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1. Introduction 

 
A lot of methods, algorithms, approaches have 

been developed for optimization methods in engineering 
optimal design of structures in the last three decades and 
earlier [1-7]. One can mention that recently widely applied 
genetic algorithms, based on the implementation of bio-
logical principles to computational optimization, have been 
used to solve structural optimization problems [4, 5, 8]. 
They employ the principle of the fittest in structural de-
sign. Attractive feature is their compatibility with discrete 
optimization, it does not require derivatives of functions as 
in classical optimization case. Most often in actual engi-
neering design cross-sections of the members are discrete 
ones, chosen from standard sections or constructed com-
bining them. This is conditioned by the availability of 
standard sizes due to manufacturing, construction, etc. rea-
sons. 

The most effective optimization methods employ 
mathematical programming methods. The applied methods 
range from simple optimization techniques to variational, 
energy principles employed in structural optimization 
problem [6, 7, 9, 10]. An evaluation of dissipative features 
of elastic-plastic vs elastic material of the structure enables 
significant economy of material resources in optimization 
of the structures [6-17]. Ductility of engineering structures 
(e.g. steel) is effective structural response feature in opti-
mal design and subsequent safe maintenance of actual 
ones. However, the evaluation only of strength constraints 
(i.e. as in rigid-plastic structural optimization [6,7,9-11]) 
does not ensure the optimal elastic-plastic structure to re-
sponse the loading by admissible displacements prescribed 
in design codes, therefore stiffness requirements must be 
introduced into optimization problem [5,14-17]. Structural 
optimization problem formulated as mathematical pro-
gramming problem and including stiffness constraints can 
be formulated and solved directly [15] or applying the pro-
posed method of certain optimization cycles, i.e. stepped 
optimization [16,17]. Both methods employ structural elas-
tic response values as input data of optimization problem, 
those finally conditioning the optimized parameters of the 
structure. In practical realization this feature enables the 
problem to be solved iteratively, recalculating above val-
ues for running optimization iteration till the problem’s 
solution convergence. Stepped optimization problem for-
mulation via optimization cycles, containing subsequent 
solution of analysis and optimization problems, allows 
avoiding an evaluation of complementarity conditions. The 
latter are included in direct multi-extremum optimization 
problem. They complicate significantly numerical solution 

of the problem or sometimes make it to be unsolvable one, 
often in the cases of larger structures. 

A noncorrect choosing of bounding constraints, 
that of starting point values complicates the direct and 
stepped optimization procedures or even makes the prob-
lem the unsolvable one. Stepped process procedures han-
dling ensures an efficient and successful convergence of 
the solution process.  

The aims of the investigation are: to develop 
mathematical models for direct and stepped flexural frame 
optimization; perform analysis of numerical solution as-
pects of structural optimization problems. The proposed 
techniques are illustrated via a solution of ten-storey single 
bay flexural steel frame, subjected by vertical and lateral 
loads. The optimization is performed taking into account 
relations, valid for standard steel section properties.  

 
2. Mathematical model of frame direct optimization 

problem and its numerical realization 
 
2.1. Mathematical model  
 

The direct frame optimization problem of mini-
mum “theoretical weight” considering strength, stiffness 
and constructional constraints is stated as nonlinear 
mathematical programming problem with linear objective 
function. Mathematical model for the frame FEM model 
reads: 
find: 
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Here is frame linear optimality criterion; 

 is the vector of total lengths of the 

frame constant cross-section members (via  denoting a 
number of frame member types) compatible with the vec-
tor of frame limit bending moments (further in text mo-
ments instead of bending moments for simplicity); 

0ML
T

( T
n21 L,...,L,L

0000=L )
0n

( )00 01 02 0

T

nM ,M ,...,M=M , yyWM σ=0 , where  is 

cross-sectional plastic modulus and 
yW

yσ  is material yield 

strength; is 

the vector of moments of elastic solution; 

( ) ( )Tn,ej,e,e,e
T

j,ee M,...,M...,,M,MM 21==M

( )Tj,rr M=M  is 

vector of residual moments; is the vector of 

displacements of elastic solution;  is the vector 

of residual displacements; 

( )=
T

e e,iuu

( )Ti,rr u=u

( )Tj,11 λ=λ  and ( )Tj,22 λ=λ  are 
the vectors of Lagrange multipliers of yield conditions (2); 
F  is the vector of external loads;  and  are the vec-
tors of prescribed upper and lower displacement variation 
bounds, respectively; is the vector of minimum limit 
moments. For instance, it’s components can be chosen as 
maximum values obtained by rigid-plastic structural opti-
mization, from constructional requirements, etc.; 

+
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−
du

min
0

M

[ ]C  is 
- dimensional configuration matrix of local ( ms ×6 ) u and 

that of global  displacements, containing unit and zero 
components (via 

u
s  denoting a total number of finite ele-

ments and via  denoting a number of global dis-

placements); 

DOF=m

[ ]A  is -dimensional fictitious matrix 

of frame elements equilibrium eqns 

( ss 26 × )

[ ] FM =eA  in global 
coordinate system, where vector F couples nodal forces of 
frame elements ends. Note that [ ] [ ] FM =e

T AC ; [ ]K  is 
-dimensional quasi-diagonal frame stiffness ma-

trix of elemental flexural stiffnesses 
( ss 22 × )

pp lEI ( )s,...,,p 21=  
in case of alike material, i.e. alike elasticity modulus E ; 
[ ] [ ] [ ][ ]CKCK T=  is ( - dimensional stiffness matrix 

of the structure, where 

)mm×

[ ]K ( )ss 66 × is - dimensional 
quasidiagonal matrix of the structure, obtained by 

assemblage of the elements stiffness matrices [ ]pK  in 
global coordinate system. Introducing the notations 

αcosa = , αsin=b , via α  denoting an angle between 
finite element axis and horizontal global coordinate axis, 
and , , , the element  
stiffness matrix reads (up to multiplier 
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The problem (1)-(9) solution yields the optimal 
distribution  of  limit moments, residual moments, residual 
displacements and Lagrange multipliers. 

An elimination of residual moments and residual 
displacements from above mathematical model enables to 
reduce the set of unknowns in optimization problem up to 
limit moments  and Lagrange multipliers , . Hav-
ing introduced the matrices 

0M 1λ 2λ
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residual moments and displacements are expressed by 
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Then the modified mathematical model (1)-(9) reads: 
find: 
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The moments and displacements of elastic solu-
tion (7) and (8) represent the sums of products of certain 
influence coefficients and loading components. These co-
efficients combine certain flexural stiffnesses of elements 
EI (here and further missing element index  for simplic-
ity), where 

p
I  is cross-sectional second moment of area A . 

Cross-sectional limit moment  also depends on it’s 
plastic modulus  being the double magnitude of cross-
section first moment of area 

0M

yW
A . So, the cross-sectional 

input data parameter – moment of inertia I  and optimiza-
tion result parameter  are functionally related via it’s 
area 

0M
A . To identify the actual relations between above 

parameters one must perform certain functional analysis in 
respect of A . In case of standard sections (e.g. of certain 
ones being employed in usual engineering practice) one 
must perform a relational approximation of above section 
characteristics. The above values for usual standard cross-
sections can be approximated with sufficient accuracy by: 

31
1 0 3= = bb

yI a A , M a Aσ

3311 b,a,b,a

 (17) 

where  are the identified constants, depending 
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on the class of cross-sections to be manufactured. 
It is obvious that direct incorporation of expres-

sion for the moment of inertia I  vs  (combining (17) 
and the expression of stiffness matrix [

0M

]K  for subsequent 
obtaining of matrices and [ ]G [ ]H ) leads to rather com-
plicated expressions. Analogously, obtaining of displace-
ments and moments of elastic solution expressed via  
in matrices of relations (7) and (8) of mathematical model 
of optimization problem seems to be also very compli-
cated. Thus, keeping in mind numerical difficulties even 
met when solving the above presented optimization prob-
lem formulations, a direct introduction of above relations 
into the mathematical model of optimization problem for-
mulations and their subsequent solution is rather difficult 
even for small simple structures. 

0M

Seeking to avoid the above described difficulties 
the optimization problem is solved iteratively obtaining per 
each iteration an exact optimization problem solution in 
respect of introduced elastic response values (input data for 
problem). As for starting point a certain collection of 
cross-sections is chosen to identify elastic response values 
for the beginning of optimization problem solution proc-
ess. Having obtained the optimal limit moments of cross-
sections (then the corresponding to them A  and I ) the 
new elastic values are recalculated for subsequent optimi-
zation problem resolving. Such process is repeated until 
the optimization problem’s convergence. 
 
2.2. Numerical realization peculiarities of the  

optimization problem 
 

Efficiency and even successful performing of it-
erative process depend upon many factors, coupling intro-
duction of correct starting point and restrictions, solution 
processing, namely: choosing good primary set of design 
values; introduction bounds for minimal limit moments 
and extreme displacements, compatible with elastic-plastic 
structural behaviour; identifying lower and upper bounds 
of design values for running calculation procedures; opti-
mization process handling aiming to avoid or overcome 
singularity or process “hanging” cases, etc.; correction of 
obvious deviation of the process direction from optimal 
trajectory when seeking for faster process convergence. 

Starting point. Performed numerical experiments 
in respect proved that as starting distribution of limit mo-
ments the solution of rigid-plastic structural optimization 
[9, 10] can be employed. The starting point values are ob-
tained as of increased proportionally by certain coefficient 
ones after checking that the resulting total displacements of 
starting structure are sufficiently less than those of the in-
troduced by stiffness constraints. 

Fixing lower bounds of limit moments for iterative 
procedures. Extended numerical experiments viewed that 
optimal solution finally yields the values greater than ob-
tained by rigid-plastic optimization. Physically it can be 
explained that total structural ductility resource of elastic-
plastic structure, being in elastic-plastic state, is maximally 
employed, resulting the objective function minimal magni-
tude. Generally, these values can be limited as nonzero 
ones. This case either increases the required number of 
solution iterations till problem convergence or often makes 
it unavailable at all. If certain constructional requirements 

in respect of limit moments are introduced, one must fol-
low them to be no less than the ones from rigid-plastic op-
timization. 

Introducing constraints for displacement magni-
tudes. Actually, the structure is created to response in elas-
tic-plastic way in order to employ it’s carrying resources 
conditioned by its ability to deform plastically. Therefore it 
makes sense to choose the values larger the ones of elastic 
solution components (at least of one, to allow development 
of plastic deformations). The magnitudes of residual dis-
placements can be obtained having solved analysis prob-
lem [6,9] in respect of slightly increased limit moments, 
obtained by rigid-plastic optimization. 

Iteration process handling. Iterative solution of 
direct optimization problem results a distribution of limit 
moments (note, that at least one displacement constraint is 
satisfied as equality [17] – in this case it is structure behav-
ior dominant) if constraints both in respect of limit mo-
ments and displacements are introduced correctly. Find 
that having recalculated actual stiffness properties and 
solved analysis problem in respect of each problem itera-
tion (solution) some displacements constraints can be vio-
lated or satisfied with certain reserve. Obviously an objec-
tive function and dominating displacement constraints de-
viate per iterations. If the process stops (results governing 
matrices to be singular/(close to singular), rank deficiency 
appears, etc.) one must perform artificial intervention (“im-
pact”) by reducing/increasing slightly accordingly the in-
put/(previous iteration) limit moments. One can meet that 
the process obviously deviates from optimal trajectory. 
Then aiming to reduce computational efforts the input data 
for subsequent iterative procedures are to be analogously 
“impacted”. A potential of residual moments can serve as a 
criterion of optimality for the structure states close to op-
timal. For the state close to optimal it is greater than com-
pared with others (only one must check the displacement 
constraint to be not violated and limit moments to be 
greater than those of the rigid-plastic optimization). As a 
specific peculiarity one can mention the feature, that the 
iterative process being close to the optimal solution com-
plicates: it stops or “hangs “quite often, the significant in-
crement of the computational time for iterations is ob-
served. 

The principle algorithm scheme of direct flexural 
frame optimization is presented in Fig. 1. 
  
3. Mathematical model of frame stepped optimization 

and it’s numerical realization 
 

Aiming to avoid the numerical solution difficul-
ties, conditioned by complementarity conditions (5) or (14) 
when solving direct optimization problem (1)-(9) or its 
modification (12)-(16), a problem solution method per 
certain optimization cycles, realizing subsequent solutions 
of certain sub-problems or stages is employed [16, 17]. 
The cycles (optimization problem solution steps) are con-
tinued until the problem’s solution converges. The cyclic 
problem solution process is also conditioned by previously 
described reason - relation between input data and final 
result of solution cycle (distribution of limit moments). 
The main stages of frame optimization cycle υ  are: 
1. Determining elastic response values e,υM  and  due 

to primary (starting point) chosen cross-sections or due 
υ,eu
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to cross-sections (obtained from limit moments ) 
of previous optimization cycle 

10 −υ,M
1−υ . 

2. Defining residual response values  and  of the 
structure, being in state prior to plastic collapse, ac-
cording fixed in stage 1 moments of elastic solution  

υ,rM υ,ru

(i.e. solving structural analysis problem). 
3. Determining an optimal distribution of limit moments 

 to satisfy strength, stiffness and constructional 
requirements in respect of total response values 

υ,0M

υυυ ,r,e MMM +=  and . υυυ ,r,e uuu +=

 
 

 
Fig. 1 Algorithm principle stages of direct structural optimization 
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Frame analysis problem (stage 2) is solved apply-
ing the mathematical model (for simplicity neglecting the 
cycle index υ ), reading 
find: 
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subject to: 
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Residual response values via Lagrange multipliers 
 and  are obtained applying formulae (11). 1λ 2λ

The structure of optimality criterion is as ex-
plained in previous section. Under necessity it can be 
transformed to actual total structural volume or total 
weight, having replaced  by corresponding vector of 
members areas 

0M
A  (applying formula (17)), or vector of the 

areas and material density ρ  product. Then the optimality 

criterions are expressed by functions  or 

. The mathematical model of determining 
limit moments (see stage 3) at cycle reads (for simplicity 
omitting the cycle counter 

minT →AL

minT →ALρ

υ ): 
find: 
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Here  is total displacement being constrained in 
certain direction 

tu
t ;  is the number of constrained dis-

placements, ;  and  are the design upper 
and lover variation bounds of displacement . 
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Applying the virtual displacement principle the 

displacement  can be expressed by tu
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where  is the vector of actual end joint displacements 
of -th member, obtained from elastic-plastic analysis of 
the frame; 

p,tu
p

pu  is the vector of virtual displacements of -
th member, corresponding to a virtual unit load applied in 
the direction of the t-th restricted displacement of the 
frame, being in the state prior to plastic collapse;  is 
the member cross-sectional limit moment of running opti-
mization cycle 

p

υ,pM 0

υ . 
Find that constraints (21)-(23) express strength, 

stiffness and constructional requirements, respectively. 
Some notes on numerical realization peculiarities 

of stepped optimization problem. Generally, numerical 
realization and peculiarities are the same as described in 
section 2.2. However the solution process of stepped opti-
mization problem is more turned to singularities and 
“hanging” when comparing with that of the direct optimi-
zation problem’s one. One must more often “impact” the 
solution process, following the governing criterion – ap-
proaching of constrained displacement to admitted magni-
tudes and/or observing deviations of potential of residual 
moments vs objective function magnitudes of the structure. 
As specific peculiarity one must mark an influence of dis-
placement constraints (22) which employ function (24). 
They play a significant role in solution process. One must 
note that function must be convex to obtain a reliable solu-
tion of the problem (20)-(23). Thus, the Hessian of the 
function must be positively semidefined. The stepped solu-
tion process can lead to the situation when the Hessian of 
the function is not defined in the running cycle. It means 
that the domain of unknown limit moments  is a 
nonconvex one. This reason conditions the further iterative 
solution complications. The input data for cycle beginning, 
i.e. limit moments , must be “impacted” to over-
come this singularity accordingly when continuing optimi-
zation process, or one must stop it. When analyzing com-
puter resources, employed for optimization problem solu-
tion, one must mark that direct optimization method re-
quires hundreds or even more times of computational ef-
forts vs problem solution by direct optimization method. 

υ,pM 0

10 −υ,pM

 
4. Numerical simulations 
 

To compare the computational efforts and an effi-
ciency of direct and stepped optimization problem solution 
as well as to perform numerical solution process analysis, a 
ten-storey single bay flexural steel frame (see Fig. 2, a) 
subjected by vertical and lateral loads was investigated. 
Direct optimization method via the mathematical model 
(12)-(16) and the stepped one – combining the mathemati-
cal models (18)-(19) and (20)-(23) were realized. 

The structure FEM model contains 32 nodes, 
=s 40 members and =n 80 unknown bending moments, 

it’s DOF is =m 50. An optimal distribution of =0n 6 limit 
moments of standard steel IPE sections, coupled in 

( )TM,M,M,M,M,M 0605040302010 =M  are to be identi-

fied to satisfy linear optimality criterion  and intro-
duced nodal linear displacement constraints: for vertical 
ones – 5 cm and lateral ones – 20 cm (in absolute values), 
respectively. No constructional requirements in respect of 
minimum magnitudes of limit moments  are intro-
duced. Steel properties are described via elasticity modulus 

= 206 GPa and yield strength 

0ML
T

min
0

M

E yσ = 235 MPa. 
Then the cross-sectional moment of inertia (in 

cm4) and limit bending moment (in kNcm) are expressed 
via area A (in cm2) by 

(
2 319975

1 660459
0

0 791876

23 5 0 8294723

=

=

.

.

I . A

M . . A )   

Fixing lower bounds of limit moments. In order to 
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in horizontal direction – in upper beam, namely: fix for frame members the lower bounds of limit moments 
and to check correctness of limitations for displacement 
magnitudes (aiming to employ structural ductility re-
sources the structure is designed to response in elastic-
plastic range) the rigid plastic optimization [6] was per-
formed to identify . It yielded : pl

0
M

56 996 25 753 82 749= + = + =r eu u u . . . ;  

in vertical direction – in middle span of the 6-th 
beam (floor), namely: 

17 303 2 508 19 810= + = + =r eu u u . . . .  
( )0 22564 16339 13465 10336 32678 23801=

Tpl , , , , ,M   

resulting the objective function magnitude 
. 

0

8 23 5701 10 kNcm= ×T pl .L M

An investigation of elastic response limit of the 
above structure resulted in load reduction factor 

663220.red =γ , yielding extreme displacements (in cm) to 
develop in upper beam - , and vertical ones in 
the middle span of 8-th floor - . Thus, intro-
duced displacement constraints for vertical (5 cm) and 
horizontal (20 cm) ones do not restrict the development of 
plastic deformations – thus, they are chosen in correct way. 

08017.ue =
6631.ue =

The solution of analysis problem for obtained 
limit moments in respect of reduced loading (reduction 
factor 9999980.red =γ ) resulted the extreme linear struc-
tural displacements (in cm) to develop: 

 
 

 

c b a 

Fig. 2 10-storey frame: a - design scheme; b - positions of plastic hinges due optimal solution in Table 2; c - positions of 
plastic hinges due optimal solution in Table 4 
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Choosing starting point. The distribution of pri-
mary limit moments was taken to be of , multiplied 

by correction factor 

pl
0

M

51.cor =γ . This distribution ensures 
the sufficiently small displacements vs introduced con-
straints: extreme total horizontal displacement 62014.u =  
(with residual counterpart ) (in cm) developed in 
upper beam, and that of vertical one -  (no valu-
able residual counterpart fixed) fixed in the middle span of 
9-th floor. Only one cross-section of the structure was in 

plastic state – minimal residual structural response is ob-
served. 

00560.
5821.u =

An optimal solution via direct optimization prob-
lem (12)-(16) was obtained in 13 iterations (see last row of 
Table 1) under above described conditions. Further itera-
tions, deviating towards this solution required the signifi-
cant computational resources for calculations and resulted 
in no essentially better result. Only one “impact” (an in-
crement of limit moments by 0.1%) to overcome the proc-
ess singularity was necessary after the 6-th iteration. 

 
Table 1 

The optimum “weight” 10-storey frame solution convergence per iterations. Direct optimization problem. 
Starting point 1.5

 
,pl

0
M pl

00 MM ≥

Iteration  
number 01M  02M  03M  04M  05M  06M  ×0ML

T 810  hor,extru  

0 33846 24509 20198 15504 49017 35701 5.1799 14.62 
1 26323 21752 19008 11454 38689 24683 4.0122 29.26 
2 70832 25482 19380 13216 46136 31858 5.0593 15.12 
3 33482 18899 18537 10410 43435 28548 4.3694 23.79 
4 24614 23102 18605 10814 45326 29418 4.5271 19.01 
5 24150 21282 18710 11620 42564 28348 4.3325 21.32 
6 27982 23023 18670 11081 44932 29368 4.5319 18.63 
7 23.746 24832 19237 10603 46502 27800 4.6502 19.84 
8 22564 21491 18592 10440 43639 29261 4.4086 20.77 
9 27261 22288 18665 11513 42818 29041 4.4104 19.93 

10 26480 21360 18554 11767 42599 29353 4.3955 20.12 
11 25870 21500 19232 11656 42867 29370 4.4178 19.87 
12 28925 22529 18899 11691 43142 28220 4.4098 20.02 
13 25158 21984 18308 11786 43402 28949 4.4130 20.00 

 
Table 2 

The optimum “weight” 10-storey frame solution convergence per iterations. Direct optimization problem. 
Starting point 1.5

 
,pl

0
M 0≥0M

Iteration  
number 01M  02M  03M  04M  05M  06M  0 ×

TL M 810  hor,extru  

0 33846 24509 20198 15504 49017 35701 5.1799 14.62 
11 23975 21960 23769 10683 43476 28865 4.4846 20.33 
21 25554 22009 18651 11705 42761 29214 4.4035 20.04 
66 29654 22563 18603 11664 42399 28901 4.4061 19.97 

         

To check an influence of limiting bounds for limit 
moments  to the problem’s solution conver-

gence, this problem was resolved for constraints . 
An optimal solution was obtained only in 66 iterations (see 
last row of Table 2), that obviously illustrates the necessity 
to employ the limiting bounds, determined by rigid-plastic 
optimization. One “impact” (increment of limit moments 
by 0.1%) to overcome the process singularity was neces-
sary to introduce after the 25-th iteration. The direct opti-
mization problem was also solved for another starting 
point taken as 1.3 . An optimal solution was obtained 
by 16 iterations (see last row of Table 3). 

min
00 MM ≥

0≥0M

pl
0

M

Analyzing three above optimal solutions one can 
find that under slight deviation of the objective function 
magnitude only two first limit moments vary more in re-
spect of each other, when the other ones change insignifi-
cantly (in percentage). Actually, the final selection of 
cross-sections/limit moments is performed from prescribed 

discrete set of sections, therefore a precise convergence 
(requiring relatively large number of iterations, i.e. compu-
tational effort) is not of actual necessity. From the other 
hand possessing of a certain set of solutions in an area 
close to the optimal solution (direct criterion – objective 
function magnitude, indirect criterions – active limiting 
displacement constraints and magnitude of potential of 
residual moments) gives a certain space for engineering 
decisions of the structure, close to “expected exact” opti-
mum. 

The frame was solved by stepped optimization 
method via optimization cycles (see section 3) under the 
same input conditions, i.e. primal distribution of limit mo-
ments 1.5  and . An optimal solution was 
obtained by 14 iterations (see last row of Table 4). One 
must note that the stepped optimization via cycles is more 
sensitive when handling convergence and successful solu-
tion processing. The introduced slight “impacts” to the 
limit moments of previous cycles were conditioned by the 

pl
0

M min
00 MM ≥



 48

Table 3 
The optimum “weight” 10-storey frame solution convergence per iterations. Direct optimization problem. 

Starting point 1.3
 

,pl
0

M pl
00 MM ≥

Iteration  
number 01M  02M  03M  04M  05M  06M  ×0ML

T 810  hor,extru  

0 29333 21241 17505 13437 42481 30941 4.4893 19.61 
5 22597 24711 18400 11384 44181 29103 4.4842 19.32 

10 23349 21094 18467 11490 42188 29008 4.3303 21.48 
15 29994 21345 18370 11815 41923 29507 4.3969 20.10 
16 32486 22602 18678 11930 41698 29158 4.4100 19.85 

 
Table 4 

The optimum “weight” 10-storey frame solution convergence per cycles. Stepped optimization problem. 
Starting point 1.5  ,pl

0
M pl

00 MM ≥

Iteration  
number 01M  02M  03M  04M  05M  06M  ×0ML

T 810  hor,extru  

0 33846 24509 20198 15504 49017 35701 5.1799 14.63 
1 29533 24263 18984 13368 45639 31738 4.7523 16.40 
2 28756 24506 18947 13218 45891 31715 4.7591 16.53 
3 28468 24261 18758 13086 45432 31398 4.7115 16.92 
4 28184 24018 18570 12955 44978 31084 4.6644 17.33 
5 27902 23778 18385 12826 4528 30773 4.61789 17.78 
6 27623 23540 18201 12697 44083 30466 4.5716 18.31 
7 27346 23305 18019 12570 43642 30161 45259 18.26 
8 27620 23538 18199 12696 44079 30463 4.5711 18.31 
9 27344 23303 18017 12569 43638 30158 4.5254 18.89 

10 27070 23070 17837 12443 43201 29856 4.4802 19.34 
11 26935 22954 17748 12381 42985 29707 4.4578 19.72 
12 26800 22840 17569 12319 42770 29559 4.4355 19.99 
13 26773 22817 17641 12307 42728 29529 4.4310 20.00 
14 26747 22794 17624 12295 42685 29499 4.4266 20.00 

 
following criterions: reduction of objective function mag-
nitude and an approach of extreme displacement magni-
tude to admitted bound. Note that of all displacement con-
straints only one - horizontal displacement of upper beam - 
was governing in all above described optimization cases 
(including their inner iterations) in all considered cases of 
the frame optimization presented in last columns of above 
mentioned Tables. 

Analyzing response (via solution of analysis prob-
lem (18)-(19)) of optimal structure (see last rows of Ta-
bles 1-4). In all cases extreme horizontal displacements 

 develop in the upper beam of the frame and vary 

from 19.97 cm to 20.00 cm. The optimum structural 
“weight” vary from 4.4061× 10

extr ,horu

8 kNcm2 till 4.4266× 108 
kNcm2. Bounding magnitudes for vertical displacement are 
not achieved. Maximum magnitude develops in the middle 
span of 8-th flour and varies from 2.16 cm (for Table 4 
solution) till 2.31 cm (for Table 2 solution). In all cases 
plastic counterparts of bending moments and displace-
ments appear. Analyzing collections of plasticized cross-
sections due to the presented solutions, one can find that 
only part of them differs (partial variation of certain num-
ber of plasticized cross-sections are possible for the solu-
tions close to expected “exact theoretical” one). As two 
principle collections of plasticized cross-sections (com-
patible with plastic hinges activated) can be treated the 
ones corresponding  to solutions  of Table 2 (see Fig. 2, b) 
and Table 4 (see Fig. 2, c), respectively. 

When comparing direct and stepped optimization 

results of the frame under identical constraints and starting 
point one can find only slight difference (0.308%) in re-
spect of objective function magnitude and relatively small 
difference ranging from 0.037% (in respect of ) till 
6.32% (in respect of ) vs significant computational 
effort savings in case of stepped optimization. 

02M

01M

 
5. Discussion and concluding remarks 
 

In this investigation, two possible ways to solve 
elastic-plastic frame optimization problem, considering 
strength and stiffness constraints are investigated. The 
structural optimization is aimed to find an optimal distribu-
tion of cross-sectional areas (limit moments), sufficient for 
subsequent selection of the actual ones from discrete set of 
standard steel sections. 

Numerical realization aspects taking into account 
identified actual physical relations of standard steel sec-
tions properties were analyzed. The investigation proved 
that the solution process is sensitive to starting point, in-
troduced lower bounds for designed variables. Numerical 
processing analysis viewed a necessity of solution trajec-
tory handling, aiming to reduce computational efforts 
and/or either to avoid the process singularities or it’s 
“hanging”. 

It was defined that increased magnitude of the po-
tential of residual moments is compatible with reduced 
objective function magnitude of structure for it's state close 
to an optimal one. Then corresponding limit moments ex-
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ceed/are equal the ones of rigid-plastic optimization. This 
feature should be directly incorporated in further develop-
ments of iterative optimization methods of elastic-plastic 
structures. 

Finally, one can conclude that: 
1. Stepped optimization method via optimization 

cycles illustrates the sufficient accuracy and significant 
savings of computational resources vs direct optimization 
method. This is especially important in case of larger struc-
tures. 

2. Sufficient accuracy of the method is condi-
tioned by small deviations of possible solutions from “ex-
pected exact” one, keeping in mind certain variation of 
limit moments (i.e. sections areas) under small change of 
structural optimal “weight”. Moreover a final actual selec-
tion of profiles for the structure actually is performed from 
discrete set of manufactured sections. This usually enve-
lopes a variation of cross-sectional areas per available so-
lutions of structural optimal “weight”.  

3. The convenient relation of displacement vs 
limit moments, employed in stepped optimization problem 
solution process, is proposed.  

4. The reliability of obtained results is ensured by 
the application of extreme energy principle for actual 
structural state definition (direct optimization) and of the 
actual structural state checking/evaluation in each optimi-
zation cycle (stepped optimization). The proposed princi-
ples of stepped optimization can be employed for optimum 
design of more complicated structures. 
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R. Karkauskas, A. Norkus 
 
PLIENINIO LENKIAMO RĖMO TIESIOGINIO IR 
PAKOPINIO OPTIMIZAVIMO UŽDAVINIAI, 
ATSIŽVELGIANT Į STIPRUMO IR STANDUMO 
APRIBOJIMUS, IR JŲ SKAITINIS SPRENDIMAS 
 
R e z i u m ė 
 

Nagrinėjamas lenkiamo plieninio tampriai plas-
tiško rėmo optimizavimas tiesioginiu ir pakopiniu meto-
dais. Abiem atvejais naudojami konstrukcijos tampraus 
atsako dydžiai, kurie savo ruožtu yra sąlygojami optimi-
zuojamų konstrukcijos parametrų. Todėl  uždavinys spren-
džiamas iteraciniu būdu, kiekvieną kartą perskaičiuojant 
šiuos parametrus pagal gautus konstrukcijos optimizavimo 
rezultatus, kol uždavinio sprendimas konverguoja. Taikant 
pakopinį metodą, optimizavimo uždavinys formuluojamas 
nuosekliais ciklais, apimančiais analizės ir optimizavimo 
uždavinius. Tai leidžia tiesiogiai nenaudoti papildomumo 
sąlygų, įeinančių į tiesioginio optimizavimo uždavinį. Ne-
korektiškas apribojimų dydžių ir pradinių parametrų parin-
kimas skaičiavimo procesui pradėti, sprendžiant tiek tie-
sioginio, tiek pakopinio optimizavimo uždavinius, iš esmės 
komplikuoja iteracines/pakopines sprendimo procedūras 
arba net padaro uždavinius neišsprendžiamus. Sumaniai 
reguliuojant pakopinį procesą užtikrinama efektyvi ir sėk-
minga uždavinio konvergencija, daug mažiau naudojami 
kompiuterio ištekliai, palyginti su tiesioginės optimizacijos 
metodu. Siūlomi metodai yra iliustruojami skaičiuojant 10 
aukštų plieninį rėmą, projektuojamą panaudojant standarti-
nius plieno profilius.  
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R. Karkauskas, A. Norkus 
 
ON DIRECT AND STEPPED OPTIMIZATION 
PROBLEMS OF FLEXURAL STEEL FRAME AND 
THEIR NUMERICAL REALIZATION CONSIDERING 
STRENGTH AND STIFFNESS CONDITIONS 
 
S u m m a r y 
 

Optimization of flexural steel frame responding to 
loading in elastic-plastic range via direct and stepped 
methods is considered. Both methods employ structural 
elastic response values, finally conditioning the optimized 
parameters of the structure. It enables the problem to be 
solved iteratively by recalculating the above values for 
running optimization problem solutions and is continued 
until problem’s convergence. The formulation of stepped 
optimization problem via optimization cycles, containing 
subsequent solution of analysis and optimization problems, 
allows to avoid direct evaluation of complementarity con-
ditions being included in the direct optimization problem. 
A noncorrect choosing of bounding constraints, the starting 
point values essentially complicate the iterative and/or 
stepped procedures or even makes the problem to be the 
unsolvable one. An intelligent handling of stepped process 
procedures ensures an efficient and successful convergence 
of the problem with significant computing resources sav-
ings in respect of direct optimization procedures. The pro-
posed techniques are illustrated via the solution of ten-
storey steel frame, designed from standard steel sections.  

 
 

Р. Каркаускас, А. Норкус 
 
О ЗАДАЧАХ ПРЯМОЙ И ШАГОВОЙ 
ОПТИМИЗАЦИИ ИЗГИБАЕМОЙ СТАЛЬНОЙ РАМЫ 
И ИХ ЧИСЛЕННОЙ РЕАЛИЗАЦИИ ПРИ 
ПРОЧНОСТНЫХ И ЖЁСТКОСТНЫХ 
ОГРАНИЧЕНИЯХ 
 
Р е з ю м е 
 

Представлены методы прямой и шаговой оп-
тимизации стальной изгибаемой рамы в упруго-
пластичной стадии работы. В реализации обоих мето-
дов используются характеристики упругого поведения 
конструкции, которые в свою очередь обуславливают 
оптимизируемые параметры конструкции. Поэтому 
задачи оптимизации решаются итерационно, пересчи-
тывая упругие параметры конструкции до достижения 
сходимости процесса расчёта. Используя шаговый ме-
тод, задача оптимизации формулируется в виде после-
довательных циклов, объединяющих в себе задачи 
анализа и оптимизации. Такой подход позволяет избе-
жать непосредственного использования условий до-
полняющей нежесткости, входящих в задачу прямой 
оптимизации. Некорректный выбор ограничений зада-
чи, а также исходных параметров значительно ослож-
няет процесс решения и даже может сделать задачу 
неразрешимой. Направленное воздействие, используе-
мое в процессе шаговой оптимизации, значительно 
улучшает сходимость решения по сравнению с мето-
дом прямой оптимизации, что в свою очередь снижает 
затраты расчетных ресурсов. Предложенные методы 
иллюстрируются численным примером расчета сталь-
ной десятиэтажной рамы, проектируемой из стандарт-
ных металлических профилей. 
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