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1. Introduction 
 

In recent years, due to rapid development of com-
puter-aided methods, improvement of analytical models 
and explicit explanation of material properties the rein-
forced concrete (RC) structures have resulted in longer 
spans and smaller cross-sections. RC structures are brittle 
compared to steel structures; consequently, it is very im-
portant to describe the behaviour of reinforced concrete 
under the full range of load conditions and estimate its 
ultimate strength accurately. In truth, it is difficult in ana-
lytical manner to describe effectively the composite behav-
iour of two completely different materials, concrete and 
steel, and to consider the time-dependent variation of mate-
rial properties and effects between both materials. Hence, 
the analysis of reinforced concrete may be performed 
choosing between the analytical, code-based methods [1- 
3] or implementing numerical techniques.  

Numerical methods are based on the universal 
principles enabling us to apply sophisticated mathematical 
models describing various processes, such as concrete 
cracking, reinforcement slipping, material nonlinearities, 
creep, shrinkage, etc. [4-6]. In general case, since a struc-
ture is composed of many structural members, and a mem-
ber is formed by the integration of each section, the 
nonlinear behaviour of a section causes nonlinear behav-
iour in the structure. Especially, in the case of beams and 
columns which are the primary importance members of a 
frame structure, the problem is non smooth and non con-
vex. In many cases conventional iterative methods of the 
Newton’s type are frequently inefficient when solving a set 
of nonlinear equations in order to find all possible solu-
tions [5, 7]. Consequently, the main limitation of numerical 
methods, in great part, are related to computational capa-
bilities due to huge number of unknowns [8], convergence 
and numerical instability processes, which can have the 
crucial influence on the obtained results [9]. Hereby, a 
practical engineer must dispose not only good skill in 
structural design but the programming-based knowledge is 
strongly needed in order to perform numerical analysis 
reliably.  

Analytical methods in analysis of RC structures 
are usually limited by constitutive laws of mathematics, 
e.g. [10]. Therefore, for developing code methodologies, 
e.g. [1-3], a large number of empirical expressions and 
factors that reveal simplification of the actual stress strain 
state is adopted. These simplifications ensure safe design 
and allow performing the analysis of RC response directly 
by formulas without using of programming. The empirical 
approaches by means of various factors allow to evaluate 
indirectly different complex effects which are usually not 
taken into account in numerical analysis and, as a rule, 
give the possibilities to control correctness of the numeri-
cal results. 

The extensive analytical and experimental studies 
of load-deflection responses of RC beams and columns 
have been reported since the 1960s. In passing, Rozen-
bliumas [11] proposed the method of complex evaluation 
of tensile concrete, crack depths and bond-slipping of RC 
concrete beams. In order to simplify numerical scheme are 
based the methods in which the analytical moment–
curvature relationship is approximately known in advance. 
This approach has been implemented by Mendis and Dar-
val [12] determining the buckling functions of a column in 
nonlinear analysis of softening frames. Sheikh [13] has 
performed an overview of analytical moment-curvature 
relations for RC columns. Rodriguez-Gutierrez et al. [14] 
presents the generation biaxial bending moment–axial 
force–curvature diagrams for reinforced, partially and fully 
prestressed concrete sections. Hsu [15] proposed some 
nomenclature of analytical models for linear reinforced 
members. 

Because the structural analysis of RC structures 
requires great computational effort for iterations and nu-
merical instability due to variation of structural appearance 
and material properties occur as working stress increases, it 
is needed to develop the method which allows us to sim-
plify modeling of nonlinear behavior of RC members. 
Rather than using the layer approach, related to the causes 
of inaccurate dividing of the cross section into horizontal 
stripes, the checking of iteration convergence for each and 
all layers changing of elastic stiffness as well as the search-
ing of the location of neutral axis within the layers, the 
semi-analytical modeling of RC members in bending is 
presented in the present research. The proposed technique 
focuses on the explicit derivation of the internal forces and 
moments for concrete in tension and compression without 
the need of the numerical integration. The application of 
different stress strain relations for compressive concrete 
and smeared crack approach for tensile concrete is investi-
gated on the basis of the opportunity to find the explicit 
solution of nonlinear equations. The proposed technique is 
verified by the comparison of theoretical results with ex-
perimental tests data. 

 
2. Stress strain state  
 

2.1. Basic assumptions 
 

In stress strain state formulation, we use the basic 
assumptions that the plane of cracked sections remains 
plain, i.e. longitudinal average strain is directly propor-
tional to the distance from neutral axis of zero strain. Per-
fect bond between reinforcement and concrete in compres-
sion is assumed. Tension stiffening effect is simulated rely-
ing on smeared crack approach [16].   

 

2.2. Constitutive laws for materials 
 

The stress strain relationships of concrete in uni-
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axial compression have been proposed by many research-
ers. Most of the models, however, are based on test results 
obtained from their own experiments. Therefore, the re-
sults of the models can be subjected to great variation ac-
cording to test methods and test conditions. The following 
widely employed stress strain relations of compressive 
concrete are investigated: 

• prEN 1992–1’s [1] stress strain curve 
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is the limit coefficient of elasto-plasticity; bε  is current 
concrete strain; is peak concrete strain corresponding 
to the stress 

bRε
( ) bbRb R=εσ ;  is compressive strength of 

concrete;  is the modulus of elasticity of concrete. 
bR

bE
• Hognestad’s [17] stress-strain curve  
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• Bilinear stress-strain relationship 

 

 ( )

1 1

2
1

 ,  

 ,  otherwise,

sec sec
b b b b b

b b secb
b b bsec

b

E E R

R
R E

E

ε ε η
σ ε η

η ε

⎧ ≤
⎪

= ⎛ ⎞⎨
+ −⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩

  (4) 

 

where                       
 

     (5) b
sec
b EE ν=1

 ( )
b

sec
bbR

b
sec
bsec

b RE
REE

ηε
η

−
−

= 1

1
2 1      (6)  

 
ν  is the coefficient of elasto-plasticity; η  is the limit ratio 
of concrete stress and strength specifying almost elastic 
behaviour of cross section.  

• The stress-strain relationship including the elasto-
plastic effect 

 
      (7) ( ) bbbb Eνεεσ =

 
Actually, putting bbbR ER2=ε  into relation (1) 

we get Hognestad’s formula (3). Such simplification can 
be treated as not sufficiently accurate because induces the 
same description of the character of plastic strain for vari-
ous strength classes of concrete.  

It is well known that deformational behavior of 
reinforced tensile concrete is different from the behavior of 
plain concrete. This distinction usually called tension stiff-
ening can be explained, in the fact, that the stiffness of the 

cracked reinforced concrete between the consecutive 
cracks is higher than the stiffness of alone reinforcing 
steel. 

Let us model tension stiffening by using the ele-
mentary smeared crack approach simulating the uncracked 
section by using ascending branch while descending 
branch of stress strain relation integrally reflects the ten-
sion stiffening effect  
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in which, btε  is average strain of tensile concrete; and btR

btRε  are tensile strength and cracking strain of concrete; 
α  and β  are the parameters integrally controlling the 
tension stiffening. 

A linear stress strain behaviour of tensile steel 
mainly prevails at service load performance and stops ap-
proximately at 0.8-0.9Mu (where Mu is ultimate bending 
moment of the member) while compressive steel bars be-
have elastically even up to the element failure. Generally, 
plastic behaviour of reinforcement occurs near to the col-
lapse of element when tensile concrete completely do not 
work. Consequently, for the reinforcing bars, a linear stress 
strain relationship in both tension and compression may be 
adopted 

 
 ( ) ssss Eεεσ =       (11) 
 
where sε  is average reinforcing bar strain;  is Young’s 
modulus of reinforcement steel.  

sE

In addition, for approximate evaluation of plastic 
strain in tensile reinforcement the elasto-plastic diagram, 
similar to formula (7), can be also used. 
 

2.3. Equilibrium    
  

Consider a statically determined, doubly rein-
forced member in flexure (Fig. 1). Let us assume that shear 
forces and torsion do not significantly affect stiffness of 
the element cross-sections and can be omitted in non-linear 
formulation.  

Relying on the above assumptions and require-
ments of the strain compatibility, the equilibrium equations 
can be expressed as 
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where M is the external moment; ,  and ,  are 
the areas for compressive/tensile concrete and for the rein-
forcements, respectively; y is the distance to the neutral 
axis;  is an effective, while h is the overall depth 
of the cross-section;  and a  are distances between the 
centre of gravity of compressive and tensile reinforcements 
to the nearest edges of the cross-section (

bA btA sA 1sA

ahh −=0

1a

Fig. 1). 
 

 
 
 
 
 
 
 
 

 
 
Fig. 1 RC beam cross-section and the average strain com-

patibility  
 

2.4. Non-linear equations 
 

In order to solve the system of equilibrium equa-
tion (12) relying on the above material models and assum-
tions, the following stages of deformational behavior of 
tension zone of RC member are initialized:   

• the uncracking stage (i.e., btRbt εε ≤ );    
• the pure-tension stiffening stage  

(i.e., ( ) btRbtR xh βερε ≤−< );  
• the partially-tension stiffening stage 

(i.e., ( ) btRbtRbtR xhy βερβερε >−∧<< ); 
• the fully cracked stage, when tensile concrete is 

neglected. 
At the beginning of the uncracking stage the mo-

ment M and curvature ρ segment is a straight line defining 
elastic behaviour of RC cross-section. This stage is com-
plete at the initiation of the first flexural crack when con-
crete deformation in extreme tensile fibre reaches its ulti-
mate tensile deformation btRε . At pure and partially ten-
sion-stiffening stages the behavior of the block of tensile 
concrete between consecutive cracks significantly affect 
the moment-curvature relation while the fully cracked 
stage occurs when RC cross section works near to the fail-
ure moment.  

Omitting the behaviour of the uncracked cross-
section consider more important stage of pure tension stiff-
ening. Substituting relationship (8) for tensile concrete and 
relation (11) for both tensile and compressive reinforce-
ments into the system of equations (12) we obtain the fol-
lowing system of nonlinear equations 
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where ρ  is load induced curvature while  and  are 
internal force and internal moment of concrete compres-
sive zone about the neutral axis.  

bF bM

Similarly, the system of nonlinear equations for 
the partially tension-stiffening stage is expressed as 
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The fully cracked stage of RC member can be 

modeled by the following equations: 
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The internal force  and moment  reflecting 

the behavior of concrete compressive zone are derived in 
explicit form. For prEN 1992–1’s [

bF bM

1] stress strain diagram 
(1) are obtained the following formulae 
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where                    
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When stress strain diagram is defined by  
Hognestad’s [17] diagram (3) the explicit form of  and 

 is the following 
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The internal moment and force of concrete com-

pressive zone for bilinear stress strain diagram (4) is de-
rived in the form 
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Considering the stress strain diagram (7),  and  

 may be evaluated in the following way. The coeffi-
cient 

bF

bM
ν  completely characterizes the elasto-plastic proper-

ties of concrete under axial compression and can be ob-
tained directly from the prism tests. When an element is 
subjected to bending the character of stress strain diagram 
is unknown because the stress distribution within the ele-
ment depth cannot be measured directly from experiments. 
Therefore, following [18], the coefficient of the diagram 
shape for compressive concrete ω  is adopted in the current 
analysis. In particular, if the loading begins the compres-
sive zone of RC member behaves similarly to elastic mate-
rial, and 50.≈ω , 1≈ν  can be assumed. With increasing 
the intensity of loading, plastic deformation occurs and the 
stress strain diagram becomes similar to a rectangle, then 
the coefficient ω is tending to 1, while bRνν → . Accord-
ing to [18], these coefficients become 1≈ω  and 450.≈ν  
in the service-load performance. It should be noted that in 
both mentioned cases the product of these coefficients re-
mains approximately constant. 

Consequently, the internal moment of compres-
sive zone and its internal force may be calculated by the 
formulae 
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                   (26) bb EbxF 2νωρ=
 

where 32=*ω  for triangular diagram while 21=*ω  for 
rectangular diagram.  

According to the regulations [3] about the linear-
instantaneous creep deformation, the coefficient may be 
evaluated by using 850.≈ν . In particular, for the triangle 
diagram the product of coefficients  is equal to 0.28 
while for the rectangular diagram . Thus, this 
difference is relatively small. In addition, according to 
[18], the diagram of compressive stress of concrete in ex-
perimental RC beam tests up to the level 

*νωω
230.* =νωω

60.Rbb ≤σ  is 
similar to the triangle.  
 

2.5. Investigations of the solvability  
 

The equilibrium relations (13)-(15) may be con-
sidered as two-variable function M(x,ρ) subjected to the 
plane of cracking moment Mc and the failure moment Mu. 
As an example, the graphs of these functions (Fig. 2) are 
computed for slightly reinforced (reinforcement ratio) 
( %.470=μ ) and for normally reinforced ( %.51=μ ) 
members with the cross-section of 150x400 mm (Fig. 2). 
Compressive strength of concrete prism Rb=35 MPa, ten-
sile strength Rbt=2.9 MPa, coefficient of elasto-plasticity 

80.=ν , the values of parameters α and β are given in Sec-
tion 3. 

Not considering the equations of force balance the 
surfaces M(x, ρ), depicted in (Fig. 2), may be primarily 
treated as the possible root functions. As can be seen in 
Fig. 2, b, plastic strains of compressive concrete, modeled 
by putting relations (16) and (21) into systems (13)-(14), 
induce the possible solutions on both the ascending and 
descending surfaces if the bending moment tends to Mu. 
These graphs also show that the degree of nonlinear equa-
tions (13)-(14), taking into account relationships (21) and 
(16), is higher than the degree of these equations relying on 
expression (25). Moreover, the descending surfaces are not 
occurring even up to the failure for slightly reinforced 
member.  

 
a 

 
 

b 
 

Fig. 2 Moment-curvature-neutral axis surfaces for slightly 
(a) and for normally (b) reinforced members.  
calculated by: 1- eq. (25); 2 - eq. (21); 3 - eq. (16) 

bM

 
The substitution of force equilibrium relation into 
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the equation for moment balance gives a polynomial of the 
degree n in x. In particular, Table 1 shows that the degree 
of the equations (13)-(14) varies over the range of 6-9 and, 
according to Abel’s theorem [10], the explicit solutions in 
terms of radicals for these equations do not exist. There-
fore, the problem of modeling of RC cracked members 
concentrates on the application of implicit approaches. 
 
                                                                                           Table 1 

Degree of a polynomial in the location of neutral axis 
 

Degree n for the stages 
Tension stiffening 

 
Diagram 

Pure Partial 
Fully 

cracking 
prEN 1992–1’s (1) 9 9 5 
Hognestad’s (3) 9 9 5 
Bilinear (4)  8 6 6 
Elasto-plastic (7) 6 6 2 

 
In addition, it has been established that all solu-

tions of the problems (13)-(14) taking into account rela-
tions (16)-(17) and (21)-(22) cannot be obtained by using 
elementary Newton’s step-by-step procedure. Local con-
vergence mainly occurs for the elements with normal and 
high reinforcement ratios working near to the failure loads. 
In particular, this aspect is proved also in [7] where it has 
been established that in non linear analysis of RC members 
exist non smooth and non-convex regions, which result in 
the multiplied solutions, ie several stress and strain states 
may correspond to the same load condition depending on 
the loading history. This can be even if the stress strain 
relationships used for concrete and reinforcement has no 
descending branches [7].  

In order to reduce the degree of the problem (13) 
enabling us to find the explicit solution, the depth of un-
cracked tensile cross-section zone, ht (Fig. 1) depending on 
acting moment is adopted 
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where crρ is the curvature induced by cracking moment 
Mc;  and  are the moment and location of the 
neutral axis specifying the end of pure tension stiffening 
stage when deformation in extreme tensile fibre reaches its 
ultimate value 
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βε btR ; k is the index, if k=1, then  is de-
fined by linear interpolation. 
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may be rewritten as follows: 
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Putting into the system (28) expressions (25) and 

(26) we obtain the polynomial of the forth degree in the 
location of neutral axis x and we can derive the solution of 
this system in explicit form. 

The influence of the adopted formula (27) on the 
moment-curvature diagram for different strength grades C 
of concrete and reinforcement ratios μ is investigated by 
comparing results obtained by solving the system (28) with 
those derived from the system (13). The comparative sur-
faces depicted in Fig. 3 show that the numerical solution of 
(13), denoted by numρ , differs from solution of (28) (de-
noted by approxρ ) taking into account the approximation 
(27) over the range of 0.94-1.05. As can be seen in Fig. 3 
these upper and lower errors are sufficiently small and oc-
cur if the member is slightly reinforced and acting moment 
M tends to the moment of cracking Mc while  
these differences remain about 1. Finally, the numerical 
solution has been obtained by using a genetic algorithm 
technique [

uMM →

5]. Cross-section of the member is assumed to 
be 150x400 mm. Index k in expression (27) assumed to be 
0.5 on the basis of tests data analysis presented in Section 
3. The values of the parameters α and β are also given in 
Section 3. 

 
C12/15 

 
a 
 

C50/60 

 
b 

 

Fig. 3 Comparative surfaces of dimensionless approxi-
mated (28) and numerically computed curvatures 
(13) vs reinforcement and moment ratios 

 
As stated in Table 1, the location of neutral axis 

for the fully cracked cross-section can be simply derived 
from quadratic equation inserting (25) and (26) into (15). 
This derivation is generalized in terms of an effective mo-
ment of inertia about the neutral axis and is expressed 
as 
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where  
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in which  and  are the reinforcement area and 
the first moment of this area about top surface of the cross-
section transformed to the concrete by using the ratio       

red,sA red,sS

                         
bsc EEn = . 

The fully cracked section stage is complete when 
bending moment M reaches its ultimate value 

. The latter is determined by ultimate cur-
vature 

eff
crcuu IEM ρ=

uρ  that specifies the failure mode because of con-
crete crushing or the collapse because of steel bars break-
ing. 

In order to compare (33) with code’s [3] curvature 
relation we rearrange the latter into the following expres-
sion of an effective moment of inertia:  
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where z is empirical-based distance from the center of ten-
sile reinforcement As to the resultant of compressive zone 
diagram; sψ  is the coefficient averaging tensile deforma-
tions evaluating the tension stiffening effect; bψ  is the 
averaging coefficient of compressive concrete deforma-
tions over the cracked span of the beam. 

Thus, the graphs of effective moments of inertia 
(33) and (37) with respect to triangular and rectangular 
stress strain diagrams of compressive concrete and the re-
inforcement ratio are shown in Fig. 4. For the triangular 
diagram the coefficient ν  is assumed to be 0.8 while for 
the rectangular diagram this coefficient accepted to be 0.4.  

 

 
Fig. 4 Effective moment of inertia of fully cracked and 

uncracked cross sections: 1, 3 - for triangular stress 
strain diagram of compressive concrete; 2, 4 - the 
same for rectangular diagram 

 
The graphs of Fig. 4 quantitatively show the deg-

radation of the inertia moment from uncracked up to fully 

cracked cross-section. As can be seen, the values obtained 
by (33) relation are very close to those calculated by SNiP 
formula (37) if the rectangular diagram of compressive 
concrete is applied. In computations, the fully cracked 
stage is assumed to be at the loading level uM.M 80= , 
accordingly, 1=sψ . 

 
3. Experimental verification  

 
The further experimental verification of the 

method proposed is focused on the explicit solution of the 
system (28) taking into account proposed formula (27), for 
the pure tension-stiffening stage, and the numerical solu-
tion of the system (14), for the partially tension stiffening 
stage, by applying formulae (25) and (26) for these pur-
pose. The obtained formula (33) is also employed in the 
analysis.  

The experimental verification have been per-
formed by comparing analytical and test values of the mo-
ment-curvature as well as the moment-depth of uncracked 
tensile cross-section zone functions in pure bending of RC 
members. In such a way, the proposed approach is ap-
proved for the extensive range of loading levels and differ-
ent reinforcement ratios of the beams. The empirical-based 
method [3] was also employed in comparative analysis. 

Let us briefly describe physical properties of con-
crete which were implemented in the analysis. The govern-
ing parameter β controlling the effects of tension stiffening 
has been investigated by various investigators particularly 
in shear or tension tests using its range within 5 and 20. 
Despite of the fact that various parameters affect the char-
acter of tensile stress strain relation, a quantitative depend-
ence between the length of the unloading branch and the 
reinforcement ratio, recently, has been derived from ex-
perimental RC beam in bending [19] 
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The switching between triangular ( 80.=ν ) and 

rectangular ( 40.=ν ) diagram of concrete in compression 
is performed when the stress intensity factor bb Rσ  
reaches its value equal to 0.6. 

Thus, the method proposed is applied to the ex-
tensive experimental data reported by Nemirovskyi and 
Kochetkov in [20]. They have tested RC beams with 0.2, 
0.4, 0.9 and 1.5% reinforcement ratios under short- and 
long-term loading. The compressive strength tested on 
100 mm edges length cubes was in the range 55-61.4 MPa. 
All 150x400 mm cross-section and 400 cm of the span 
length beams were tested under a four-point loading sys-
tem that gave a constant moment zone  of 1/3 span. Con-
crete strains have been measured accurately throughout all 
the length of the pure bending zone by using 12 tensomet-
ric gauges lines located at the different depths of the beam. 
The average strains of the reinforcement and concrete were 
additionally controlled by the clock-type indicators with 
the basis length of 250, 500, 800 mm. The reinforcement 
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strain was also controlled using the uninterrupted ten-
sometric gauge line embedded within the reinforcement 
bars. The moment of cracking has indicated not only in the 
visual way, but also by the indications of the mentioned 
gauge line. The rest data used in present analysis was taken 
from research [20]. 

The adequacy of the experimental (Series BII-1, 
BII-2, BIII-3) values of ht and their theoretical equivalent 
calculated by the proposed formula (27) is depicted in 
Fig. 5. As it can be seen, the character of depth ht distribu-
tion is nonlinearly dependent on the reinforcement ratio 
and bending moment M, i.e. increasing the bending mo-
ment the depth of uncracked tensile cross-section suddenly  
decreases and.this diminution is more intensive for slightly 
reinforced beams. The graphs depicted in Fig. 5 show that 
the proposed relation sufficiently accurately reflects the 
results of experimental test data. These results were ob-
tained using the index k to be 0.5. 

 

 
Fig. 5 Relative depth of uncracked tensile concrete zone of 

RC beams reinforced by the ratio μ vs the relative 
bending moment  

 
Fig. 6 - Fig. 9 show comparative graphs of the 

calculated and measured [20] values of curvature ρ versus 
bending moment M for the cracked RC beams with various 
longitudinal reinforcement ratios μ . These results can be 
treated as sufficiently accurate for the beams with rein-
forcement ratio over the range of 0.2-1.5%.  

Finally, it should be stated that code SNiP [3] 
gives rather conservative predictions of the curvature. Due 
to the bond with reinforcement, the concrete between 
cracks caries a certain amount of tensile force normal to 
the cracked plane and contributes to overall stiffness of the 
member. This fact is very important for the slightly rein-
forced beams and we can see (Fig. 6 -Fig. 7) that the cur-
vature predictions made by SNiP method for such beams 
may be treated as insufficient. In this case, the method 
proposed enables us to perform more accurate deforma-
tional analysis of RC flexural members.  

In summary, the obtained results show that pure 
tension stiffening stage occurring in slightly reinforced 
members can spread throughout cracking even up to failure 
resulting in nonlinear moment-curvature diagram. Nor-
mally reinforced concrete elements mainly work in the 
stages of partial tension stiffening and full cracking, while 
the pure tension stiffening stage occurs if acting moment is 
slightly higher than the moment of cracking Mcr. In gen-
eral, RC beams working on partially tension-stiffening or 

fully cracked stages have almost linear M-ρ relation and, 
therefore, all of the compared methods reflect quite ade-
quate conformity of the calculated and the tests results. 
Accordingly, the simple linear interpolation between the 
curvature specifying the end of pure tension stiffening 
stage and the curvature of fully cracked cross-section may 
be also used in the analysis RC flexural members. Fur-
thermore, the obtained results have also proved that for 
beams with the reinforcement ratio higher than 1.5% the 
tension stiffening effect can be completely ignored per-
forming the calculations for fully cracked cross-section 
using equation (32) throughout the cracking up to the al-
most failure.  

 

 
Fig. 6 Calculated and measured curvatures of cracked RC 

beam (Series BI-1, μ=0.2%) 
 

 
Fig. 7 Calculated and measured curvatures of cracked RC 

beam (Series BII-2, μ=0.5%) 
 

 
Fig. 8 Calculated and measured curvatures of cracked RC 

beam (Series BII-3, μ=0.9%) 
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Fig. 9 Calculated and measured curvatures of cracked RC 

beam (Series BII-4, μ=1.5%) 
 

4. Concluding remarks 
 
Instead of using the layer approach, relevant to the 

difficulties of inaccurate dividing of concrete and rein-
forcement cross-sections into horizontal stripes, inconven-
ient processes of iteration convergence checking for each 
and all the layers changing their elastic stiffness, as well as 
the approximate searching of the location of neutral axis by 
the layer strains; the semi analytical modeling of RC mem-
bers in bending has been proposed. The method uses the 
explicit (without the need of numerical integration) deriva-
tion of internal forces and moments, for compressive con-
crete, applying the second-degree Hognestad’s, prEN 
1992-1’s parabolas as well as the bilinear, and linear 
elasto-plastic stress strain diagrams while, for concrete in 
tension, employing the smeared cracks approach. In order 
to find the explicit solution of the system of nonlinear 
equations in terms of curvature and the neutral axis there 
can be used the proposed relation between acting moment 
and the depth of the zone of uncracked tensile cross-
section in combination with elasto-plastic stress strain dia-
gram for concrete in compression. The proposed relation-
ships are found to be of an adequate accuracy through the 
analysis of numerical examples and experimental verifica-
tion of curvatures of cracked RC concrete members with 
reinforcement ratio varying in the range from 0.2 to 1.5%.  
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R. Balevičius 
 
PUSIAU ANALITINIS LENKIAMŲ GELŽBETONIO 
ELEMENTŲ MODELIAVIMAS  

R e z i u m ė 

Straipsnyje lenkiamų gelžbetonio strypinių ele-
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mentų modeliavimui taikomos tikslios skerspjūvio vidinių 
jėgų ir momentų lygtys, atsisakant skaitinio integravimo 
metodų. Naudojant vidutinių plyšių modelį tempiamam 
betonui bei įvairias gniuždomo betono įtempių ir deforma-
cijų diagramas, ištirtos netiesinių lygčių analitinio spren-
džiamumo galimybės. Rezultatai, gauti taikant pasiūlytos 
priklausomybes, palyginti su rezultatais, gautais taikant  
empirinę SNiP normų metodiką. Atlikti skaitiniai eksperi-
mentai, parodytas teorinių ir eksperimentinių dydžių adek-
vatumas. 
 
 
R. Balevičius 
 
SEMI ANALYTICAL MODELLING OF REINFORCED 
CONCRETE MEMBERS IN BENDING 
 
S u m m a r y 
 

In present research, the proposed technique has 
been focused on explicit derivation of internal forces and 
moments for reinforced concrete in tension and compres-
sion without the need of numerical integration. The appli-
cation of different stress strain relations for compressive 
concrete and the smeared crack approach for tensile con-
crete is investigated on the basis of an opportunity to find 

the explicit solution of nonlinear equations. The approach 
proposed is found to be effective by numerical examples, 
and an adequate accuracy of the analysis results in com-
parison with the experimental data. 

 
Р. Балявичюс 
 
ПОЛУАНАЛИТИЧЕСКОЕ МОДЕЛИРОВАНИЕ 
ЖЕЛЕЗОБЕТОННЫХ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ  

Р е з ю м е 

В статье представлен анализ моделирования  
железобетонных элементов при изгибе с учетом кон-
цепции усредненных трещин и диаграмм деформиро-
вания материалов. Зависимости между усилиями и 
напряжениями, деформациями и жесткостями строи-
лись на основе возможностей их аналитического ре-
шения. Предложенная расчетная методика апробиро-
вана в результате численных исследований и путем 
сопоставления результатов расчета с эксперименталь-
ными данными, а также с методом СНиПа. 
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