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1. Introduction 

 
Suspension cable is a specific structural element 

widely employed in engineering practice to cover large 
spans (e. g. bridge structures) or areas (roofing) [1-6]. An 
attractive feature of suspension cable or the system of sus-
pension cables is the sufficiently high carrying capacity 
versus its weight. Due to specific feature – vanishing ca-
pacity to resist bending and compression, suspension cable 
responses to loading in specific way. It changes the pri-
mary shape in the way to resist loading only via one type 
of deforming – tension. Thus, the shape of loaded cable is 
prescribed by two factors, namely: cable adaptation to 
loading; deforming due to developed axial tensile internal 
forces. The displacements, caused by the above mentioned 
factors are denoted as kinematic (non-straining) and elastic 
ones. One must note that usually the first type displace-
ments have an essential contribution to cable shape. The 
remaining ones actually are conditioned by the first ones as 
the distribution of axial forces depend on the cable shape. 

Due to suspension cable adaptation to loading pe-
culiarities, the relation load versus displacement is strongly 
nonlinear. One can mention that this geometrically nonlin-
ear behavior (due its nature) differs from other structural 
members, possessing certain flexural stiffness (when large 
displacements are resulted by deformations). In cable case 
the large displacements usually are conditioned by it’s ad-
aptation to loading processes. Actually the cable has its 
primary form, compatible with certain loading (at least the 
weight force). An essential change of it’s shape is caused 
by a supplement loading, differing in principle from the 
primary one. It can be concentrated loads, applied irregu-
larly or additional asymmetrically distributed load. The 
latter case is the most general case, met in engineering 
practice and subsequently in codified design. 

A codified design of a structure introduces certain 
restrictions in respect of it’s displaced/deformed shape 
under loadings. These requirements are realized via maxi-
mal displacement and member curvature (second deriva-
tive of displacement) limitations up to fixed magnitudes. 
Thus, the accuracy when valuating actual maximal dis-
placements, their locations is of the first significance to 
obtain reliable and economically efficient design project. 
One can also note, that the displacement constraints usu-
ally predominate in actual design of suspension ca-
ble/system of suspension cables. 

The large list of investigations on cable behavior 
analysis [6-11] illustrates the relevancy of the problem and 
the lack of efficient and sufficiently exact methods suitable 
for engineering practice. The widely employed engineering 
(simplified) methods to estimate vertical total (kinematic 

and elastic) displacements employ the superposition prin-
ciple when splitting the actual loading to asymmetric and 
symmetric distributed loads [3, 12, 13]. But direct applica-
tion of superposition principle for geometrically nonlinear 
cable behavior of specific nature results certain errors. As 
an alternative to reduce the error the certain equivalent 
load concept [6, 14] was introduced. Unfortunately, the 
clear instructions to identify this equivalent load are not 
fixed, leading to certain uncertainty when applying this 
method. 

One can conclude that the list of investigations, 
assigned to efficient and reliable estimation of kinematic 
displacements (governing when conditioning suspension 
cable shape under asymmetric loading) is small so far. An 
investigation of the authors [15] presented an analytical 
method to estimate kinematic displacements. The method 
was sufficiently (comparing with only few exact solutions 
under existence) accurate and suitable for engineering de-
sign practice. 

As an attractive and efficient alternative for cable 
analysis is the application of FEM techniques [16-18]. To 
confirm additionally the reliability of the proposed method 
[15] numerical modeling of suspension asymmetrically 
loaded cable kinematic displacements was performed by 
nonlinear finite element method package COSMOSM. 
Comparison of the results with these obtained by the pro-
posed analytical and widely applied engineering methods 
was performed. 
 
2. Cable shape valuation via analytical expressions of 

kinematic displacements 
 

The shape of a cable, subjected by a distributed 
load q applied per total span, fits quadratic parabola. When 
a supplement asymmetric distributed load p (e.g. left mid-
dle span) is applied, the suspension cable changes its form 
adapting the loading (see Fig. 1). To distinguish pure ki-
nematic displacements the axial stiffness ∞→EA  ( E  and 
A denoting cable elasticity modulus and cross-sectional 
area, respectively) is to be introduced. The elastic dis-
placement magnitudes then approach to zero.  

Then the cable shape can be analyzed separately 
for left (loaded by p) and the right (free of this load) parts. 
Then the cable shape functions reads [15] 
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here ,  are the moment and the tensile force of 
the left, loaded by 

)(1 xM l 1lH
)( pq +  cable part, respectively; 

,  are the moment and the thrusting force of the 
right cable part, respectively; 

)(1 xM r 1rH
γ = p q  is the ratio of 

asymmetric and symmetric loads intensities. 
Fig. 1 denotes via  the cable sag in 

the middle span and via  the kinematic middle span 
displacement. 
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Fig. 1 Suspension cable design scheme 

 
2.1. Cable left part vertical kinematic displacements  

 
Cable left part can be determined by [15] 
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It is obvious that for the middle span 

( ) 0 12l x l / f f fω Δ= = − =  (4) 

where  is the cable primary sag. 0f
Find that kinematic displacement  can be de-

termined when  or 
)(xwl

1f kfΔ  are already known. The latter 
values can be obtained by [15] 
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Having identified the cable sag , the left part 
vertical displacements is obtained by 
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where  
 

21 5 1ξ γ γ= + + 6  (9) 

Find that kinematic displacements are directly de-
pendent on the cable sag. The increase of the loads ratio γ  
results the increase of the ( )xlω  magnitudes. The obtained 
expression (9) is convenient for usage, as it does not in-
clude . It is obvious, that kinematic displacement for 
(

1f
2/lx ≤ ) is ( ) kl fx Δω = . 

In practical design one must identify maximal de-
flection and its location point. Increasing the loads ratio γ  
from 1 to 10, the maximal deflection location point varies 
insignificantly [15]. Therefore it is enough to fix its loca-
tion as the first quarter point, then the maximal kinematic 
displacement can by obtained by: 

( ) ( )00 75 1 2 3 1l ,max x . f /ω γ ξ= + −⎡ ⎤⎣ ⎦  (10) 

2.2. Cable right part vertical kinematic displacements 
 

Kinematic displacements of the right cable part 
can be obtained via expressions [15], reading 
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Find the formulae formula (8) and (12) to be 
analogous. When varying the loads ratio γ  from 1 to 10, 
the maximal deflection location point varies insignifi-
cantly. Therefore an approximate maximal vertical dis-
placement location point can be taken at the end of the 
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third middle span quarter [15]. Then an approximate 
maximal kinematic displacement of the right part can be 
obtained by 

( ) ( )00 75 1 1 3r ,max x . fω ξ γ ξ= − +⎡⎣ ⎤⎦  (13) 

Analyzing the left part displacement max,lω  and 
that of the right part max,rω , one can find that the unloaded 
part displacements are larger in absolute magnitudes when 
compared with the ones of the loaded cable part. When 
increasing the loads ratio γ , the difference between these 
values in absolute magnitudes also increase.  
 
3. Numerical modelling of kinematic vertical  

displacements 
 

The asymmetrically loaded suspension cable 
shape evaluation via the numerical simulations by means 
of FEM package COSMOSM was performed. The aim of 
numerical simulations was estimating the reliability of the 
relations of proposed analytical method (see section 2) and 
that of the widely applied engineering methods. 

For analysis of the structure response to loading 
the suspension cable of span =l 100  and primary sag 

10 m  was chosen (design scheme see in Fig. 1). The 
cable loading is splited to symmetric  and asymmetric  
distributed loads. The response of the cable was investi-
gated in respect of loads ratios 

m
=0f

q p

qp=γ , varying it by 
101−=γ . The cable FEM design scheme was modeled by 

pin-jointed structure, created from straight bar finite ele-
ments. The actual distributed loading at nodes areas was 
replaced by resultant concentrated loads applied onto 
nodes (hinges). The nodes in FEM model were introduced 
to fit the exact primary cable contour curve of quadratic 
parabola. To estimate the influence of introduced number 
of finite elements (discretization level) on the results of 
numerical simulations, the calculations were performed 
modeling cable by 100 and 200 finite elements, respec-
tively. Note that the number of elements of an actual cable 
approaches to infinity. 

Actually, an application of FEM package results 
total values of displacements, caused by geometrically 
nonlinear adaptation of the structure to loading (kinematic 
displacements) and the action of internal forces (elastic 
displacements). Aiming to separate the kinematic dis-
placements from total ones via numerical means, a suffi-
ciently large axial stiffness 51561 3 MΝEA .=  (resulting 
magnitudes of elastic components of cable total displace-
ments to be significantly far from kinematic ones) of finite 
elements was chosen. 

One must note, that varying the loads ratio γ  the 
intensities of symmetric  and asymmetric  loads were 
chosen in the way the resulting thrusting forces of the ca-
ble to remain almost constant (unchanged), i.e. 

q p

constH ≅ . 
Thus, the intensities of symmetric and asymmetric loads 
were determined by 

( )08 1 0 5q Hf . γ= +  (14) 
p qγ=  (15) 

As for graphical illustrations of FEM simulations 
of cable shape the cable response vs three γ  magnitudes 
are presented in Figs. 2-4. 

To perform a reasonable comparison of the ob-
tained results when employing the above mentioned meth-
ods and the FEM package, the maximal vertical displace-
ments of asymmetrically loaded cable part were analyzed 
at the points 4lx = (left, loaded by , cable part) and in 
the point 

p
43lx = (right, free of the asymmetric loading 

, cable part). The above mentioned coordinates of cable 
points are compatible with locations of extreme 
displacements. Coordinates of these points are also fixed in 
the widely applied engineering methods, aimed to identify 
extreme kinematic displacements. We remind the reader 
that the error when calculating extreme displacements em-
ploying these coordinates does not exceed 1.6% [11, 15]. 
The analysis results are presented in Tables 1-4, where 
superscripts ,  and  refer to the proposed analytical, 
FEM package COSMOSM and engineering analysis meth-
ods, respectively. 

p

t c en

 

 
 

Fig. 2 Cable kinematic displacements via COSMOSM in case γ =1 
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Fig. 3 Cable kinematic displacements via COSMOSM in case γ =5 
 

 
 

Fig. 4 Cable kinematic displacements via COSMOSM in case γ =10 
 

The calculation results of left part maximal dis-
placements of asymmetrically loaded cable are presented 
in Table 1. The result analysis shows that the difference 
between maximal vertical displacements max,lω , obtained 
by proposed in the paper and that of calculated by FEM 
package COSMOSM is not significant. The maximal rela-
tive difference is 4.90% in case of loads ratio γ = 1. This 
accuracy is sufficient enough for practical calculations 
when valuating the changed shape of loaded cable. When 
increasing the γ  magnitude up to 10, the latter difference 
gradually decreases till 2.8%. This result indicates a quali-
tative compatibility of changed cable shapes, determined 
by applying the proposed analytical and employed finite 
element method package. 

One must note that vertical displacements, ob-
tained via FEM package are less comparing to the ones, 
obtained by analytical method. This illustrates a little over-
estimation of cable adaptation displacements, conditioned 
by: an approximation of actual cable design scheme via 
certain number of the elements; accuracy when replacing 
the distributed loads by resultant concentrated ones; the 
FEM package accuracy when calculating such type of the 
structure; other. When analyzing the cable FEM design 
model, one can find the total primary length of the cable 
modeled by piece-wised curve to be a little bit less the ac-

tual one (being employed in analytical method) of smooth 
quadratic parabola cable curve. In addition, the cable 
thrusting force being identified via FEM model calcula-
tions (caused by concentrated resultant forces) is a little bit 
greater than the one, obtained by analytical method. This 
insignificant difference (approximately 1%) in respect of 
thrusting force increases with an increment of γ . The in-
creased thrusting forces reduces the cable middle span ver-
tical displacement kfΔ . It is evident that the primary cable 
length and thrusting force have direct influence on kine-
matic displacements [6, 9-11, 15]. 

One must note that calculation error of suspension 
cable kinematic displacement obtained when applying en-
gineering method is rather big when comparing with the 
results obtained either by FEM package or by the proposed 
analytical method. In case of loads ratio γ =1 it is 15.4% 
when comparing with accurate analytical method and is 
21.4% when comparing with FEM package COSMOSM. 
In case of γ =10 the error increases up to 54.8% and up to 
59.3%, respectively. The graph of engineering method 
error of maximal kinematic displacement magnitude vs 
loads ratio γ  is presented in Fig. 5.  
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The results of maximal kinematic displacements, 
being developed of cable part, free of load , are pre-

sented in Table 2.  When analyzing the results one can find 
p

Table 1 
Comparison of left (loaded) cable kinematic displacements  

 

γ  
max,l

tω , m max,l
cω , m max,l

cωΔ , % max,l
enω , m max,l

enωΔ , % 
1 0.722 0.687 4.9 0.833 -15.4 
2 0.989 0.950 3.9 1.250 -26.4 
3 1.120 1.081 3.5 1.500 -32.9 
4 1.196 1.156 3.4 1.667 -39.4 
5 1.245 1.204 3.3 1.786 -43.5 
6 1.278 1.238 3.1 1.875 -46.7 
7 1.302 1.263 3.0 1.944 -49.3 
8 1.320 1.282 2.9 2.000 -51.5 
9 1.335 1.295 3.0 2.046 -53.3 

10 1.346 1.308 2.8 2.083 -54.8 
 

Table 2 
Comparison of right (unloaded) cable kinematic displacements  

 

γ  
max,r

tω , m max,r
cω , m max,r

cωΔ ,% max,r
enω , m max,r

enωΔ , % 
1 -0.924 -0.874 5.4 -0.833 9.8 
2 -1.437 -1.367 4.9 -1.250 13.0 
3 -1.753 -1.680 4.2 -1.500 14.4 
4 -1.966 -1.889 3.9 -1.667 15.2 
5 -2.119 -2.039 3.8 -1.786 15.7 
6 -2.233 -2.152 3.6 -1.875 16.0 
7 -2.322 -2.241 3.5 -1.944 16.3 
8 -2.393 -2.311 3.4 -2.000 16.4 
9 -2.452 -2.366 3.5 -2.046 16.5 

10 -2.50 -2.422 3.1 -2.083 16.7 
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Fig. 5 Left cable part maximal kinematic displacement 

evaluation relative error vs γ  
 

that displacement magnitudes of the left cable part are 
close to these calculated by COSMOS/M package and by 
the proposed analytical method. The largest difference of 
the results, obtained by above methods in respect of verti-
cal left part displacements max,rω  is 5.40%, corresponding 
the case γ =1. When increasing γ  magnitude up to γ =10 
the error gradually reduces up to 3.10%. When applying 
the engineering method the displacement evaluation error 
of unloaded (free of load ) right part is a little bit less 
than the error, obtained when valuating cable right part 
displacements. In case of 

p

γ =1 the above mentioned error 
is 9.80% and 4.69%, respectively, comparing with the re-
sult obtained by COSMOSM package and analytical 
method. The graph of engineering method error when es-
timating maximal right cable part displacement vs loads 

ratio γ  is presented in Fig. 6. The graph shows that the γ  
increment causes gradual increment of the error, condi-
tioned by the application of the engineering method. In 
case of γ =10, the error is 16.7% when compared with the 
proposed analytical method and 14% - when compared 
with the result obtained by FEM package COSMOSM. 
One must note, that relatively smaller errors of engineering 
method are conditioned by larger displacements of right 
unloaded cable part (see data of Tables 1 and 2). γ 
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Fig. 6 Right cable part maximal kinematic displacement 
evaluation relative error vs γ  

 
As it was mentioned earlier, the essential differ-

ence amongst engineering and proposed analytical meth-
ods is conditioned by a proposition of engineering method, 
stating the middle span displacement is zero, i.e. 0kfΔ = . 
Numerical FEM cable simulations resulted the latter to be 
nonzero magnitude, i.e. 0kfΔ ≠ . The cable middle span 
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vertical kinematic displacement, estimated by FEM, is di-
rected up analogously as the one, estimated by analytical 
method. The middle span kinematic displacement vs γ  are 
presented in Table 3. Take a notice that this displacement 
increment is compatible with the increment of γ . We re-
mind the reader that kinematic displacement magnitudes 
identified by analytical method are greater than the ones, 
obtained by FEM per all γ  variation range. The difference 
(in percentage values) of displacement magnitudes, ob-
tained by analytical and FE methods is in average 5% . The 
largest difference is fixed in case of γ =1 (Table 3). 

Analyzing displacement magnitude, obtained via 
analytical method and numerically (via FEM package 
COSMOSM), one can find that shapes of loaded cable are 
qualitatively close/fitting. Kinematic displacements of the 
cable right part are greater than those of loaded left part 
(see Tables 1 and 2). A ratio of maximal kinematic dis-
placements of cable right and left parts vs ratio γ  is pre-
sented in Table 4. One can find that the γ  increment re-
sults the subsequent gradual increment of the latter ratio 
(this is valid when analyzing the cable by analytical 

method and by COSMOSM package). An employment of 
engineering method results a constant magnitude of this 
ratio vs increment of γ  (see Table 4). 

 
Table 3 

Comparison of middle span cable kinematic displacements 
 

γ  
max,l

tω , m max,l
cω , m max,l

cωΔ , % 
1 -0.136 -0.122 10.1 
2 -0.299 -0.288 3.6 
3 -0.422 -0.404 4.2 
4 -0.513 -0.490 4.5 
5 -0.583 -0.556 4.6 
6 -0.637 -0.607 4.7 
7 -0.680 -0.648 4.7 
8 -0.715 -0.682 4.7 
9 -0.745 -0.704 5.5 
10 -0.769 -0.731 5.0 

 

 
Table 4 

Comparison of kinematic displacements of cable loaded and unloaded 
 

γ  
max,l

t
max,r

t ωω  c
max,l

c
max,r ωω  

 

ωΔ , % max,l
en

max,r
en ωω  enωΔ , % 

1 1.280 1.272 0.6 1.000 21.9 
2 1.453 1.439 1.0 1.000 31.2 
3 1.565 1.554 0.7 1.000 36.1 
4 1.644 1.634 0.6 1.000 39.2 
5 1.702 1.694 0.5 1.000 41.3 
6 1.717 1.738 0.5 1.000 42.8 
7 1.783 1.774 0.5 1.000 43.9 
8 1.813 1.803 0.6 1.000 44.8 
9 1.837 1.827 0.5 1.000 45.6 

10 1.857 1.852 0.3 1.000 46.1 
 
A qualitative compatibility amongst deformed 

axes curves of asymmetrically loaded cable, obtained by 
analytical metod and FEM method (COSMOSM package), 
is ensured by fitting maximal kinematic displacements 
ratios of right and left parts. Analyzing data of Table 4 one 
can find that difference of the latter ratios does not exceed 
1% and this difference gradually decreases vs increment of 
γ . The engineering method errors in respect of this ratios 
are essential and reach up to 46 % (see Table 3 and Fig 7). 

Basing on the analysis of numerical simulation re-
sults one can state that cable shape, identified via engineer-
ing methods, differs qualitatively (cable form and extreme 
displacement magnitudes) from an actual one. The method 
results equal maximal magnitudes of both cable parts and 
zero cable middle span displacement, i.e. to be independent 
on γ . 

The results the proposed analytical method for ki-
nematic displacement determining were also compared 
with the ones, obtained via corrected engineering method 
[6, 14]. The performed calculations illustrated compatibil-
ity for maximal displacements of the cable loaded part. 
However, one must note that corrected engineering method 

is not suitable for real engineering design as is it valid for 
limited discrete number of γ  magnitudes. 
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Fig. 7 Ratio error of extreme displacements (defined by 

engineering methods) vs γ  
 

4. Concluding remarks 
 

Numerical modeling of suspension cable kinematic 
displacements was performed applying the FEM package 
COSMOSM, and proposed by the authors analytical and 
the widely employed engineering methods. Analysis of 
obtained results yielded: 

1. The results obtained by proposed analytical 
method and FEM package COSMOSM fit sufficiently well 
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(maximal error does not exceed 5%). 
2. The variance of obtained results is conditioned 

by FEM peculiarities when modeling actual cable behav-
ior. 

3. Actually the asymmetric load causes cable 
middle span lifting, when the engineering methods neglect 
this phenomenon, that results the significant displacement 
evaluation errors. 

 
References 
 
1. Gimsing, N.J. Cable Supported Bridges-Concept and 

Design.-Chichester: John Wiley, 1997.-470p. 
2. Bangash, M.Y. Prototype Bridge Structures: Analysis 

and Design.-London: Thomas Telford, 1999.-1171p. 
3. Ryall, M.J. et al. Manual of Bridges Engineering.-

London.- Thomas Telford, 2000.-1007p. 
4. Bucholt, H.A. An Introduction to Cable Roof Struc-

tures.-London:  Thomas Telford, 1999.-283p. 
5. Oтто, Ф., Шлейер, K. Тентовые и вантовые строи-

тельные конструкции.-Moсква: Стройиздат, 1970.-
175с. 

6. Moскалев, Н.С. Конструкции висячих покрытий. 
 -Moсква: Стройиздат, 1981.-127с.  

7. Mихайлов, В. В. Предварительно напряженные 
комбинированные и вантовые конструкции. 
-Moсква: ACB, 2002.-256с. 

8. Ochsendorf, J.A., Bilington D.P. Self-anchored sus-
pension bridges.-J. of Bridge Engineering, 1999, v.4, 
No3, p.151-153. 

9. Kачурин, В.K. Статический pасчет bантовых cис-
тем.-Ленинград: Стройиздат, 1969.-139с.  

10. Kulbach, V., Talvik, I. Analysis of a self-anchored 
suspension bridge in Estonia.-In IABSE Reports, 2001, 
v.84, p.[170-171]. 

11. Juozapaitis, A., Norkus, A. Shape Determining of 
Loaded Cable via Total displacements.-Techn. and 
Economic Develop. of Economy, 2005, v.XI, No 4 (in 
print). 

12. Горев, В.M. Металлические конструкции. Т2. Кон-
струкции зданий.-Moсква: Высшая Школа, 2002.-
528с. 

13. Irvine, H.M. Behaviour of cables. Constructional Steel 
Design.-London, New York: Elsewier Applied Sci-
ences, 1992, p.277-306. 

14. Moскалев, Н.С., Попова, Р.A. Стальные конструк-
ции легких зданий.-Moсква: ACB, 2003.-216с. 

15. Juozapaitis, A., Norkus, A. Displacement analysis of 
asymmetrically loaded cable.-J. of Civil Engineering 
and Management, 2004, v.X, No 4, p.277-284. 

16. Arzoumanidis, S.G., Bienek, M.P. Finite element 
analysis of suspension bridges.-Computers and Struc-

tures, 1985, v.21, p.1237-1253. 
17. Leonard, J.W. Curved finite element approximation to 

nonlinear cables.-4th Annual Offshore Technology 
Conf., Houston, May 1972, p.12.  

18.  Schweizerhof, K.H., Wriggers, P. Consistent lineari-
zation for path following methods in nonlinear FE 
analysis.-Computer Methods in Applied Mechanics and 
Engineering, 1986, v.59, p.261-279. 

A. Juozapaitis, A. Norkus, T. Grigorjeva 
 
SKAITINIS KABAMOJO LYNO KINEMATINIŲ 
POSLINKIŲ MODELIAVIMAS  
 
R e z i u m ė 
 

Atliktas skaitinis kabamojo lyno kinematinių po-
slinkių modeliavimas naudojant baigtinių elementų, auto-
rių pasiūlytą analizinį ir inžinerinius metodus. Pasiūlyto 
analizinio metodo rezultatai gana gerai sutampa su BEM, o 
taikant inžinerinius metodus gaunamos nemažos paklaidos. 

A. Juozapaitis, A. Norkus, T. Grigorjeva 
 
NUMERICAL MODELING OF SUSPENSION CABLE 
KINEMATIC DISPLACEMENTS 
 
S u m m a r y 
 

Modelling of cable kinematic displacements is 
performed by FE, proposed by authors analytical and engi-
neering methods. The proposed analytical and FE methods 
results fit sufficiently well, when engineering methods 
yield significant errors.  

А. Юозапайтис, А. Норкус, Т. Григорьева  
 
ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ КИНЕМАТИ- 
ЧЕСКИХ ПЕРЕМЕЩЕНИЙ ВИСЯЧЕЙ НИТИ 
 
Р е з ю м е 
 

Выполнено численное моделирование кинема-
тических перемещений нити предлaгаемым аналитиче-
ским и инжeнерными методами, а также МКЭ. Резуль-
таты показали хорошее совпадение МКЭ с предлaгае-
мым аналитическим и большие погрешности инжeнер-
ных методов. 
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