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1. Introduction

The volumetric pump is dedicated to work for
drip-feeding at hospitals. It contains the peristaltic mecha-
nism (PM) periodically compressing so-called intro-vein
set (IV-Set), which has the shape of a tube and provides a
liquid into the vein of a patient. IV-Set is made up of plas-
tic material PVC (Polyvinyl chloride).

To compress IV-Set properly, an additional sim-
ple mechanism fixing the tube is used. The fixing mecha-
nism holds IV-Set between two plates, the lower of them is
supported by several springs adjusting the plates to the
tube used. The springs, in turn, should have an appropriate
stiffness to compress the tube properly. If spring stiffness
is too low, the tube is under-compressed, which reduces
the pump efficiency. On the contrary, if the spring stiffness
is too high, then the tube is over-compressed and eventu-
ally damaged.

Evidently, if neglecting the influence of friction in
fixing mechanism, the total stiffness of the springs is di-
rectly proportional to the stiffness of the compressed tube,
that is, to IV-Set. In turn, stiffness of the tube undergoing
the deformation is subject to its geometrical shape and me-
chanical properties of a material the tube is made of. Thus,
to calculate the tube stiffness its geometry and mechanical
properties of PVC should be clear. However, the PVC
grade is not provided by IV-Set manufacturer therefore the
exact material mechanical properties are unknown.

The goal of this study is twofold: first, to find out
mechanical properties of PVC, and second, to calculate
optimal stiffness of the springs used. The optimal springs'
stiffness is the one, which allows avoiding under- and
over-compression of the tube in a specified temperature
range. Both goals are achieved via solution of inverse
problem for identification of material properties on the
base of data obtained from experiment, which simulates
natural behaviour of peristaltic mechanism.

The paper contains the following sections. The
section Compression experiment presents the results of the
compression experiment and provides some discussion on
them. The section Mathematical model for inverse problem
presents the problem description in mathematical terms by
defining an optimization problem. The section Identifica-
tion cycle and optimization algorithms proposes the opti-
mization methods applied. The next-to-last section pro-
poses a simple scheme for the computation of resultant
spring stiffness. The last section draws conclusions on this
study.

2. Compression experiment

The aim of compression experiment is to obtain
the tube displacement/compression force curve. Only the
segment of PVC tube has been investigated simulating
whole peristaltic mechanism. Flat plates of fixing mecha-
nism are replaced by the rigid contact surfaces, one of
them immovable. The compression force is transmitted to
the tube by movable contact surface (upper surface in our
case) of the shape of mechanism’s cam (Fig. 1).

We assume the vertical stiffness of the tube seg-
ment is equal (disregarding the friction influence) to the
overall stiffness of spring-set on the fixing mechanism.
Clearly, the inertial forces do not play significant role in
mechanisms of such kind therefore quasi-static loading has
been applied.

Two sample tubes in 4.10 mm in outer diameter,
3.00 mm in inner diameter, and of 200 mm length, were
explored. The compression force was gradually incre-
mented up to a certain value, which had to ensure the clo-
sure of the inner diameter of the tube. Actually the closure
was estimated by visual inspection as well as by a com-
pression curve drawn. The experiment was performed re-
peatedly to secure the exclusion of possible casual factors
of the experiment.

The IV-Set compression test results are shown in
Fig. 2, where the circle marks the region where the inner
tube radius is closing. In the closing point region, the tube
stiffness increases remarkably because the inner surfaces
of the tube begin gaining a non-continuous surface-to-
surface contact, i.e. the tube has no inner hole any longer.
Actually this region is under investigation throughout the
current study.

Notice, due to the insufficient cam-tube contact at
the beginning of the experiment, the actual compression
starts from some offset displacement value equal to 0.210
mm (see Fig. 2). Therefore, the factual displacement value
at the closing point region is 3.00 + 0.210 = 3.21 mm,
which is yielded by the compressing force value equal to
10.80 N.

3. Mathematical model for inverse problem

The main idea used in identifying material proper-
ties is updating a finite element model so as to make its
results converge toward the experimental results. Only the
segment of PVC tube is discretized and analysed for geo-
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Fig. 1 Experimental set-up, and specimen under compression
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Fig. 2 Experiment results: displacement — force relation

metrically non-linear but materially linear static solution. The classical static equilibrium equation has the
Theretofore an analysis of finite element mesh has to be  following form (1) with a non-linear stiffness matrix [2]
done to assure the discretization errors are within accept-

able range. The mesh of 3-D 10-Node Tetrahedral Struc-

tural Solid (SOLID187 in ANSYS 7.0 terms [1]) elements, (K ]§}= {1?} )
which yields converged solution, is shown in Fig. 3.
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where g} is displacement vector; {F } is external force
vector; [K] is non-linear stiffness matrix; [KO (E,v)] is lin-

ear stiffness matrix, dependent on geometry of structure,
material characteristics and interpolation law of finite ele-
ments; [K;] is geometrical stiffness matrix, which defines

the stress influence on the stiffness; [K / (u)] is matrix of

initial displacements, which defines the displacement in-
fluence on the stiffness; £ is Young's modulus or tensile
modulus, which is unknown; v is Poisson’s ratio.
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Fig. 3 Mesh of structure for converged solution

PVC is a flexible isotropic material that is chemi-
cally non reactive. Variance of Poisson's ratio among PVC
grades falls into the range from 0.37 to 0.46 [3]. The varia-
tion of Young’s modulus due to operating temperature
range is very small and can be neglected, thus the range of
interest for modulus is from 1.000 MPa to 100.0 MPa [3].
Bearing in mind that we are interested exclusively in final
stiffness of the tube, which corresponds to the full closure
of the tube, we arrive to two unknowns in equation (1), i.e.
[K] = [K(E, v)]. Here the value of E to be sought can be
interpreted as an averaged (through the whole deformation
history) tensile modulus.

Now let us rewrite equation (1) in the following

[K(E,v)]{;; }— {F}: 0

The last equation is suitable for the formulation of
inverse problem, i.e. find material mechanical properties of
the tube under known compression forces yielding a par-
ticular tube deformation, to satisfy the equilibrium Eq. (3).
The formulated inverse problem can be treated as an opti-
mization problem mathematically expressed as the follow-
ing

form

3)
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where: Q is the objective function (OF) to be optimized; d
is the displacement value at the closing point region (3.00
mm, see Section 1); (5) is the inequality constraint to be
satisfied; (6) - the definition of the feasible range for ten-
sile modulus, where E,;, and E,, are lower and upper
value limits respectively; (7) is the definition of the feasi-
ble range for Poisson’s ratio, where v,,;, and v,,,, are lower
and upper value limits respectively.

The next section presents the methods used to
minimize the objective function (4) subject to the con-
straints (5-7).

4. Identification cycle and optimization algorithms

The identification cycle (Fig. 4) consists of the
five parts, that is: optimization Algorithm, FEM modelling
by ANSYS, Fitness evaluation, Stopping criteria checking,
and Printing of results.

Besidual etc.

Fitness evaluation

Stop & Print results

Fig. 4 Solution loop of inverse identification problem

The algorithm starts at Algorithm with an initial
guess of tensile modulus. The Algorithm stands for a par-
ticular optimization algorithm, which takes an evaluated
fitness value as an input parameter. Then a new guess for
tensile modulus is calculated and written to ANSY'S input
file. The response goes from the FEM analysis. Fitness
evaluation part compares the analysis results and experi-
mental data. The fitness evaluation reflects the algorithm
employed. If the evaluated fitness satisfies the stopping
criteria, the optimization cycle stops running and results
are printed. Otherwise, the results of fitness evaluation
(results depend on algorithm used and may be rendered in
the form of residuals, etc) are transferred back to the Algo-
rithm part for further decisions.

This algorithm is common for all the optimization
algorithms used. However, the fitness evaluation depends
on the particular algorithm and will be presented later. The
objective function O Eq. (4) due to non-linearity of the
stiffness matrix [K] has uncertain landscape though the
presence of the only two design parameters simplifies the
solution.

To investigate the objective function landscape
and solve the optimization problem defined in previous
section a Genetic algorithm (GA) [4 - 6] as a global opti-
mization method was employed. GA is a stochastic search
method, which proved to be very convenient when OF is of



uncertain character and supposed to be non-convex, multi-
modal, and discontinuous. Algorithm starts the search from
an initial random guess belonging to the feasible set. This
vector of initial values of design parameters is known as a
population [4]. Later GA generates a new population at
each iteration by means of genetic operators and selection
mechanism. The new population is based on the previous
one, however it is supposed to be fitter, i.e. closer to an
optimal solution.

The algorithm has several control parameters and
takes fitness function [4] to be optimized. The Table 1 be-
low shows the list of control parameters, in GA notation

[4].

Table 1
GA tuning parameters

Population size 20
Chromosome size 16
Probability of crossover 0.8
Probability of mutation 0.4
Relative rate for bit-flip mutation 0.5
Relative rate for one point crossover 1

Tournament size 10

The chromosome is encoded as a vector of binary
numbers, which length is equal to 16, i.e. we reserved 8
bits for the tensile modulus and Poisson’s ratio respec-
tively. To decode from the genotype space to phenotype,
i.e. from a binary to real number the linear mapping is used

(7]
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where R(gol-k) is a real value bounded by a predetermined

interval [, u]; ¢, s binary chromosome i at population

k and d is the number of bits (we use d = 8); B’l(gok) de-

notes the mapping function from binary string to its cor-
responding integer [5]. We used the following real value
bounding intervals for tensile modulus £ € [1.000, 100.0]

in MPa dimension, and Poisson’s ratio v e [0.370, 0.460]

[3]. Probabilities for genetic operators were chosen intuiti-
vely.

Fitness function takes the form, [8]

0

.'|S—S <s

want

- bt ©

k
X( 12 ) ~Swant|

267

want

.'|S—S

N Cof)
where D(go,. ) is fitness function; S\§; / is maximum

displacement of movable contact surface at each iteration;
Shan 18 target displacement value (3.21 mm, see Section 1);
s is acceptance region, i.e. the tolerance value (see Fig. 5);
o is decay coefficient, which determines how fast the pen-
alty value increases when the acceptance region is left as
can be seen in the Fig. 5.
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Fig. 5 Relation of decay coeficient and penalty (adopted
from [8])

The Evolutionary Computation Framework (EO)
[9] was employed to perform the computation.

5. Computational results

The convergence behaviour GA and landscape of
OF are shown in Figs. 6 and 7 respectively.
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Fig. 6 GA convergence

As it is seen from Fig. 6, GA evaluated 9 genera-
tions and reached the fitness value equal to 0, i.e. the dis-
placement value got into the acceptance region (8). Results
of GA are rendered in the Table 2.

Table 2
GA optimization results
Number of evaluations/iterations 180
Number of generations 9
Tensile modulus value, MPa 9.54
Poisson’s ratio 0.42
Objective function (fitness) value 0




| wro—

. Gi

044

3
oT v
"

/
=
1l . i
e X h
.2 2 > 5
2 AN
S 042 ] g |
= 280 | 220 RE &
8 140 0.40
2
o i
A 2 A 0.60
040 —JT—‘; = !
g1 (1 115 h &
oas +g42-l 217 ]\ N
TR | ™~
2.00x107 4003107 6.00x107 8000107

Tensile modulus, MPa

Fig. 7 Objective function landscape, where isolines show
tube displacement values in mm

6. Optimal spring stiffness

Having calculated the tensile modulus and Pois-
son’s ratio of PVC in previous sections, we could proceed
in finding optimal stiffness value of the springs. The opti-
mal spring stiffness is the one, which allows avoiding the
under- and over-compression of the tube. One should no-
tice the compressed tube stiffness is that, which turns out
when closing point region (see Fig. 2) has already been
reached and the tube is undergoing further compression
(see Fig. 7).
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Fig. 8 Explicit tube compression scheme

If neglecting the influence of friction in fixing
mechanism, resultant stiffness of the springs is directly
proportional to the stiffness of compressed tube. The stiff-
ness of compressed tube is significantly higher that its
stiffness before the closing point therefore the springs start
working only when the tube is compressed. Thus, a simple
scheme for finding the resultant spring stiffness is consid-
ered (Fig. 8).

Simplified mathematical model of PM is shown in
Fig. 9, a, where £; (x;) denotes stiffness of the compressed
tube; the tube displacement x; varies from 0.0 mm to the
closing point displacement x, (3.00 mm) , and &, > k; (x;)
until x; < x. - the springs’ stiffness. Thus, the model of PM
for the displacement level corresponding to the closing
point becomes even simpler (Fig. 9, b), and the resultant
spring stiffness is calculated simply dividing the force by
the tube displacement value at the closing point region
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(3.00 + 0.210 = 3.21 mm, see Section 2). Therefore, the
5.40

resultant spring stiffness is k = ————=1682, N/m.
3.21-10
F
r
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Fig. 9 Compressed tube: a) mathematical model, b) redu-
ced mathematical model

Notice that the force value is half of the one got
from the experiment (see Fig. 2). That is because we used
two sample tubes in the compression test.

7. Conclusions

A simple scheme for the optimization of springs
integrated into peristaltic mechanism of volumetric pump
is suggested. Firstly, the material properties of the tube
involved in the mechanism are defined on the base of natu-
ral experiment and its finite element modelling. The for-
mulated inverse identification problem is treated as an op-
timization problem. Secondly, for the particular peristaltic
mechanism (the cam’s shape plays the most important role
here) by means of finite element modelling the necessary
closure displacement and corresponding compression force
is obtained.

To investigate the objective function landscape
and to solve the optimization problem defined Genetic
algorithm as a global optimization method was employed.
Since the landscape of the objective function is exponen-
tially decreasing without any local minima, the algorithm
reached the target value after 9 generations by having
population size of 20.

The resultant spring stiffness is obtained via sim-
ple engineering formula. The obtained resultant spring
stiffness is optimal because the tube will not be under-
compressed, since the resultant spring stiffness & appears at
the closing point region. On the other hand, the tube will
not be over-compressed, since the tube compression after
the closing point region is absorbed by the springs.
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R. Puisa, R. Belevicius

PVC MEDZIAGOS SAVYBIU NUSTATYMAS
SPRENDZIANT STATINI ATVIRKSTIN] UZDAVINI
GENETINIU ALGORITMU

Reziumé

Projektuojant medicinos iranga, bitina zinoti jos
komponenty mechanines savybes. Tokia iranga, pvz.,
voliumetrinis siurblys, naudoja peristaltini mechanizma,
suspaudziant] vadinamaji IV agregata, gaminam1 i§ PVC.
Kadangi gamintojas PVC mechaniniy savybiy nenurodo,
bandyta jas nustatyti sprendziant atvirkstini statinj uzdavi-
ni. Atvirkstinis uzdavinys faktiskai yra optimizavimo uz-
davinys, kuriam sprgsti parinktas genetinis algoritmas,
kartu leidziantis iStirti ir uzdavinio tikslo funkcijos pavida-
la. Be to, kartu apskaiciuotas ir optimalus peristaltinio me-
chanizmo spyruokliy standis.
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GRADING THE PVC MATERIAL BY SOLVING A
STATIC INVERSE PROBLEM WITH GENETIC
ALGORITHM

Summary

When developing hi-tech medical equipment the
exact technical properties of its components must be
known. Such an equipment as volumetric pump uses peri-
staltic mechanism compressing an intro-vein set, which is
made from PVC material. Since needed mechanical prop-
erties of PVC material are not provided by its manufac-
turer, we aimed at finding them by solving an inverse static
problem. The inverse problem appeared to be an optimiza-
tion problem, therefore Genetic algorithm was chosen as
an optimizer, which also let to investigate the problem
landscape. In addition, a study of mechanical properties of
PVC material helped to calculate optimal stiffness of the
springs used in the mentioned peristaltic mechanism.

P. ITyima, P. bensBuuroc

OIIPE/IEJIEHME CBOMCTB MATEPUAJIA IIBX
ITYTEM PEHIEHUA OBPATHOU CTATUYECKOU
3AJAYU TEHETUYECKUM AJI'OPUTMOM

Pe3zmomMme

[Ipu mpoeKTHpPOBaHUN MEAMIIMHCKOTO 000pYIO-
BaHMs HEOOXOIMMBI MEXaHWYECKHE CBOMCTBA €€ KOMIIO-
HeHTOB. Takoe oOOpyInOBaHHE, Kak BOIOMETPHYECKAs
MIOMIIA, MCIIOJIB3YEeT MEPUCTATBTUIECKUN MEXaHU3M, CXKH-
MaromMil Tak HasbiBaeMmblii MIB arperat, u3roroBisieMblit
n3 IIBX. WMsrorourens IIBX He  yka3bpIBacT
MEXaHHYECKUX CBOWCTB MaTrepuana, IMOdTOMY OHHU
OIIpEeJIeIeHbl IIyTeM pelleHus] o0paTHO# cTaTHYecKoil 3a-
nmaun. OOpatHas 3amava (paKTHYECKH SIBIIICTCS 3aJadycid
ONTHUMU3AINH, IS 4ero MmomoOpaH TeHETHYCCKHH ayro-
PUTM. DTOT alNTOPUTM HAPSAY C pEIICHHEM 3aJayd OINTHU-
MHU3AIIA TaKKe IT03BOJIIET WCCIEHOBATh BUA (YHKIUH
nenu. Paccumrana onTUManbHas JKECTKOCTh TPYKUH TIie-
PHUCTATBTUIECKOTO MEXaHU3MA.
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