some equalities between the pa-
rameters of their transfer Eq. (11) can be written as 
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Using the Eqs. (1) and (7), we can obtain (after 
same bloc-diagram reductions and associate transforma-

tions) a new bloc-diagram [6]. Fig. 3 shows this new bloc-
diagram. 

 

 
 
Fig. 2 A primary model for the two-wheel differential drive mobile robot, considering two DC servo-motors as actuators in 

the locomotion system 
 

 
 
Fig. 3 The simplified model for the two-wheel differential drive mobile robot, considering the same behavior for the two 

actuators of the locomotion system

 This new control diagram is still not satisfactory. 
The basic explanation is that substantial tracking errors can 
occur between an imposed (or desired) trajectory for the 
mobile robot and the real trajectory developed by them. In 
fact, regarding the posture of the mobile robot and its tra-
jectory, we can divide these errors into three categories: 

• tangential error; 
• lateral (or normal) error; 
• orientation error. 

If these errors exceed acceptable and predefined 
limits, impacts between the mobile robot and different ob-
stacles placed in the operational space can occur and, as 
result, the entire functionality of the mobile robot is af-
fected. 

This is the reason to introduce two closed loops 
control. The first one is for the curvatures abscise λ  (or 
covered distance by the robot) and the second is for the 
robot orientation. 
 Each of them uses a classical proportional integral 
derivative (PID) controller, mathematically depicted by the 
next Eq. (13) and respectively (14)  
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where  is represents the imposed angular velocity, c
•
θ θΔ  

is represents orientation (or direction) error, cx
•

 is repre-

sents imposed linear velocity and 
•

xΔ  is represents posi-
tion error of the mobile robot. 
 
3. Control solution for the mobile robot 

 Figs. 4 and 5 present the final solutions proposed 
to control the two-wheel differential drive mobile robot. 
Fig. 4 presents the closed loop position control of the two-
wheel differential drive mobile robot. Fig. 5 includes the 
proposed closed loop control for this type mobile robot 
position. 
 
4. Control stability 
 

To evaluate the stability of the proposed control 
we consider a simplified situation. The diagram is depicted 
in Fig. 6 and contains only a single channel ( )xxd →  (see 
Fig. 5) while the influence of the second channel 
( )yy d →  is integrated into the perturbation ( )sΛ .  

The open lop transfer function is presented in the 
Eq. (15) 
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Fig. 4 Position control for the two-wheel differential drive mobile robot 

 

 
Fig. 5 Orientation or direction control for the two-wheel differential drive mobile robot 
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where ,  and  are respectively proportional pa-
rameter, integration parameter and derivative parameter for 
the PID controllers used in the diagrams of Fig. 4 and 5. 

PK IK DK

Now, concerning the stability for the proposed 
control solutions, we can consider the next different basics 
cases. 

The first case is: 0≥− IP TKK . Using Nyquist 
criteria,   the  final  conclusion  is that stability is assured if 

the parameter . If the proportional parameter 
 and the derivative parameter , some 

oscillations with constant amplitude are produced.  

0>DK

IP TKK = 0=DK

The second case is . In this situa-
tion, using Nyquist criteria, the system is stable if the point 
M

0<− IP TKK

0  is placed in the left of the point  in the root 
locus method diagram depicted in Fig. 7. If the system is 
stable, the residual error is zero for an input step of posi-
tion or a step of velocity and constant for an input step of 
acceleration. 

( 0,1 j− )

Concerning perturbation, the residual error is zero 
for an input step of position and constant for an input step 
of velocity. 
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Fig. 6 Simplified model of the two-wheel differential drive mobile robot for stability analyzes 

s
K

sKK I
DP ++Σ 

Ts
K a

+1

( )imposedxd

MR linear speed

cx
•

xΔ

+ 
- 

θsin
1

θcos
1

Σ

•
x

xv

1 sinθ
s

θcos

v

s
1

•
y

yv
cy

•

+

+ cv

Σ 
s

K
sKK I

DP ++
+ 

- 

( )imposedyd yΔ

s
K

sKK I
DP ++  Σ 

Ts
K a

+1
 

( )imposeddθ  MR orientation 
c

•
θθΔ

θ
+ 

- 



 58

 
Fig. 7 Root locus method diagram for stability analysis of the two-wheel differential drive mobile robot 

5. Conclusions 
 

This paper presents some results regarding 
mathematical models for one kind of mobile robots, 
namely two-wheel differential drive mobile robot. This is 
one of the most common mechanical structures now util-
ized in mobile robotics. 

The closed loop control diagrams for position 
control and respectively for direction control in tracking 
along imposed trajectories are developed and also ana-
lyzed. 

Finally, for these control solutions, the paper pre-
sents an analysis regarding the stability for different classi-
cal type of inputs as step of position, step of velocity and 
step of acceleration. 
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M. Nitulescu, V. Stoian 

SPECIFINIŲ MOBILIŲJŲ ROBOTŲ MODELIAVIMO 
IR VALDYMO ASPEKTAI 

R e z i u m ė 

 Darbe pristatoma keletas dviratės diferencialinės 

pavaros mobiliųjų robotų valdymo ir matematinio mode-
liavimo sprendimų. Šios klasės robotai dabar yra vieni iš 
plačiausiai naudojamų mechaninių įrenginių mobiliųjų 
robotų technikos praktikoje. Nagrinėjamos ir pateikiamos 
nustatyta trajektorija judančio roboto uždaro ciklo pozici-
jos ir krypties valdymo schemos. Šiems valdymo sprendi-
mams pagrįsti skirtingomis sąlygomis atlikta keletas stabi-
lumo tyrimų. 

M. Nitulescu, V. Stoian 

MODELLING AND CONTROL ASPECTS FOR A TYPE 
OF MOBILE ROBOT  

S u m m a r y 

 This work presents some considerations regarding 
mathematical models and control solutions for a class of 
mobile robots namely two-wheel differential drive mobile 
robots, one of the most utilized mechanical structures now 
in mobile robotics practice. The closed loop control dia-
grams for position control and respectively for direction 
control in tracking along imposed trajectories are also ana-
lyzed and included in this paper. For these control solu-
tions, the paper presents therefore some analyses regarding 
the stability in different circumstances. 

M. Нитулеску, В. Стоиан 

АСПЕКТЫ МОДЕЛИРОВАНИЯ И УПРАВЛЕНИЯ 
МОБИЛЬНЫХ РОБОТОВ ОПРЕДЕЛЕННОГО ТИПА 

Р е з ю м е  

 Представлено несколько решений по управле-
нию и математическому моделированию определенно-
го типа мобильных роботов, а конкретно двухколесных 
дифференциальных приводов для мобильных роботов, 
которые считаются в настоящее время чаще всего ис-
пользуемыми механическими устройствами в практике 
мобильных роботов. Проведен  анализ и приведены 
схемы управления замкнутого цикла для управления 
позицией и направлением по ходу заданной траекто-
рии. Для предложенных решений по управлению вы-
полнен ряд исследований стабильности в разных усло-
виях. 
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