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Numerical modeling of suspension cable kinematic displacements
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1. Introduction

Suspension cable is a specific structural element
widely employed in engineering practice to cover large
spans (e. g. bridge structures) or areas (roofing) [1-6]. An
attractive feature of suspension cable or the system of sus-
pension cables is the sufficiently high carrying capacity
versus its weight. Due to specific feature — vanishing ca-
pacity to resist bending and compression, suspension cable
responses to loading in specific way. It changes the pri-
mary shape in the way to resist loading only via one type
of deforming — tension. Thus, the shape of loaded cable is
prescribed by two factors, namely: cable adaptation to
loading; deforming due to developed axial tensile internal
forces. The displacements, caused by the above mentioned
factors are denoted as kinematic (non-straining) and elastic
ones. One must note that usually the first type displace-
ments have an essential contribution to cable shape. The
remaining ones actually are conditioned by the first ones as
the distribution of axial forces depend on the cable shape.

Due to suspension cable adaptation to loading pe-
culiarities, the relation load versus displacement is strongly
nonlinear. One can mention that this geometrically nonlin-
ear behavior (due its nature) differs from other structural
members, possessing certain flexural stiffness (when large
displacements are resulted by deformations). In cable case
the large displacements usually are conditioned by it’s ad-
aptation to loading processes. Actually the cable has its
primary form, compatible with certain loading (at least the
weight force). An essential change of it’s shape is caused
by a supplement loading, differing in principle from the
primary one. It can be concentrated loads, applied irregu-
larly or additional asymmetrically distributed load. The
latter case is the most general case, met in engineering
practice and subsequently in codified design.

A codified design of a structure introduces certain
restrictions in respect of it’s displaced/deformed shape
under loadings. These requirements are realized via maxi-
mal displacement and member curvature (second deriva-
tive of displacement) limitations up to fixed magnitudes.
Thus, the accuracy when valuating actual maximal dis-
placements, their locations is of the first significance to
obtain reliable and economically efficient design project.
One can also note, that the displacement constraints usu-
ally predominate in actual design of suspension ca-
ble/system of suspension cables.

The large list of investigations on cable behavior
analysis [6-11] illustrates the relevancy of the problem and
the lack of efficient and sufficiently exact methods suitable
for engineering practice. The widely employed engineering
(simplified) methods to estimate vertical total (kinematic

and elastic) displacements employ the superposition prin-
ciple when splitting the actual loading to asymmetric and
symmetric distributed loads [3, 12, 13]. But direct applica-
tion of superposition principle for geometrically nonlinear
cable behavior of specific nature results certain errors. As
an alternative to reduce the error the certain equivalent
load concept [6, 14] was introduced. Unfortunately, the
clear instructions to identify this equivalent load are not
fixed, leading to certain uncertainty when applying this
method.

One can conclude that the list of investigations,
assigned to efficient and reliable estimation of kinematic
displacements (governing when conditioning suspension
cable shape under asymmetric loading) is small so far. An
investigation of the authors [15] presented an analytical
method to estimate kinematic displacements. The method
was sufficiently (comparing with only few exact solutions
under existence) accurate and suitable for engineering de-
sign practice.

As an attractive and efficient alternative for cable
analysis is the application of FEM techniques [16-18]. To
confirm additionally the reliability of the proposed method
[15] numerical modeling of suspension asymmetrically
loaded cable kinematic displacements was performed by
nonlinear finite element method package COSMOSM.
Comparison of the results with these obtained by the pro-
posed analytical and widely applied engineering methods
was performed.

2. Cable shape valuation via analytical expressions of
kinematic displacements

The shape of a cable, subjected by a distributed
load q applied per total span, fits quadratic parabola. When
a supplement asymmetric distributed load p (e.g. left mid-
dle span) is applied, the suspension cable changes its form
adapting the loading (see Fig. 1). To distinguish pure ki-
nematic displacements the axial stiffness EA— o (E and
A denoting cable elasticity modulus and cross-sectional
area, respectively) is to be introduced. The elastic dis-
placement magnitudes then approach to zero.

Then the cable shape can be analyzed separately
for left (loaded by p) and the right (free of this load) parts.
Then the cable shape functions reads [15]
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here M;(x), H,, are the moment and the tensile force of
the left, loaded by (gq+ p) cable part, respectively;
M, (X),H,, are the moment and the thrusting force of the
right cable part, respectively; y= p/q is the ratio of

asymmetric and symmetric loads intensities.
Fig. 1 denotes via f, = f, + Af, the cable sag in

the middle span and via Af, the kinematic middle span
displacement.

»
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Fig. 1 Suspension cable design scheme

2.1. Cable left part vertical kinematic displacements
Cable left part can be determined by [15]
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It is obvious that for the middle span
w (x=112)=f - f = Af, “4)

where f, is the cable primary sag.

Find that kinematic displacement w;(X) can be de-
termined when f; or Af, are already known. The latter
values can be obtained by [15]

f1 = fo\/; (5)
af =1, (Jy -1) ©)
where
16+16y + 45>
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Having identified the cable sag f,, the left part
vertical displacements is obtained by
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Find that kinematic displacements are directly de-
pendent on the cable sag. The increase of the loads ratio ¥

(€)

results the increase of the @, (x) magnitudes. The obtained

expression (9) is convenient for usage, as it does not in-
clude f,. It is obvious, that kinematic displacement for

(x<1/2)is @, (x)= Af, .
In practical design one must identify maximal de-
flection and its location point. Increasing the loads ratio y

from 1 to 10, the maximal deflection location point varies
insignificantly [15]. Therefore it is enough to fix its loca-
tion as the first quarter point, then the maximal kinematic
displacement can by obtained by:

D (X) =0.75 5, [(1+2713) /& -1] (10)

2.2. Cable right part vertical kinematic displacements

Kinematic displacements of the right cable part
can be obtained via expressions [15], reading
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Find the formulae formula (8) and (12) to be
analogous. When varying the loads ratio y from 1 to 10,

o, (X)

or

the maximal deflection location point varies insignifi-
cantly. Therefore an approximate maximal vertical dis-
placement location point can be taken at the end of the



third middle span quarter [15]. Then an approximate
maximal kinematic displacement of the right part can be
obtained by

Oy e (X) = 0.75 6, [ (1/E 1)+ /3£ ] (13)

Analyzing the left part displacement @, ., and
that of the right part o

part displacements are larger in absolute magnitudes when
compared with the ones of the loaded cable part. When
increasing the loads ratio y, the difference between these

r max » ON€ can find that the unloaded

values in absolute magnitudes also increase.

3. Numerical modelling of kinematic vertical
displacements

The asymmetrically loaded suspension cable
shape evaluation via the numerical simulations by means
of FEM package COSMOSM was performed. The aim of
numerical simulations was estimating the reliability of the
relations of proposed analytical method (see section 2) and
that of the widely applied engineering methods.

For analysis of the structure response to loading
the suspension cable of span | =100m and primary sag

f, =10m was chosen (design scheme see in Fig. 1). The
cable loading is splited to symmetric  and asymmetric p

distributed loads. The response of the cable was investi-
gated in respect of loads ratios y = p/q, varying it by

y =1-10. The cable FEM design scheme was modeled by

pin-jointed structure, created from straight bar finite ele-
ments. The actual distributed loading at nodes areas was
replaced by resultant concentrated loads applied onto
nodes (hinges). The nodes in FEM model were introduced
to fit the exact primary cable contour curve of quadratic
parabola. To estimate the influence of introduced number
of finite elements (discretization level) on the results of
numerical simulations, the calculations were performed
modeling cable by 100 and 200 finite elements, respec-
tively. Note that the number of elements of an actual cable
approaches to infinity.
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Actually, an application of FEM package results
total values of displacements, caused by geometrically
nonlinear adaptation of the structure to loading (kinematic
displacements) and the action of internal forces (elastic
displacements). Aiming to separate the kinematic dis-
placements from total ones via numerical means, a suffi-
ciently large axial stiffness EA=51561.3 MN (resulting

magnitudes of elastic components of cable total displace-
ments to be significantly far from kinematic ones) of finite
elements was chosen.

One must note, that varying the loads ratio y the
intensities of symmetric q and asymmetric p loads were
chosen in the way the resulting thrusting forces of the ca-
ble to remain almost constant (unchanged), i.e. H = const.
Thus, the intensities of symmetric and asymmetric loads
were determined by

q=_8Hf,/(1+0.57)
p=qy

(14)
15)

As for graphical illustrations of FEM simulations
of cable shape the cable response vs three y magnitudes

are presented in Figs. 2-4.

To perform a reasonable comparison of the ob-
tained results when employing the above mentioned meth-
ods and the FEM package, the maximal vertical displace-
ments of asymmetrically loaded cable part were analyzed
at the points X =1/4 (left, loaded by p, cable part) and in

the point x =31/4 (right, free of the asymmetric loading
p, cable part). The above mentioned coordinates of cable

points are compatible with locations of extreme
displacements. Coordinates of these points are also fixed in
the widely applied engineering methods, aimed to identify
extreme kinematic displacements. We remind the reader
that the error when calculating extreme displacements em-
ploying these coordinates does not exceed 1.6% [11, 15].
The analysis results are presented in Tables 1-4, where
superscripts t, ¢ and en refer to the proposed analytical,
FEM package COSMOSM and engineering analysis meth-
ods, respectively.
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Fig. 2 Cable kinematic displacements via COSMOSM in case y =1
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Fig. 3 Cable kinematic displacements via COSMOSM in case y =5
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Fig. 4 Cable kinematic displacements via COSMOSM in case y =10

The calculation results of left part maximal dis-
placements of asymmetrically loaded cable are presented
in Table 1. The result analysis shows that the difference
between maximal vertical displacements @, , obtained

by proposed in the paper and that of calculated by FEM
package COSMOSM is not significant. The maximal rela-
tive difference is 4.90% in case of loads ratio y= 1. This

accuracy is sufficient enough for practical calculations
when valuating the changed shape of loaded cable. When
increasing the y magnitude up to 10, the latter difference

gradually decreases till 2.8%. This result indicates a quali-
tative compatibility of changed cable shapes, determined
by applying the proposed analytical and employed finite
element method package.

One must note that vertical displacements, ob-
tained via FEM package are less comparing to the ones,
obtained by analytical method. This illustrates a little over-
estimation of cable adaptation displacements, conditioned
by: an approximation of actual cable design scheme via
certain number of the elements; accuracy when replacing
the distributed loads by resultant concentrated ones; the
FEM package accuracy when calculating such type of the
structure; other. When analyzing the cable FEM design
model, one can find the total primary length of the cable
modeled by piece-wised curve to be a little bit less the ac-

tual one (being employed in analytical method) of smooth
quadratic parabola cable curve. In addition, the cable
thrusting force being identified via FEM model calcula-
tions (caused by concentrated resultant forces) is a little bit
greater than the one, obtained by analytical method. This
insignificant difference (approximately 1%) in respect of
thrusting force increases with an increment of y. The in-

creased thrusting forces reduces the cable middle span ver-
tical displacement Af, . It is evident that the primary cable

length and thrusting force have direct influence on kine-
matic displacements [6, 9-11, 15].

One must note that calculation error of suspension
cable kinematic displacement obtained when applying en-
gineering method is rather big when comparing with the
results obtained either by FEM package or by the proposed
analytical method. In case of loads ratio y =1 it is 15.4%
when comparing with accurate analytical method and is
21.4% when comparing with FEM package COSMOSM.
In case of y =10 the error increases up to 54.8% and up to
59.3%, respectively. The graph of engineering method
error of maximal kinematic displacement magnitude vs
loads ratio y is presented in Fig. 5.



The results of maximal kinematic displacements,
being developed of cable part, free of load p, are pre-

sented in Table 2. When analyzing the results one can find

Table 1
Comparison of left (loaded) cable kinematic displacements
7 a)tl,max , M C()CI,max ,Im Aa)cl,max . % C()enl,max ,m Aa)enl,max . %
1 0.722 0.687 4.9 0.833 -15.4
2 0.989 0.950 3.9 1.250 -26.4
3 1.120 1.081 3.5 1.500 -32.9
4 1.196 1.156 34 1.667 -39.4
5 1.245 1.204 33 1.786 -43.5
6 1.278 1.238 3.1 1.875 -46.7
7 1.302 1.263 3.0 1.944 -49.3
8 1.320 1.282 29 2.000 -51.5
9 1.335 1.295 3.0 2.046 -53.3
10 1.346 1.308 2.8 2.083 -54.8
Table 2
Comparison of right (unloaded) cable kinematic displacements
4 a)tr,max , M a)cr,max , M Aa)cr,max ,% wenr,max , M Aa)enr,max . %
1 -0.924 -0.874 54 -0.833 9.8
2 -1.437 -1.367 4.9 -1.250 13.0
3 -1.753 -1.680 4.2 -1.500 14.4
4 -1.966 -1.889 3.9 -1.667 15.2
5 -2.119 -2.039 3.8 -1.786 15.7
6 -2.233 -2.152 3.6 -1.875 16.0
7 -2.322 -2.241 3.5 -1.944 16.3
8 -2.393 -2.311 34 -2.000 16.4
9 -2.452 -2.366 3.5 -2.046 16.5
10 -2.50 -2.422 3.1 -2.083 16.7
0% ratio y is presented in Fig. 6. The graph shows that the »
-10% - increment causes gradual increment of the error, condi-
20% 1\\ tioned by the application of the engineering method. In
case of y =10, the error is 16.7% when compared with the
=30% proposed analytical method and 14% - when compared
0% — with the result obtained by FEM package COSMOSM.
-50% - ’Nb\’\‘\{ One must note, that relatively smaller errors of engineering
0% ¢ method are conditioned by larger displacements of right
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Fig. 5 Left cable part maximal kinematic displacement
evaluation relative error vs ¥

that displacement magnitudes of the left cable part are
close to these calculated by COSMOS/M package and by
the proposed analytical method. The largest difference of
the results, obtained by above methods in respect of verti-
cal left part displacements w is 5.40%, corresponding

r,max

the case y=1. When increasing y magnitude up to y =10

the error gradually reduces up to 3.10%. When applying
the engineering method the displacement evaluation error
of unloaded (free of load p) right part is a little bit less
than the error, obtained when valuating cable right part
displacements. In case of y=1 the above mentioned error
is 9.80% and 4.69%, respectively, comparing with the re-
sult obtained by COSMOSM package and analytical
method. The graph of engineering method error when es-
timating maximal right cable part displacement vs loads

unloaded cable part (see data of Tables 1 and 2).
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Fig. 6 Right cable part maximal kinematic displacement
evaluation relative error vs ¥

As it was mentioned earlier, the essential differ-
ence amongst engineering and proposed analytical meth-
ods is conditioned by a proposition of engineering method,
stating the middle span displacement is zero, i.e. Af, =0.
Numerical FEM cable simulations resulted the latter to be
nonzero magnitude, i.e. Af, #0. The cable middle span



vertical kinematic displacement, estimated by FEM, is di-
rected up analogously as the one, estimated by analytical
method. The middle span kinematic displacement vs y are

presented in Table 3. Take a notice that this displacement
increment is compatible with the increment of y. We re-

mind the reader that kinematic displacement magnitudes
identified by analytical method are greater than the ones,

48

method and by COSMOSM package). An employment of
engineering method results a constant magnitude of this
ratio vs increment of y (see Table 4).

Table 3
Comparison of middle span cable kinematic displacements

obtained by FEM per all y variation range. The difference 7| @lina,m "1 nac , M A" nac, %
(in percentage values) of displacement magnitudes, ob- 1 -0.136 -0.122 10.1
tained by analytical and FE methods is in average 5% . The 2 -0.299 -0.288 3.6
largest difference is fixed in case of y =1 (Table 3). 3 -0.422 -0.404 4.2
Analyzing displacement magnitude, obtained via 4 -0.513 -0.490 4.5

yzing disp g >
analytical method and numerically (via FEM package > -0.583 -0.556 4.6
COSMOSM), one can find that shapes of loaded cable are 6 -0.637 -0.607 4.7
qualitatively close/fitting. Kinematic displacements of the 7 -0.680 -0.648 4.7
cable right part are greater than those of loaded left part 8 -0.715 -0.682 4.7
(see Tables 1 and 2). A ratio of maximal kinematic dis- 9 -0.745 -0.704 3.5
placements of cable right and left parts vs ratio y is pre- 10 -0.769 -0.731 5.0
sented in Table 4. One can find that the y increment re-
sults the subsequent gradual increment of the latter ratio
(this is valid when analyzing the cable by analytical

Table 4
Comparison of kinematic displacements of cable loaded and unloaded

4 a)tr,max /C!)tl,max wf‘max /wlc,max Aa) , % C()enr,max /C()enl,max Aa)e" N %

1 1.280 1.272 0.6 1.000 21.9

2 1.453 1.439 1.0 1.000 31.2

3 1.565 1.554 0.7 1.000 36.1

4 1.644 1.634 0.6 1.000 39.2

5 1.702 1.694 0.5 1.000 41.3

6 1.717 1.738 0.5 1.000 42.8

7 1.783 1.774 0.5 1.000 43.9

8 1.813 1.803 0.6 1.000 44.8

9 1.837 1.827 0.5 1.000 45.6

10 1.857 1.852 0.3 1.000 46.1

A qualitative compatibility amongst deformed
axes curves of asymmetrically loaded cable, obtained by
analytical metod and FEM method (COSMOSM package),
is ensured by fitting maximal kinematic displacements
ratios of right and left parts. Analyzing data of Table 4 one
can find that difference of the latter ratios does not exceed
1% and this difference gradually decreases vs increment of
7 . The engineering method errors in respect of this ratios

are essential and reach up to 46 % (see Table 3 and Fig 7).

Basing on the analysis of numerical simulation re-
sults one can state that cable shape, identified via engineer-
ing methods, differs qualitatively (cable form and extreme
displacement magnitudes) from an actual one. The method
results equal maximal magnitudes of both cable parts and
zero cable middle span displacement, i.e. to be independent
on y.

The results the proposed analytical method for ki-
nematic displacement determining were also compared
with the ones, obtained via corrected engineering method
[6, 14]. The performed calculations illustrated compatibil-
ity for maximal displacements of the cable loaded part.
However, one must note that corrected engineering method

is not suitable for real engineering design as is it valid for
limited discrete number of » magnitudes.
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Fig. 7 Ratio error of extreme displacements (defined by
engineering methods) vs y

4. Concluding remarks

Numerical modeling of suspension cable kinematic
displacements was performed applying the FEM package
COSMOSM, and proposed by the authors analytical and
the widely employed engineering methods. Analysis of
obtained results yielded:

1. The results obtained by proposed analytical
method and FEM package COSMOSM fit sufficiently well



(maximal error does not exceed 5%).

2. The variance of obtained results is conditioned
by FEM peculiarities when modeling actual cable behav-
ior.

3. Actually the asymmetric load causes cable
middle span lifting, when the engineering methods neglect
this phenomenon, that results the significant displacement
evaluation errors.
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A. Juozapaitis, A. Norkus, T. Grigorjeva

SKAITINIS KABAMOJO LYNO KINEMATINIU
POSLINKIU MODELIAVIMAS

Reziumé

Atliktas skaitinis kabamojo lyno kinematiniy po-
slinkiy modeliavimas naudojant baigtiniy elementy, auto-
riy pasiiilyta analizinj ir inZinerinius metodus. Pasitilyto
analizinio metodo rezultatai gana gerai sutampa su BEM, o
taikant inZinerinius metodus gaunamos nemazos paklaidos.

A. Juozapaitis, A. Norkus, T. Grigorjeva

NUMERICAL MODELING OF SUSPENSION CABLE
KINEMATIC DISPLACEMENTS

Summary

Modelling of cable kinematic displacements is
performed by FE, proposed by authors analytical and engi-
neering methods. The proposed analytical and FE methods
results fit sufficiently well, when engineering methods
yield significant errors.

A. KOozamnaiituc, A. Hopkyc, T. I'puropneBa

YUCJIEHHOE MOJIEJIMPOBAHUE KUHEMATU-
YECKUX [NEPEMEIIEHN BUCAYEW HUTU

Pe3womMme

BrInosHEeHO YHCIeHHOE MOJEINPOBaHHE KHHEMa-
THYECKUX NEepEeMEelIeHNIl HUTH NpeularaeMbIM aHaJIUTHYe-
CKMM W MHXXCHEPHBIMH MeTojamH, a Takke MKD. Pesynb-
TaThl MOKa3anu xopouee coBnaaenne MKO ¢ npennarae-
MBIM AHAJIMTUYCCKUM U 60J1])LLII/I€ MOTrpCIIHOCTU UHKCHEP-
HBIX MCTOOB.
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