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1. Introduction 
 

In semiautomated orange fruits canning factories, 
the concept of bouncing ball seems applicable to the raw 
material transformation process in which fresh fruits are 
passed through conveyors from the supply station (feed 
station) on factory floor to an elevated height where proc-
essed fruits are translated, ready for sales to customers. 
The motion of these oranges is similar to a ball constrained 
to an accelerating lift tabletop. As the orange ball drops 
onto the surface of the upward carrying conveyor in slow 
motion, its shape will change dramatically. When the or-
ange hits the surface of the conveyor, the bottom of the 
orange becomes flat against the conveyor floor. Then, 
when it bounces up, it returns to its original shape. How-
ever, the changes in shape are due to a balance of forces 
and energy. 

A great number of research efforts have been 
made on the bouncing ball problem [1, 2]. In other studies, 
the bouncing ball problem has been related to chaos. Tufil-
laro and Albano [3] study the chaotic dynamics of a bounc-
ing ball. This study has however generated some contro-
versies [4]. In addition, in many industries across the 
world, products or raw materials are transported along a 
vertical accelerator. A good case is the movement of or-
anges for processing into fruit juice on a conveyor in a 
food-manufacturing industry. The movement pattern of the 
ball-like orange has energy implications. A study on this 
could be useful in evaluating the amount of energy needed 
to drive the system. This ball moves in a way that could be 
described as a fractal motion. Thus, the current work is 
motivated in modelling the problem as a fractal concept. 
 
2. Methodology 
 

The starting point in the analysis is to consider 
Newton’s law of motion, which measures the height of the 
lift from origin. Here, if t is given at the time counter, x the 
height of the lift from the origin, xo, the initial height of the 
lift and aL, the acceleration of the lift, then the current 
height of the lift from the origin is defined by the equation 
below as 

 ( ) 2
0

1
2 Lx t x a t= +  (1) 

Now, considering the ball being placed on top of 
the table, the same equation of Newton could be used for 
it. By taking xB0 as the initial distance of the ball from the 
top of the lift, g as the acceleration due to gravity.  

Then 

( ) 2
0

1
2Bx t x gt= +  (2) 

 
At the initial instant of time, the ball location is at 

the origin. Thus xB0 = 0. But the height of the free falling 
ball and that of the lift tabletop from origin is 
approximately the same at the instant of first bounce. Thus 

Eqs. (1) and (2) can be equated as follows: 
2

1
gt2 –

2

1
aLt2 = 

= x0. By re-arranging, the following is obtained: (g – aL) t2= 
= 2x0. Since this is the time at the first instance when the 
ball is bounced, it is referred to as time 1, i.e. t1. Thus, the 
expression for t1 becomes 
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−
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However, the total distance moved by the ball at 
the first instance is 

 2
1 0 1

1
2 Lx x a t= +  (4) 

Now, for simulation purposes, it may be neces-
sary to consider intermediate positions of the bouncing 

ball. An important position is 1
3

 bounce-up position. This 

height is different from the previous x1 height and is 
termed z1. This is related to x1 as in Eq. (5) as follows 

 1 1
1
3

z x=  (5) 

Now, if the ball location from datum after 1st 
bounce is given as z01, the Eq. (6) is obtained as 

 01 1 1z x z= −  (6) 

Initial distance xB0 must be changed to z01. 
Given that t1B is the time value on the time line or 

time axis when the ball first bounced off the tabletop by z1. 
Thus, the total first bounce period is the difference be-
tween t1 and t1B (i.e. (t1-t1B)) and for a bounce height of z1. 
These two quantities (i.e. (t1–t1B) and z1) are related by 
Newton’s law for a falling ball under gravity as: 

( )2

11 1

1
2 Bg zt t =− . By solving for the unknown t1B, this 

gives Eq. (7) i.e.  
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z
t t

g
= −  (7) 

From this time location to the time location for 
the second ball bounce, the time interval is (t- t1B) and the 
ball height from origin, is x(t), given as 

( )2 2
0 1 1

1( ) 2
2B B Bx t x g t t t t= + − +   (8) 

At this very point in time (i.e. t) the ball height 
approximately equal the lift tabletop height, both measured 
from the origin. Hence we can equate Eq. (8) to Eq. (1) to 
obtain 

 

( )2 2 2
1 1 0 0

1 12
2 2B B Bg t t t t a L t x x− + − = −  

 
This could be further simplified to obtain 

 
( ) ( )2 2

1 1 0 02 2 0L B B Bg a t gt t g t x x− − + + − =  
 

Solve for the unknown t (i.e. t2 the second time 
measure of ball bounce off tabletop) in this expression us-
ing almighty formula 

 
2

2

4
2

B B AC
t

A
− + −

=  (9) 

where 12L BA g a ; B g t= − = −  and  

( )2
1 0 02B BC g t x x= + − . 

Eqs. (1) to (9) enable us to monitor the ball 
through its first and subsequent journey to make a bounce 
off the table top in an iterated fashion, adjusting and reset-
ting variable, due follow the motion of the ball for the sec-
ond, third, fourth bounces, etc. and keep record of z-height 
or time of bounce back for different lift acceleration. Either 
of these will serve as dynamic representation of the inter-
acting lift tabletop and bouncing ball. The whole idea ex-
pressed by the nine equations above was packaged in 
FORTRAN codes. The graph of the output results was 
found to be fractal like (Figs. 1 to 3) as shown in the re-
sults section. 
 
3. Results 
 

The mathematical model, which is expressed in 
equations, needs to be tested empirically to ascertain its 
usefulness in practical terms. This is usually done by either 
manual calculation or computerization. Such computerisa-
tion is used for flexibility in manipulating the numbers and 
due to the number of repetitiveness of steps involved.  
Computer codes are provided in Fortran Language. The 
results of the simulation are as shown in Figs. 1-3. The 
horizontal axis is the parameter change in % of accelera-
tion due to gravity while the vertical axis is the measured 
quantity before the end condition of simulation is satisfied. 
This procedure was repeated smoothly along the horizontal 
axis with the results in each round being kept in an output 
file. The Excel-Fortran interaction is involved for importa-
tion of the simulated data in a named file into the Excel 

environment for graphing purposes. Graphs are produced 
in a scattered form. The smoother the transverse on the 
horizontal axis the more detail of the graph. 

In particular, four different programmes have 
been written. The first computer programme concerns ‘lift 
ball bounce distance diagram’. The programme first speci-
fies the initial distance of the lift and its acceleration. Then, 
the ball is specified while accelerating under gravity. The 
next step is to specify the distance of the lift and ball re-
spectively from rest. Incremental variation of lift accelera-
tion is then considered. This procedure is the same for all 
the programmes with modifications in the coding elements 
in order to achieve the set goals. 

Although the x-axis of all the three Figs. 1-3 are 
labelled as lift acceleration, which is measured in percent-
age of gravity, the label on the y-axis for each of the fig-
ures are different, and are shown as (i) (1/3) of drop height, 
(ii) number of bounces, and (iii) time of bounce (normal-
ised), for Figs. 1, 2, and 3, respectively. Fig. 1 displays the 
scattered diagram of the relationship between the drop 
height and the lift acceleration. The shape obtained is bell-
like and is skewed to the left. The mean of this distribution 
seems to be at 28 units with the start and end positions 
along the x-axis taken from 0 to about 83. For the y-axis, 
the range of values is from 0 to about 0.065 units. The gra-
dient towards the left side of the graph is about 45.27° 
while it is less for other part of the graph, which is to the 
right. This informs the reader that with small increments in 
lift acceleration, greater value of drop height usually re-
sults.  
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Fig. 1 Scattered diagram of (1/3) of drop height 
 
Fig. 2 is ogive curve of the number of bounces 

plotted against lift acceleration. It is observed that the 
number of bounces on the y-axis has a maximum value of 
about 1070 units while it is asymptotic towards the x-axis 
with a terminal value of about 98 units. The number of 
bounces decreases as the acceleration increases steadily 
until the earlier reaches 75 units. Consequently, the lift 
acceleration moves asymptotically towards zero.  From the 
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Fig. 2 Number of bounces before 10.000 metre covered 
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graph, the gradient of the curve is 3.38°. 
Fig. 3 shows the portion the bell shape of the time 

of bounce (normalised) against lift acceleration. It seems to 
be skewed toward the right with scattered diagram spread 
in from 0 to about 96 units. The gradient of time of bounce 
plotted against lift acceleration is 45.5°. This shows that 
increase in lift acceleration also brings almost an equal 
increase in time bounce of the ball. 
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Fig. 3 Lift ball next time of bounce diagram 
 

4. Conclusion 
 

The importance of understanding the theory be-
hind bouncing ball falling consecutively on an accelerating 
lift tabletop has been emphasized. Consequently, this study 
investigated the dynamic interaction of accelerating lift 
tabletop from the viewpoint of fractal analysis. The 
mathematical model developed was tested with simulation 
results. From the results obtained, the ball bounce-off 
height has a normal distribution shape with fractal details. 
It is concluded that fractal representation of the problem 
brings a new perspective to its solution; and should be ex-
plored in order to take advantage of this knowledge in its 
application to orange juice production and other applica-
tions. 

Notably, understanding the dynamics and kinetics 
of a bouncing ball has both theoretical and practical sig-
nificance to the researchers and managers in industries 
who are interested in optimal management of energy con-
sumed during manufacturing processes. Particularly, for 
food industries that utilize ball-shaped objects as in-
process materials in manufacturing the concept proposed 
here is of importance. Consequently, the motion of the 
bouncing ball on the table-top of an accelerating lift is 
modelled as fractals. This is motivated by the shared-
characteristics of the bouncing ball and fractals. The model 
formulated is then tested with simulated data in order to 
evaluate its practical dimensions. The results are then plot-
ted as graphs describing the relationship between the set of 
two important parameters indicated. 

Having developed the model, there is a need for 
future outlook of research in the area. Since fractal is an 
already established area, there is a wide array of opportuni-
ties in applying some advanced fractal techniques and the-
ory in the promotion of research in this area. Another as-
pect that readily attracts the development by its integration 
to existing fractal-bouncing ball structure is the application 
of soft computing tools such as fuzzy theory, genetic algo-
rithm, simulated annealing, artificial neural network, and 
neurofuzzy systems. Efforts could initially be focused on 
the motion of the ball during bounces. 
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VERTIKALIAI GALINČIO ATŠOKTI KAMUOLIUKO, 
ESANČIO ANT KELTUVO PLOKŠTĖS, KURI 
GREITĖDAMA JUDA TA PAČIA KRYPTIMI, 
FRAKTALINĖ ANALIZĖ 

R e z i u m ė 

Įrodyta, kad kamuoliuko atšokimo problema, ky-
lanti vibruojančiuose transporteriuose ar virpančiose tieki-
mo sistemose yra svarbus reiškinys sprendžiant tam tikrų 
techninių sprendimų įgyvendinimą. Šiame straipsnyje nag-
rinėjama kamuoliukų, be pertraukos krintančių ant greitė-
jančios keltuvo plokštės, atšokimo dinamika. Modeliuojant 
nustatyta, kad dinaminė sąveika tarp viena kryptimi didė-
jančiu greičiu judančios keltuvo plokštės ir ant jos krintan-
čio kamuoliuko atšokimo yra fraktalinio pobūdžio. Keltuvo 
plokštės paviršiaus pagreitis kito tolygiai procentine pri-
klausomybe (daugiau nei vieno tūkstančio žingsnelių 
10.000 m atstumu) nuo pagreičio, atsirandančio dėl sunkio 
jėgos, galinčių atšokti kamuoliukams atsitrenkus į keltuvo 
plokštės paviršių. Tai užrašyta grafiškai. Taip pat grafiškai 
užfiksuotas keltuvo plokštės paviršiaus pagreitis trečdaliu 
užpildžius jį kroviniu. Kamuoliukų atšokimas gerokai su-
mažėja ir artėja prie nulio keltuvo plokštę 40% užpildžius 
kroviniu. Kamuoliukų atšokimo sumažėjimo grafikas kinta 
pagal normalinį pasiskirstymo dėsnį ir yra fraktalinio po-
būdžio. Šis tyrimas parodo, kad du objektai, pradžioje 
esantys skirtinguose aukščiuose, veikiami gravitacijos jė-
gų, pasiekia ir atsitrenkia į paviršių skirtingame aukštyje. 
Lygtis, aprašanti atšokančio kamuoliuko dinamiką ir keltu-
vo plokštės kilimą, yra kvadratinio pobūdžio, tačiau ka-
muoliuko atšokimo išnykimas, kintant krovinio aukščiui 
yra fraktalinio pobūdžio. 
 
 
B. Alabi, T.A.O. Salau, S.A. Oke 
 
FRACTAL DYNAMICS OF A BOUNCING BALL ON 
ACCELERATING LIFT TABLETOP BOOTH 
CONSTRAINED TO VERTICAL MOTION  

S u m m a r y 

The bouncing ball problem has proved to be an 
important phenomenon in engineering applications involv-
ing vibro-transportation and vibratory feeder systems. In 
this paper, the dynamics of a bouncing ball falling con-
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secutively on an accelerating lift tabletop is studied. Using 
simulation, it is established that the dynamic interaction of 
accelerating lift tabletop constrained to one-dimensional 
motion on which the ball is bouncing is fractal.  The accel-
eration of the lift table top was varied gradually as a per-
centage of acceleration due to gravity over one thousand 
steps while the number of bounces-off made by the bounc-
ing ball before the lift table top covered a fall distance of 
10.000 m was recorded graphically. Similarly, every lift 
tabletop acceleration has the set of bounce-off height of the 
bouncing ball recorded graphically, and taken to be one 
third of height of fall. The number of bounce off drastically 
dropped to about zero when the acceleration of the lift ta-
bletop was 40% of acceleration due to gravity. The graphi-
cal presentation of the ball bounce off height has normal 
distribution shape with fractal detail. This study showed 
that two objects, initially at different heights, falling under 
gravity, maintain separating heights for the period of their 
fall. The equation governing the dynamics of the bouncing 
ball and the lift tabletop are of quadratic type but the ball 
bounce off height graphical results contain fractal details. 
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ФРАКТАЛЬНЫЙ АНАЛИЗ ШАРИКА 
ВЕРТИКАЛЬНО ОТСКАКИВАЮЩЕГО ОТ 
ПОВЕРХНОСТИ ПЛАТЫ ПОДЪЕМНИКА С 
УСКОРЕНИЕМ ДВИЖУЩЕГОСЯ В ТОМ ЖЕ 
НАПРАВЛЕНИИ 

Р e з ю м е 

Установлено, что проблема отскока шарика от 
поверхности платы, возникающая, например, в виб-
ротранспортерах и вибрирующих системах снабжения,  

является важной для решения определенных техниче-
ских задач. В статье изучается динамика отскока ша-
риков постоянно падающих на подъемную плату с ус-
корением движущегося подъемника. При моделирова-
нии установлено, что динамическое взаимодействие 
между поверхностью платы с ускорением движущего-
ся подъемника и на него падающего с отскоком шари-
ка носит фрактальный характер. Ускорение платы 
подъемника изменялось постоянно, с процентальной 
зависимостью (больше чем одна тысяча шагов на дис-
танцию 10.000 м) от ускорения возникшего от силы 
тяжести шариков при их ударе на поверхность платы 
подъемника. Все это записано графически. Графически 
установлено ускорение платы подъемника при ее за-
полнении грузом на треть. Отскок шариков значитель-
но уменьшается и приближается к нулю при заполне-
нии грузом платы подъемника на 40%. График отскока 
шариков меняется по нормальному закону распределе-
ния и носит фрактальный характер. Исследования по-
казали, что два объекта в начале находящиеся на раз-
ных уровнях при воздействии сил гравитации ударя-
ются на поверхность на разной высоте. Уравнение ди-
намики воздействия платы подъемника с отскакиваю-
щим от нее шариком является квадратной, но исчезно-
вение явления отскока шарика при изменении высоты 
груза носит фрактальный характер. 
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