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1. Introduction

In semiautomated orange fruits canning factories,
the concept of bouncing ball seems applicable to the raw
material transformation process in which fresh fruits are
passed through conveyors from the supply station (feed
station) on factory floor to an elevated height where proc-
essed fruits are translated, ready for sales to customers.
The motion of these oranges is similar to a ball constrained
to an accelerating lift tabletop. As the orange ball drops
onto the surface of the upward carrying conveyor in slow
motion, its shape will change dramatically. When the or-
ange hits the surface of the conveyor, the bottom of the
orange becomes flat against the conveyor floor. Then,
when it bounces up, it returns to its original shape. How-
ever, the changes in shape are due to a balance of forces
and energy.

A great number of research efforts have been
made on the bouncing ball problem [1, 2]. In other studies,
the bouncing ball problem has been related to chaos. Tufil-
laro and Albano [3] study the chaotic dynamics of a bounc-
ing ball. This study has however generated some contro-
versies [4]. In addition, in many industries across the
world, products or raw materials are transported along a
vertical accelerator. A good case is the movement of or-
anges for processing into fruit juice on a conveyor in a
food-manufacturing industry. The movement pattern of the
ball-like orange has energy implications. A study on this
could be useful in evaluating the amount of energy needed
to drive the system. This ball moves in a way that could be
described as a fractal motion. Thus, the current work is
motivated in modelling the problem as a fractal concept.

2. Methodology

The starting point in the analysis is to consider
Newton’s law of motion, which measures the height of the
lift from origin. Here, if t is given at the time counter, X the
height of the lift from the origin, X,, the initial height of the
lift and a;, the acceleration of the lift, then the current
height of the lift from the origin is defined by the equation
below as

x(t)=x0+%aLt2 (1)

Now, considering the ball being placed on top of
the table, the same equation of Newton could be used for
it. By taking Xg, as the initial distance of the ball from the
top of the lift, g as the acceleration due to gravity.

Then

1
X(t) = Xg, +Egt2 ()

At the initial instant of time, the ball location is at
the origin. Thus Xgy = 0. But the height of the free falling
ball and that of the lift tabletop from origin is
approximately the same at the instant of first bounce. Thus

1 1
Eqs. (1) and (2) can be equated as follows: — gt*—— a,t* =
2 2
= Xo, By re-arranging, the following is obtained: (g — a,) t*=
= 2Xo. Since this is the time at the first instance when the
ball is bounced, it is referred to as time 1, i.e. t;. Thus, the
expression for t; becomes

3 2X,
t1 - (g_aL) (3)

However, the total distance moved by the ball at
the first instance is

X =X, +%aLtl2 4)

Now, for simulation purposes, it may be neces-
sary to consider intermediate positions of the bouncing

ball. An important position is 3 bounce-up position. This

height is different from the previous X; height and is
termed z;. This is related to X; as in Eq. (5) as follows

Z, = g X, (%)

Now, if the ball location from datum after 1%
bounce is given as z,;, the Eq. (6) is obtained as

Zy =% — 1, (6)

Initial distance Xg, must be changed to z;.

Given that t;g is the time value on the time line or
time axis when the ball first bounced off the tabletop by z;.
Thus, the total first bounce period is the difference be-
tween t; and t;5 (i.e. (t;-t;g)) and for a bounce height of z;.
These two quantities (i.e. (t;—t;g) and z;) are related by
Newton’s law for a falling ball under gravity as:

1 . .
Eg(tl_tlB )2= z,. By solving for the unknown tg this

gives Eq. (7) i.e.
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From this time location to the time location for
the second ball bounce, the time interval is (t- t;g) and the
ball height from origin, is X(t), given as

1
X(0) =g+ (-2t +t,5°) ®)

At this very point in time (i.e. t) the ball height
approximately equal the lift tabletop height, both measured
from the origin. Hence we can equate Eq. (8) to Eq. (1) to
obtain

1 1
Eg(t2 —2tt, +t,52)—5a Lt? = X, — Xg,

This could be further simplified to obtain
(g—a )t* —2gtt, +gts" +2(Xg — %) =0

Solve for the unknown t (i.e. t, the second time
measure of ball bounce off tabletop) in this expression us-
ing almighty formula

¢ :—B+«IBZ—4AC

2 oA )

where A=g—-a, ; B=-29t, and
C=0tg" +2(Xg—%)-

Egs. (1) to (9) enable us to monitor the ball
through its first and subsequent journey to make a bounce
off the table top in an iterated fashion, adjusting and reset-
ting variable, due follow the motion of the ball for the sec-
ond, third, fourth bounces, etc. and keep record of z-height
or time of bounce back for different lift acceleration. Either
of these will serve as dynamic representation of the inter-
acting lift tabletop and bouncing ball. The whole idea ex-
pressed by the nine equations above was packaged in
FORTRAN codes. The graph of the output results was
found to be fractal like (Figs. 1 to 3) as shown in the re-
sults section.

3. Results

The mathematical model, which is expressed in
equations, needs to be tested empirically to ascertain its
usefulness in practical terms. This is usually done by either
manual calculation or computerization. Such computerisa-
tion is used for flexibility in manipulating the numbers and
due to the number of repetitiveness of steps involved.
Computer codes are provided in Fortran Language. The
results of the simulation are as shown in Figs. 1-3. The
horizontal axis is the parameter change in % of accelera-
tion due to gravity while the vertical axis is the measured
quantity before the end condition of simulation is satisfied.
This procedure was repeated smoothly along the horizontal
axis with the results in each round being kept in an output
file. The Excel-Fortran interaction is involved for importa-
tion of the simulated data in a named file into the Excel
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environment for graphing purposes. Graphs are produced
in a scattered form. The smoother the transverse on the
horizontal axis the more detail of the graph.

In particular, four different programmes have
been written. The first computer programme concerns ‘lift
ball bounce distance diagram’. The programme first speci-
fies the initial distance of the lift and its acceleration. Then,
the ball is specified while accelerating under gravity. The
next step is to specify the distance of the lift and ball re-
spectively from rest. Incremental variation of lift accelera-
tion is then considered. This procedure is the same for all
the programmes with modifications in the coding elements
in order to achieve the set goals.

Although the x-axis of all the three Figs. 1-3 are
labelled as lift acceleration, which is measured in percent-
age of gravity, the label on the y-axis for each of the fig-
ures are different, and are shown as (i) (1/3) of drop height,
(i) number of bounces, and (iii) time of bounce (normal-
ised), for Figs. 1, 2, and 3, respectively. Fig. 1 displays the
scattered diagram of the relationship between the drop
height and the lift acceleration. The shape obtained is bell-
like and is skewed to the left. The mean of this distribution
seems to be at 28 units with the start and end positions
along the x-axis taken from 0 to about 83. For the y-axis,
the range of values is from 0 to about 0.065 units. The gra-
dient towards the left side of the graph is about 45.27°
while it is less for other part of the graph, which is to the
right. This informs the reader that with small increments in
lift acceleration, greater value of drop height usually re-
sults.
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Fig. 1 Scattered diagram of (1/3) of drop height

Fig. 2 is ogive curve of the number of bounces
plotted against lift acceleration. It is observed that the
number of bounces on the y-axis has a maximum value of
about 1070 units while it is asymptotic towards the X-axis
with a terminal value of about 98 units. The number of
bounces decreases as the acceleration increases steadily
until the earlier reaches 75 units. Consequently, the lift
acceleration moves asymptotically towards zero. From the
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Fig. 2 Number of bounces before 10.000 metre covered



graph, the gradient of the curve is 3.38°.

Fig. 3 shows the portion the bell shape of the time
of bounce (normalised) against lift acceleration. It seems to
be skewed toward the right with scattered diagram spread
in from 0 to about 96 units. The gradient of time of bounce
plotted against lift acceleration is 45.5°. This shows that
increase in lift acceleration also brings almost an equal
increase in time bounce of the ball.
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Fig. 3 Lift ball next time of bounce diagram
4. Conclusion

The importance of understanding the theory be-
hind bouncing ball falling consecutively on an accelerating
lift tabletop has been emphasized. Consequently, this study
investigated the dynamic interaction of accelerating lift
tabletop from the viewpoint of fractal analysis. The
mathematical model developed was tested with simulation
results. From the results obtained, the ball bounce-off
height has a normal distribution shape with fractal details.
It is concluded that fractal representation of the problem
brings a new perspective to its solution; and should be ex-
plored in order to take advantage of this knowledge in its
application to orange juice production and other applica-
tions.

Notably, understanding the dynamics and kinetics
of a bouncing ball has both theoretical and practical sig-
nificance to the researchers and managers in industries
who are interested in optimal management of energy con-
sumed during manufacturing processes. Particularly, for
food industries that utilize ball-shaped objects as in-
process materials in manufacturing the concept proposed
here is of importance. Consequently, the motion of the
bouncing ball on the table-top of an accelerating lift is
modelled as fractals. This is motivated by the shared-
characteristics of the bouncing ball and fractals. The model
formulated is then tested with simulated data in order to
evaluate its practical dimensions. The results are then plot-
ted as graphs describing the relationship between the set of
two important parameters indicated.

Having developed the model, there is a need for
future outlook of research in the area. Since fractal is an
already established area, there is a wide array of opportuni-
ties in applying some advanced fractal techniques and the-
ory in the promotion of research in this area. Another as-
pect that readily attracts the development by its integration
to existing fractal-bouncing ball structure is the application
of soft computing tools such as fuzzy theory, genetic algo-
rithm, simulated annealing, artificial neural network, and
neurofuzzy systems. Efforts could initially be focused on
the motion of the ball during bounces.
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VERTIKALIAI GALINCIO ATSOKTI KAMUOLIUKO,
ESANCIO ANT KELTUVO PLOKSTES, KURI
GREITEDAMA JUDA TA PACIA KRYPTIMI,
FRAKTALINE ANALIZE

Reziumé

Irodyta, kad kamuoliuko atSokimo problema, ky-
lanti vibruojanciuose transporteriuose ar virpanciose tieki-
mo sistemose yra svarbus reiskinys sprendziant tam tikry
techniniy sprendimy jgyvendinima. Siame straipsnyje nag-
ringjama kamuoliuky, be pertraukos krintan¢iy ant greité-
jancios keltuvo plokstés, atSokimo dinamika. Modeliuojant
nustatyta, kad dinaminé saveika tarp viena kryptimi didé-
janciu greiciu judancios keltuvo plokstés ir ant jos krintan-
¢io kamuoliuko atSokimo yra fraktalinio pobiidzio. Keltuvo
plokstés pavirSiaus pagreitis kito tolygiai procentine pri-
klausomybe (daugiau nei vieno tukstanc¢io Zzingsneliy
10.000 m atstumu) nuo pagreicio, atsirandancio dél sunkio
jégos, galinéiy atSokti kamuoliukams atsitrenkus i keltuvo
plokstés pavirSiy. Tai uzraSyta grafiSkai. Taip pat grafiskai
uzfiksuotas keltuvo plokstés pavirSiaus pagreitis trecdaliu
uzpildzius ji kroviniu. Kamuoliuky atSokimas gerokai su-
mazgéja ir artéja prie nulio keltuvo plokste 40% uzpildzius
kroviniu. Kamuoliuky atSokimo sumazéjimo grafikas kinta
pagal normalinj pasiskirstymo désnj ir yra fraktalinio po-
bidzio. Sis tyrimas parodo, kad du objektai, pradzioje
esantys skirtinguose auks¢iuose, veikiami gravitacijos jé-
gu, pasiekia ir atsitrenkia | pavirSiy skirtingame aukstyje.
Lygtis, aprasanti atSokancio kamuoliuko dinamika ir keltu-
vo plokstés kilima, yra kvadratinio pobiidzio, taciau ka-
muoliuko atSokimo iSnykimas, kintant krovinio auksciui
yra fraktalinio pobtidzio.

B. Alabi, T.A.O. Salau, S.A. Oke

FRACTAL DYNAMICS OF A BOUNCING BALL ON
ACCELERATING LIFT TABLETOP BOOTH
CONSTRAINED TO VERTICAL MOTION

Summary

The bouncing ball problem has proved to be an
important phenomenon in engineering applications involv-
ing vibro-transportation and vibratory feeder systems. In
this paper, the dynamics of a bouncing ball falling con-



secutively on an accelerating lift tabletop is studied. Using
simulation, it is established that the dynamic interaction of
accelerating lift tabletop constrained to one-dimensional
motion on which the ball is bouncing is fractal. The accel-
eration of the lift table top was varied gradually as a per-
centage of acceleration due to gravity over one thousand
steps while the number of bounces-off made by the bounc-
ing ball before the lift table top covered a fall distance of
10.000 m was recorded graphically. Similarly, every lift
tabletop acceleration has the set of bounce-off height of the
bouncing ball recorded graphically, and taken to be one
third of height of fall. The number of bounce off drastically
dropped to about zero when the acceleration of the lift ta-
bletop was 40% of acceleration due to gravity. The graphi-
cal presentation of the ball bounce off height has normal
distribution shape with fractal detail. This study showed
that two objects, initially at different heights, falling under
gravity, maintain separating heights for the period of their
fall. The equation governing the dynamics of the bouncing
ball and the lift tabletop are of quadratic type but the ball
bounce off height graphical results contain fractal details.

b. Ana6u, T.A.O. Canay, C.A. Oke

®PAKTAJIBHBIN AHAJIN3 IIAPHUKA
BEPTUKAJIBHO OTCKAKUBAIOHIIETO OT
INOBEPXHOCTU IUIATBI IIOABEMHUKA C
YCKOPEHUEM JIBMKYHIET'OCA B TOM XKE
HATIPABJIEH1U

Pes3omMme

yCTaHOBJ’IeHO, qTo np06neMa OTCKOKa MIIapukKa OT
MOBCPXHOCTU ILJIaThbl, BO3HUKAIOLIAsA, HAIIPpUMEP, B BHO-
pOoTpaHCIIOPTEPaAX U BI/I6pI/IpyIOHII/IX CHUCTEMaAX CHa6)K€HI/I$I,
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SIBISIETCS] BayKHOM JUIS pELICHUs] ONpe/eIeHHbIX TeXHUYe-
CKUX 3aJad. B cTaree m3ydaeTcs IUHAMHKa OTCKOKa Illa-
PHKOB IIOCTOSIHHO IMa/IAI0IIUX Ha IOJBEMHYIO IIATy C yc-
KOpEHHEM JIBIKYIIErocs mobeMHuKa. [Ipu MonenupoBa-
HUM YCT@HOBJIEHO, YTO JWHAMHYECKOE B3aUMOJIEiCTBUE
MEXKIy IMOBEPXHOCTBIO IUIATHl C YCKOPEHHEM JIBHIKYIIETO-
sl IOJJbEMHUKA W Ha HETO TaJal0IIero ¢ OTCKOKOM Iapu-
Ka HOCHT (paKTaIbHBIM XapakTep. YCKOpEeHHE IUIaThl
MOJBbEMHNKA W3MEHSJIOCH TTOCTOSHHO, C IPOIEHTAIBHOH
3aBHUCUMOCTBIO (OOJbIIIe YeM OJIHA ThICS4a IIaroB Ha JIHC-
taamo 10.000 M) OT yCKOpeHHS BO3HHKIIETO OT CHUIBI
TSDKECTH LIapUKOB IPH MX yJape Ha MOBEPXHOCTh IUIATHI
mobeMHUKa. Bee 3To 3amucano rpaduyecku. ['padudecku
YCTAQHOBJIEHO YCKOPEHHWE IUIaThl IOJBEMHHKA MpPU ee 3a-
TIOJTHEHUHU TPY30M Ha TpeTh. OTCKOK IIApUKOB 3HAYHUTEIb-
HO yMEHbIIAeTCs W NPUOIMKAETCS K HYJIIO TIPH 3aIlojHe-
HHUHM Tpy30M IUIaThl nogbemMuuka Ha 40%. ['paduk orckoka
IIAPUKOB MEHSETCS IO HOPMAJIBHOMY 3aKOHY pacipeserne-
HUSI 1 HOCUT (hpaKTaybHBIA xapakrep. MccnenoBanus no-
Kasaiu, 94TO ABa OOBEKTa B Hadasle HaXOAAIINECS Ha pas-
HBIX YPOBHSX TPH BO3ACHCTBUH CHJI TPABUTALUH yHaps-
I0TCS Ha TIOBEPXHOCTh HA Pa3HOM BHICOTE. YpAaBHEHUE NIU-
HaMUKHU BO3JEHCTBHS IJIAThl MOJBbEMHUKA C OTCKaKHMBaIO-
MM OT Hee IIAPUKOM SIBJIAETCS KBaJPaTHOH, HO HCUE3HO-
BEHME SIBIICHUS OTCKOKA IIapHKa MPU M3MEHEHUH BBICOTHI
rpy3a HOCHUT ()paKkTalIbHBIN XapaKkTep.
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