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1. Introduction 
 

The volumetric pump is dedicated to work for 
drip-feeding at hospitals. It contains the peristaltic mecha-
nism (PM) periodically compressing so-called intro-vein 
set (IV-Set), which has the shape of a tube and provides a 
liquid into the vein of a patient. IV-Set is made up of plas-
tic material PVC (Polyvinyl chloride). 

To compress IV-Set properly, an additional sim-
ple mechanism fixing the tube is used. The fixing mecha-
nism holds IV-Set between two plates, the lower of them is 
supported by several springs adjusting the plates to the 
tube used. The springs, in turn, should have an appropriate 
stiffness to compress the tube properly. If spring stiffness 
is too low, the tube is under-compressed, which reduces 
the pump efficiency. On the contrary, if the spring stiffness 
is too high, then the tube is over-compressed and eventu-
ally damaged.  

Evidently, if neglecting the influence of friction in 
fixing mechanism, the total stiffness of the springs is di-
rectly proportional to the stiffness of the compressed tube, 
that is, to IV-Set. In turn, stiffness of the tube undergoing 
the deformation is subject to its geometrical shape and me-
chanical properties of a material the tube is made of. Thus, 
to calculate the tube stiffness its geometry and mechanical 
properties of PVC should be clear. However, the PVC 
grade is not provided by IV-Set manufacturer therefore the 
exact material mechanical properties are unknown.  

The goal of this study is twofold: first, to find out 
mechanical properties of PVC, and second, to calculate 
optimal stiffness of the springs used. The optimal springs' 
stiffness is the one, which allows avoiding under- and 
over-compression of the tube in a specified temperature 
range. Both goals are achieved via solution of inverse 
problem for identification of material properties on the 
base of data obtained from experiment, which simulates 
natural behaviour of peristaltic mechanism. 

The paper contains the following sections. The 
section Compression experiment presents the results of the 
compression experiment and provides some discussion on 
them. The section Mathematical model for inverse problem 
presents the problem description in mathematical terms by 
defining an optimization problem. The section Identifica-
tion cycle and optimization algorithms proposes the opti-
mization methods applied. The next-to-last section pro-
poses a simple scheme for the computation of resultant 
spring stiffness. The last section draws conclusions on this 
study.  

2. Compression experiment 
 

The aim of compression experiment is to obtain 
the tube displacement/compression force curve. Only the 
segment of PVC tube has been investigated simulating 
whole peristaltic mechanism. Flat plates of fixing mecha-
nism are replaced by the rigid contact surfaces, one of 
them immovable. The compression force is transmitted to 
the tube by movable contact surface (upper surface in our 
case) of the shape of mechanism’s cam (Fig. 1). 

We assume the vertical stiffness of the tube seg-
ment is equal (disregarding the friction influence) to the 
overall stiffness of spring-set on the fixing mechanism. 
Clearly, the inertial forces do not play significant role in 
mechanisms of such kind therefore quasi-static loading has 
been applied. 

Two sample tubes in 4.10 mm in outer diameter, 
3.00 mm in inner diameter, and of 200 mm length, were 
explored. The compression force was gradually incre-
mented up to a certain value, which had to ensure the clo-
sure of the inner diameter of the tube. Actually the closure 
was estimated by visual inspection as well as by a com-
pression curve drawn. The experiment was performed re-
peatedly to secure the exclusion of possible casual factors 
of the experiment. 

The IV-Set compression test results are shown in 
Fig. 2, where the circle marks the region where the inner 
tube radius is closing. In the closing point region, the tube 
stiffness increases remarkably because the inner surfaces 
of the tube begin gaining a non-continuous surface-to-
surface contact, i.e. the tube has no inner hole any longer. 
Actually this region is under investigation throughout the 
current study.  

Notice, due to the insufficient cam-tube contact at 
the beginning of the experiment, the actual compression 
starts from some offset displacement value equal to 0.210 
mm (see Fig. 2). Therefore, the factual displacement value 
at the closing point region is 3.00 + 0.210 = 3.21 mm, 
which is yielded by the compressing force value equal to 
10.80 N. 

 
3. Mathematical model for inverse problem 
 

The main idea used in identifying material proper-
ties is updating a finite element model so as to make its 
results converge toward the experimental results. Only the 
segment  of  PVC  tube is discretized and analysed for geo- 
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Fig. 1 Experimental set-up, and specimen under compression 

 
 

Fig. 2 Experiment results: displacement – force relation 
 

metrically non-linear but materially linear static solution. 
Theretofore an analysis of finite element mesh has to be 
done to assure the discretization errors are within accept-
able range. The mesh of 3-D 10-Node Tetrahedral Struc-
tural Solid (SOLID187 in ANSYS 7.0 terms [1]) elements, 
which yields converged solution, is shown in Fig. 3.  

The classical static equilibrium equation has the 
following form (1) with a non-linear stiffness matrix [2] 
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( )[ ] [ ] ( )[ ]uKKEKK ls ++= ν,][ 0  (2)  

where { }u  is displacement vector; { }F  is external force 
vector; [K] is non-linear stiffness matrix; ( )[ ]ν,0 EK is lin-
ear stiffness matrix, dependent on geometry of structure, 
material characteristics and interpolation law of finite ele-
ments; [Ks] is geometrical stiffness matrix, which defines 
the stress influence on the stiffness; ( )[ ]uKl  is matrix of 
initial displacements, which defines the displacement in-
fluence on the stiffness; E is Young's modulus or tensile 
modulus, which is unknown; ν is Poisson’s ratio.  
 

 
 

Fig. 3 Mesh of structure for converged solution 

PVC is a flexible isotropic material that is chemi-
cally non reactive. Variance of Poisson's ratio among PVC 
grades falls into the range from 0.37 to 0.46 [3]. The varia-
tion of Young’s modulus due to operating temperature 
range is very small and can be neglected, thus the range of 
interest for modulus is from 1.000 MPa to 100.0 MPa [3].  
Bearing in mind that we are interested exclusively in final 
stiffness of the tube, which corresponds to the full closure 
of the tube, we arrive to two unknowns in equation (1), i.e. 
[K] = [K(E, ν)]. Here the value of E to be sought can be 
interpreted as an averaged (through the whole deformation 
history) tensile modulus. 

Now let us rewrite equation (1) in the following 
form 

( )[ ]{ } { } 0, =− FuEK ν  (3)       (3) 

The last equation is suitable for the formulation of 
inverse problem, i.e. find material mechanical properties of 
the tube under known compression forces yielding a par-
ticular tube deformation, to satisfy the equilibrium Eq. (3). 
The formulated inverse problem can be treated as an opti-
mization problem mathematically expressed as the follow-
ing 
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where: Q is the objective function (OF) to be optimized; d 
is the displacement value at the closing point region (3.00 
mm, see Section 1); (5) is the inequality constraint to be 
satisfied; (6) - the definition of the feasible range for ten-
sile modulus, where Emin and Emax are lower and upper 
value limits respectively; (7) is the definition of the feasi-
ble range for Poisson’s ratio, where νmin and νmax are lower 
and upper value limits respectively. 

The next section presents the methods used to 
minimize the objective function (4) subject to the con-
straints (5-7).  

 
4. Identification cycle and optimization algorithms 
 

The identification cycle (Fig. 4) consists of the 
five parts, that is: optimization Algorithm, FEM modelling 
by ANSYS, Fitness evaluation, Stopping criteria checking, 
and Printing of results. 

 
Fig. 4 Solution loop of inverse identification problem 

 
 The algorithm starts at Algorithm with an initial 
guess of tensile modulus. The Algorithm stands for a par-
ticular optimization algorithm, which takes an evaluated 
fitness value as an input parameter. Then a new guess for 
tensile modulus is calculated and written to ANSYS input 
file. The response goes from the FEM analysis. Fitness 
evaluation part compares the analysis results and experi-
mental data. The fitness evaluation reflects the algorithm 
employed. If the evaluated fitness satisfies the stopping 
criteria, the optimization cycle stops running and results 
are printed. Otherwise, the results of fitness evaluation 
(results depend on algorithm used and may be rendered in 
the form of residuals, etc) are transferred back to the Algo-
rithm part for further decisions. 
 This algorithm is common for all the optimization 
algorithms used. However, the fitness evaluation depends 
on the particular algorithm and will be presented later. The 
objective function Q Eq. (4) due to non-linearity of the 
stiffness matrix [K] has uncertain landscape though the 
presence of the only two design parameters simplifies the 
solution. 

To investigate the objective function landscape 
and solve the optimization problem defined in previous 
section a Genetic algorithm (GA) [4 - 6] as a global opti-
mization method was employed. GA is a stochastic search 
method, which proved to be very convenient when OF is of 
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uncertain character and supposed to be non-convex, multi-
modal, and discontinuous. Algorithm starts the search from 
an initial random guess belonging to the feasible set. This 
vector of initial values of design parameters is known as a 
population [4]. Later GA generates a new population at 
each iteration by means of genetic operators and selection 
mechanism. The new population is based on the previous 
one, however it is supposed to be fitter, i.e. closer to an 
optimal solution.  

The algorithm has several control parameters and 
takes fitness function [4] to be optimized. The Table 1 be-
low shows the list of control parameters, in GA notation 
[4]. 

Table 1 
 GA tuning parameters 

 
Population size 20 
Chromosome size 16 
Probability of crossover 0.8 
Probability of mutation 0.4 
Relative rate for bit-flip mutation 0.5 
Relative rate for one point crossover 1 
Tournament size  10 

 
The chromosome is encoded as a vector of binary 

numbers, which length is equal to 16, i.e. we reserved 8 
bits for the tensile modulus and Poisson’s ratio respec-
tively. To decode from the genotype space to phenotype, 
i.e. from a binary to real number the linear mapping is used 
[7] 
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where ( )k
iR℘  is a real value bounded by a predetermined 

interval [l, u];  k
i℘  is binary chromosome i at population 

k and d is the number of bits (we use d = 8); ( )kB ℘−1  de-
notes the mapping function from binary string to its cor-
responding integer [5]. We used the following real value 
bounding intervals for tensile modulus [ ]0.100,000.1∈E  
in MPa dimension, and Poisson’s ratio [ ]460.0,370.0∈ν  
[3]. Probabilities for genetic operators were chosen intuiti-
vely.  

Fitness function takes the form, [8] 
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where ( )k
iD ℘  is fitness function; ( )k

is ℘  is maximum 
displacement of movable contact surface at each iteration;  
Swant is target displacement value (3.21 mm, see Section 1); 
s is acceptance region, i.e. the tolerance value (see Fig. 5); 
σ is decay coefficient, which determines how fast the pen-
alty value increases when the acceptance region is left as 
can be seen in the Fig. 5. 

 
 
Fig. 5 Relation of decay coeficient and penalty (adopted 

from [8]) 

 The Evolutionary Computation Framework (EO) 
[9] was employed to perform the computation.      
 
5. Computational results 
 

The convergence behaviour GA and landscape of 
OF are shown in Figs. 6 and 7 respectively.  

 
 

 
 

Fig. 6 GA convergence 

 As it is seen from Fig. 6, GA evaluated 9 genera-
tions and reached the fitness value equal to 0, i.e. the dis-
placement value got into the acceptance region (8). Results 
of GA are rendered in the Table 2.  

 
Table 2 

GA optimization results 
 

Number of evaluations/iterations  180 
Number of generations 9 
Tensile modulus value, MPa  9.54 
Poisson’s ratio 0.42 
Objective function (fitness) value  0 
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Fig. 7 Objective function landscape, where isolines show 

tube displacement values in mm 

6. Optimal spring stiffness 
 
Having calculated the tensile modulus and Pois-

son’s ratio of PVC in previous sections, we could proceed 
in finding optimal stiffness value of the springs. The opti-
mal spring stiffness is the one, which allows avoiding the 
under- and over-compression of the tube. One should no-
tice the compressed tube stiffness is that, which turns out 
when closing point region (see Fig. 2) has already been 
reached and the tube is undergoing further compression 
(see Fig. 7). 

 

 
 

Fig. 8 Explicit tube compression scheme 

If neglecting the influence of friction in fixing 
mechanism, resultant stiffness of the springs is directly 
proportional to the stiffness of compressed tube. The stiff-
ness of compressed tube is significantly higher that its 
stiffness before the closing point therefore the springs start 
working only when the tube is compressed. Thus, a simple 
scheme for finding the resultant spring stiffness is consid-
ered (Fig. 8). 

Simplified mathematical model of PM is shown in 
Fig. 9, a, where ki (xi) denotes stiffness of the compressed 
tube; the tube displacement xi varies from 0.0 mm to the 
closing point displacement xc (3.00 mm) , and  ks > ki (xi) 
until xi < xc - the springs’ stiffness. Thus, the model of PM 
for the displacement level corresponding to the closing 
point becomes even simpler (Fig. 9, b), and the resultant 
spring stiffness is calculated simply dividing the force by 
the tube displacement value at the closing point region 

(3.00 + 0.210 = 3.21 mm, see Section 2). Therefore, the 

resultant spring stiffness is 3
5 40 1682, N/m

3 21 10
.k

. −= =
⋅

. 

 

 
 

                a                                           b 
 

Fig. 9 Compressed tube: a) mathematical model, b) redu-
ced mathematical model 

Notice that the force value is half of the one got 
from the experiment (see Fig. 2). That is because we used 
two sample tubes in the compression test.   

 
7. Conclusions 

 
 A simple scheme for the optimization of springs 
integrated into peristaltic mechanism of volumetric pump 
is suggested. Firstly, the material properties of the tube 
involved in the mechanism are defined on the base of natu-
ral experiment and its finite element modelling. The for-
mulated inverse identification problem is treated as an op-
timization problem. Secondly, for the particular peristaltic 
mechanism (the cam’s shape plays the most important role 
here) by means of finite element modelling the necessary 
closure displacement and corresponding compression force 
is obtained.  

 To investigate the objective function landscape 
and to solve the optimization problem defined Genetic 
algorithm as a global optimization method was employed. 
Since the landscape of the objective function is exponen-
tially decreasing without any local minima, the algorithm 
reached the target value after 9 generations by having 
population size of 20.  

The resultant spring stiffness is obtained via sim-
ple engineering formula. The obtained resultant spring 
stiffness is optimal because the tube will not be under-
compressed, since the resultant spring stiffness k appears at 
the closing point region. On the other hand, the tube will 
not be over-compressed, since the tube compression after 
the closing point region is absorbed by the springs. 
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R. Puiša, R. Belevičius 

PVC MEDŽIAGOS SAVYBIŲ NUSTATYMAS  
SPRENDŽIANT STATINĮ ATVIRKŠTINĮ UŽDAVINĮ 
GENETINIU ALGORITMU 

R e z i u m ė 

Projektuojant medicinos įrangą, būtina žinoti jos 
komponentų mechanines savybes. Tokia įranga, pvz., 
voliumetrinis siurblys, naudoja peristaltinį mechanizmą, 
suspaudžiantį vadinamąjį IV agregatą, gaminam1 iš PVC. 
Kadangi gamintojas PVC mechaninių savybių nenurodo, 
bandyta jas nustatyti sprendžiant atvirkštinį statinį uždavi-
nį. Atvirkštinis uždavinys faktiškai yra optimizavimo už-
davinys, kuriam spręsti parinktas genetinis algoritmas, 
kartu leidžiantis ištirti ir uždavinio tikslo funkcijos pavida-
lą. Be to, kartu apskaičiuotas ir optimalus peristaltinio me-
chanizmo spyruoklių standis.  
 

R. Puiša, R. Belevičius 

GRADING THE PVC MATERIAL BY SOLVING A 
STATIC INVERSE PROBLEM WITH GENETIC 
ALGORITHM  

S u m m a r y 

When developing hi-tech medical equipment the 
exact technical properties of its components must be 
known. Such an equipment as volumetric pump uses peri-
staltic mechanism compressing an intro-vein set, which is 
made from PVC material. Since needed mechanical prop-
erties of PVC material are not provided by its manufac-
turer, we aimed at finding them by solving an inverse static 
problem. The inverse problem appeared to be an optimiza-
tion problem, therefore Genetic algorithm was chosen as 
an optimizer, which also let to investigate the problem 
landscape. In addition, a study of mechanical properties of 
PVC material helped to calculate optimal stiffness of the 
springs used in the mentioned peristaltic mechanism. 

Р. Пуйша, Р. Белявичюс 

ОПРЕДЕЛЕНИЕ СВОЙСТВ МАТЕРИАЛА ПВХ 
ПУТЕМ РЕШЕНИЯ ОБРАТНОЙ СТАТИЧЕСКОЙ 
ЗАДАЧИ ГЕНЕТИЧЕСКИМ АЛГОРИTМОМ 

Р е з ю м е 

При проектировании медицинского оборудо-
вания необходимы механические свойства ее компо-
нентов. Такое оборудование, как волюметрическая 
помпа, использует перистальтический механизм, сжи-
мающий так называемый ИВ агрегат, изготовляемый 
из ПВХ. Изготовитель ПВХ не указывает 
механических свойств материала, поэтому они 
определены путем решения обратной статической за-
дачи. Обратная задача фактически является задачей 
оптимизации, для чего подобран генетический алго-
ритм. Этот алгоритм наряду с решением задачи опти-
мизации также позволяет исследовать вид функции 
цели. Расcчитана оптимальная жесткость пружин пе-
ристальтического механизма. 
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