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1. Introduction 
 

Turning operation is a machining process, which 
involves removing metal in the form of chips, conse-
quently, resulting into reduction in the diameter  of the 
metal. Turning operation requires close dimensional accu-
racy. It is usually performed on various power-driven ma-
chines. These machines operate on either reciprocating or 
rotatory-type principle: either the tool or the work piece 
reciprocates or rotates. Turning operation generates a lot of 
heat on the metal being cut and on the cutting tool because 
of friction and motion between the cutting tool and the 
work piece. This invariably makes the chips very hot 
(since temperature is the average measure of heat energy) - 
[1, 2]. 

During this operation, energy is expended in two 
forms. The first is useful work done in turning down the 
metal. The second is heat energy generated which makes 
the work piece hot. This modelling concentrates mainly on 
the second form of energy – this energy is conducted in the 
material. The metal body does not just have a uniform 
temperature all over its surface and its internal parts but 
heat is conducted [3]. Heat conduction involves increasing 
the velocity of vibration of the metal molecules about their 
mean positions [4, 5]. The rate at which each particle vi-
brates depends on the amount of heat received.  The metal 
will have a uniform temperature when all the particles of 
the metal at a particular time have the same vibration ve-
locity (same agitation energy [6]). Turning operation is one 
of the processes that can be used to produce parts of accu-
rate dimensions and smooth surface.  Some of the types of 
turning operation include taper turning and straight turn-
ing. 

The paper is organized into five parts. The intro-
duction describes the motivation for the study. It also pre-
sents the problem definition, the research objective, and 
the expected contribution of the paper. Part two presents 
the investigation methodology used. It involves the devel-
opment of a procedure that could be replicated in similar 
situations. In part three, a case study is presented in order 
to increase our understanding and verify the whole model. 
Hypothetical data is used to illustrate the model perform-
ance from an engineering perspective. Part four presents 
the discussion of results. In part five, conclusion to the 
study is made. 
 
2. Methodology 
 

The modelling is based on some assumptions, 
which are: (i) at turning operation there is no wobbling (ii) 
the cylindrical shaft is uniform in shape (iii) the shaft is 
heat conductor (iv) heat emission in the environment by 
the shaft is negligible. Mathematical principle and theory 

used for this modelling is complex analysis -applied poten-
tial theory [6]. Let us consider a cylindrical shaft which is 
a fair heat conductor, such that the rate at which the turn-
ing operation of the whole shaft length is faster than the 
rate at which heat is distributed. From the assumed condi-
tions, it implies that there is no heat conduction cen-
troidally. Let the initial radius of the cylindrical shaft be R 
while its length be l. Let R1 be the radius of the boundary 
surface of the cylindrical shaft at anytime when it is turned. 
Let the vector angular velocity of the rotating cylindrical 

shaft be  [7]. Linear velocity of the shaft is linear ve-

locity of any point on the boundary surface at 

⎯→⎯-

θ
→→

= 1Rr , 

since it is pure rotation (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Cylindrical shaft undergoing turning operation 
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 For a reversed rotation, ĵRθ-  V 1

&= . Let K repre-

sent thermal conductivity of the shaft, with T-K  V ∇= . 
Here, T(x, y, z, t) is temperature, t is time. The amount of 
heat generated on the boundary surface as a result of turn-

ing can be expressed as  dAn . v
s
∫∫ , where  dAn . v  is nor-

mal component of V , dA is an elemental area of the mate-
rial. Therefore, let J be a region on the shaft. Then 
 
  dAn . v

s
∫∫   =  -K  (2) (∫∫∫∇

J
dxdydzT2 )

 
The total amount of heat in J is  
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  (3) ∫∫∫=
J
σTdm  H  

 
where σ  is specific heat of the shaft; m is mass. From 
physics m = f(v, ρ) where v is volume, ρ  is density, but  
m = vρ. The total differential of the function gives   
 
 dm  =  ρdv + vdρ (4) 

 
since density of the shaft is constant, the mass of a small 
element considered will be 
 
 dm  =  ρdv (5) 
 

Noting that dv = dxdydz and  dm = ρdxdydz. By 
subtracting the value of dm in (3), we have 
 
   (6) ∫∫∫=

J
σTdxdydz  H  

 
hence, time rate of decrease of H is  
 

 ( ) ∫∫∫∂
−∂

=
∂
−∂

J
σρTdxdydz 

t
   H

t
 (7) 

 
Comparing Eqs. (7) and (2) gives 
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This implies that 
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∂
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t
T 2∇=
∂
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Note: the direction of rotation of the shaft does not affect 
temperature distribution when we consider a steady state 
heat conduction process. Considering steady state heat 
conduction 
 

 02  T 
ρσ
K    

t
T

=∇=
∂
∂  (10) 

 

From Eq. (10), 0≠
ρσ
K , which implies that  
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For a three dimensional Laplace equation,. Now, 

let T(x, y, z) = constant (Isomtherms). Similarly, Laplace 
equation in cylindrical coordinates  
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Let T(γ, θ, z) the cylindrical coordinates be a point 

function. But z =
π
βθ
2

, where β is the pitch for temperature 

distribution. Therefore 

 
β
πdz  d 2

=θ  (12) 

 

but  
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From Eq. (12) 
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By putting the value of 
θ
T
∂
∂  into the expression 

containing it for the Laplace equation in cylindrical coor-
dinates, we have 
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From the assumption made, heat conduction along 

z-axis is negligible, hence 
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Using variable separable of ordinary differential 

equation, and integrating both sides 
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But 
ω
aγlnea~ -ω= , where 

ω
''aγ is a constant; ω is a 

constant that is very small, therefore e-ω → 1. Therefore 
T aγln ln
γ ω

⎛ ⎞ ⎛∂
=⎜ ⎟ ⎜∂⎝ ⎠ ⎝ γ

⎞
⎟
⎠

, which implies that  

 

 
ωγ
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γ
T
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∂
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Integrating both sides give 

 
 T = g lnγ + b        (19) 
 

where b is also a constant. Similarly, ag
ω

=  is a constant. 

Let T0 represent the room temperature, which is 
also initial temperature of the shaft. Let us consider a 
boundary condition; when 0 < r < 1.  T = T0 at a time t and 
when r = R1, T = T1 and T0 = 0 + b, b = T0. Therefore T = 
= aγ + T0. Also, when γ = R1, T = T1, T1 = aR1 + T0, and 

1

01

R
 - TTa = . But T1 is temperature at the boundary surface. 
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Thus 

 0
1

01 T
R
 - TTT

γ

+⎟⎟
⎠

⎞
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⎝

⎛
=               (20) 

 
Eq. (20) gives the mathematical model for tem-

perature distribution in a cylindrical shaft that is fairly 
conductive to heat. From Eq. (20), it can be seen that tem-
perature of the cylindrical shaft decreases from the bound-
ary surface with the radius and time. In order to have a 
diagrammatic representation of this temperature distribu-
tion, let us assume that kinetic energy lost due to the loss in 
mass of turned shaft is equal to the heat generated, i.e. 

( 01
2

2
1  - TTmσmv = ) . But , therefore  vRθv &=

 

 
( )
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σ
Rθ
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 (21) 

 
From Eq. (21) it can be seen that for greater heat 

to be generated and for a higher temperature gradient angu-
lar speed of the shaft must be increased while material 
must have low specific heat capacity. This has practical 
application. It will be wise and needful to lower the angu-
lar speed when turning a material microstructure of which 
can change within low temperature range. Eq. (21) is a 
useful formula for all manufacturers and metallurgists who 
should note so that the maximum speed that can be al-
lowed to turn a cylindrical shaft should be such that the 
heat generated will not affect the microstructure of the ma-
terial and consequently damage the shaft. Hence, putting 
Eq. (21) into (20) gives 
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( ) ( ) 0

1
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1
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Tr 

Rσ
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 (22) 

 
Eq. (22) is important for temperature distribution 

in a cylindrical shaft which is fairly conductive. From the 
above equation, it can be shown that temperature distribu-
tion in a fairly conductive (to heat) cylindrical shaft is ra-
dial, if angular speed is constant or not. But R1 is not a 
constant, and Eq. (22) can be simplified further by consid-
ering R1 =  R - nα. Also, α is the depth cut, n is the number 
of turnings performed. It is assumed that the depth cut is 
constant throughout the turning operations. Hence, 
Eq. (22) becomes 

 

 ( )( )
( )( ) ( ) 0

2

2
Tr

R - αaσ
R - αθT +=

&
 (23) 

 
since n=1 (i.e. the turning is done once). Therefore, for a 
turning operation that is done on the shaft n times and 
when the heat added by each succeeding turning generates 
the same temperature, Eq. (23) becomes  
 

 ( )( )
( )( ) ( ) 0

2
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R - nαnσ
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&
 (24) 

Eq. (24) is general equation for temperature distribution on 
a cylindrical shaft that is under turning operation, when the 
shaft is fairly heat conductive. We now want to proceed 

further to determine the equilibrium temperature of the 
shaft when thermal equilibrium occurs. Thermal equilib-
rium occurs in the shaft when temperature at the boundary 
surface is equal to the temperature at centroidal axis, i.e. 
particles of the shaft at the boundary surface (outer sur-
face) and those at the centroidal axis have the same tem-
perature. Now, let us assume that the molecules of the 
shaft behave as sea of gases, except that they are vibrating 
about their mean positions. Suppose velocity of the mole-
cules, then   
 
 v  α T=  (25) 
 

Note that 
ρ
Tφv =  where ϕ is a constant of proportional-

ity. Now, let the velocity of the particles (molecules) at the 
boundary surface be v1, while the velocity of the particles 
at the centroidal axis be v0 and the velocity at equilibrium 

be v2. From Eq. (25), we have 
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but from the expression T-KV ∇= , and R1  =  R - nα, 
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where, 
( )

0

2

1 2
T

σ
R - nαθnT +=

&
. 

Thus, the equilibrium temperature depends on an-
gular speed, the number of turnings, room temperature and 
the shaft radius.  Let us consider temperature distribution 
on a highly heat conductive cylindrical shaft. From the 
equation (15) 
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but T = f(γ, z), Therefore   
 

 dz
z
Tdγ

γ
TdT

∂
∂

+
∂
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Integrating along the radial plane at a time, t, from 

Eq. (28) 
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Suppose 2

2

z
T

∂
∂  = A at a time t. Eq. (30) becomes 
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Eq. (31) is solved using ordinary method of solu-

tion differential equation of the second order. Solution the 
left hand side of Eq. (31) gives similar result as of Eq. (16) 
i.e.  

 
 TL = B lnr + E (32) 

 

but 
 

 
γ
Φβ =  (33) 

 
where Φ represents the smallest coefficient of temperature 
distribution per m. Putting Eq. (33) into (32) gives 
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Suppose 
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But Eq. (34) can be written as 
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Putting Eqs. (36) and (37) into (38) gives 
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 Hence, solution of Eq. (34) becomes 
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 Integrating along the centroidal axis, from 
Eq. (30) 
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and  
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 For a constant value of  
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 Thus, according to Eq. (29) 
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where B, E, A, ψ, μ, c1 and c2 are constants. Furthermore, 
from equations R1  =  R - nα and assuming that B lnr + E ≡ 
≡ a lnr + b.  Hence 
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where R1 = R - α (for a turning). Hence, for n-turnings R1 = 
= R - nα 
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 From Eq. (50), it can be deduced that for a highly 
heat conductive cylindrical shaft, the temperature de-
creases as the radius decreases and the temperature de-
creases while its lengths increases. This form of tempera-
ture distribution is conical. 
 
3. Case study 
 

In order to show practical application of the 
mathematical relations just derived, it is necessary to give 
corresponding practical examples. Let us consider the ex-
ample that follows. A lathe-machine operator is turning 
down a cylindrical shaft, which is being prepared to be 
fitted into an automobile. The cylindrical shaft has a di-
ameter of 0.1m and is 0.3 m length. The shaft was made to 
rotate at an angular speed of 600 rpm while the turning 
operation was going on. The operator turned the dial on the 
lathe machine at an angle of 80o before the operation start. 
The operator ensured that the turning was done ten times 
and at each time, the dial is turned 80o. Determine: (i) tem-
perature at the outer surface of the shaft, (ii) temperature at 
the distance of 0.02 m away from the boundary surface and 
equilibrium temperature after the ten times, if the tempera-
ture in the workshop is 20oC. Let us consider this problem 
when the shaft is made of (i) steel (ii) aluminium. [Hint: 
40o turn ≡ 1 mm cut] (Take σsteel = 440 J/kgK; σAl = 
=880 J/kgK) 

The problem is solved in the following ways: 
(a) Considering steel: Steel is a fair conductor of heat, 

therefore, the mathematical relation for temperature distri-
bution is Eq. (50), i.e.  
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Note that angular speed,  = 62.83 radsθ& -1; Depth 

cut, 1  
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80    o
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×=α  = 2 × 10-3 m; Radius = 0.05 m; σsteel = 

= 0.44 J/gK; Room temperature, T0 = 293 K. 
(i)  At the boundary surface r = R1 = (R - nα) 
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(ii) At the distance of 0.02 m from the boundary sur-

face, i.e. r = 0.01 m (R1 – 0.02), T1 C33.46   
o

=  
The equilibrium temperature 
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Given that the inertia at T1, ρ1 = 0.1 N/particle and 

at T2 = 0.4 N/particle, T2=56.57°C. 
(b) Considering aluminium: Aluminium is a very 

good heat conductor. Therefore, Eq. (50) gives the mathe-
matical relation for temperature distribution. Suppose that: 
A = 103 K/m2; ϕ = 0.2 Km-2; c1 = 0.09 K/m; β = 
= (0.001)7 K/m; μ = 0.4 K/m2; Φ = 7 π × 10-20/m; c2 = 0. 

(i) Temperature at the boundary surface and at z = 
= 0.3 m 
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 Considering the fact that Φ → 0; c2 = 0, γ = (R -  
-nα) 
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Temperature at the first point of contact, i.e. at  

z = 0 
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This problem is considered at the same time  

t = l s. 
(ii) At the distance of 0.02 m from the boundary sur-

face, after 10-turns, when z = 0.3 m; r = 0.01 m 
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Considering at contact point and at r = 0.01, z = 0 
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The equilibrium temperature = T2. Given that at 

T1, inertia  and at TN/particle0.01  -
1 ⎯→⎯ρ 2 ρ2 = 

= 0.015 N/particle 
 

( )( )
( )( )2

1
2
2

2
1

22

2
2

2
11

22

2 2
2

Tσρ - ρR - nαθ
ρσT - TR - nαθT

&

&
= =40.6°C. 

 
4. Discussion of results 
 

Temperature at the boundary surface of steel shaft 
is higher than that of aluminium because steel has a lower 
heat capacity than aluminium. As a result of constant sup-
ply of heat to both surfaces, the temperature at the lower 
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heat capacity material is higher. Also, the calculation just 
performed obviously showed that temperature difference 
between points in a good heat conductor is very small and 
that at a very finite time, all particles in the conductor will 
be at equilibrium. For example, looking at aluminium at a 
very small finite period t (say l s) the temperature differ-
ence between its ends is only 0.81oC (i.e. the temperature 
gradient for a second). Temperature difference between 
two points in the fairly heat conductive material (steel) is 
higher than in good heat conductor (aluminium) when we 
consider radial distribution. This depicts that the tempera-
ture distribution in aluminium, though, conical is even and 
fast. For temperature distribution in steel also, the reason 
for this behaviour could be the fact that aluminium parti-
cles have low inertia for vibration while those of steel have 
high inertia for vibration. 
 
5. Conclusions 
 

The mathematical model can now make us to 
conclude that temperature distribution in a cylindrical shaft 
depends on the conductivity of the shaft material mostly 
and the nature of the material particles (whether the parti-
cles have high or low inertia for vibration). This model can 
be improved. It can be used or applied to real-life situation 
by considering an unsteady heat conduction process, het-
erogeneous material and that wobbling occurs during some 
of the turning operations. 
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S.A. Oke, O.I. Oyedokun, A.O. Bamigbaiye 

CILINDRO FORMOS ŠALTO METALO 
TEMPERATŪROS PASISKIRSTYMO SKAITINIS 
MODELIAVIMAS PRIKLAUSOMAI NUO 
APDIRBIMO BŪDO 

R e z i u m ė  

Straipsnyje pateikiamas modelis, sudarytas re-
miantis tuo, kad kai kurios medžiagos turi keletą tempera-
tūros zonų, kuriose keičiasi jų mikrostruktūra ir tai turi 
įtakos jos mechaninėms savybėms. Modelis atskleidžia 
matematinę priklausomybę tarp medžiagos temperatūros ir 
sukimosi greičio, jei apdirbimo metu ji buvo sukama. Dar-
bas remiasi kompleksinės potencinės energijos taikymo 
teorijomis, šilumos laidumo lygtimis, kinetinės ir šiluminės 
energijos lygtimis. Gauti rezultatai rodo, kad pažeidimai ir 
irimas gali turėti įtakos medžiagos mikrostruktūrai, jeigu 
pjovimo greitis nėra kontroliuojamas, kadangi nėra žinoma 
medžiagos specifinė šiluminė talpa. Modelis gali būti nau-
dojamas medžiagos pažeidimo laipsniui nustatyti, esant 
pastoviam šilumos laidumui, homogeniškai medžiagai ir 
tolygiam sukimuisi. Modelio negalima taikyti apdirbant 
heterogeninės mikrostruktūros medžiagas, taip pat jei ap-
dirbimo procese detalės nesisuka. Modelis bus naudingas 
metalurgams, technologams ir inžinieriams konstrukto-
riams gaminant gaminius, kurių medžiagų mechaninės 
savybės gamybos proceso metu nekinta. Darbe pateikta 
nauja matematinė priklausomybė, kuri suteikia papildomos 
informacijos, kaip išvengti deformacijų ir medžiagų me-
chaninių savybių pokyčių. 

S.A. Oke, O.I. Oyedokun, A.O. Bamigbaiye 

NUMERICAL ANALYSIS OF TEMPERATURE 
DISTRIBUTION OF COLD CYLINDRICAL METAL 
SUBJECTED TO MACHINING 

S u m m a r y 

The paper presents a model based on the fact that 
some materials (alloys and metal precisely) have some 
temperature ranges at which the nature and microstructure 
of the material changes affect the mechanical properties of 
the materials. The model provides a mathematical relation 
between the temperature of the material at a specific time 
and the speed of rotation of the material if it was to be 
turned in a turning operation. The work is based on the 
theories of complex applied potential, heat conduction 
equation, the kinetic energy equation, and heat energy 
equation. The results obtained show that damages and de-
struction can be caused to the microstructure of the mate-
rial if the speed of cut is not controlled due to lack of 
knowledge of the specific heat capacity of the material. 
The model can be used to check the extent of damage done 
on the material. The model is limited to a steady heat con-
duction process, a material that is homogeneous, and a 
turning operation where there is no wobbling occurring. 
The model may not apply to engineering materials with 
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heterogeneous microstructure, and a machining process 
that does not involve the rotation of the work piece. How-
ever, the model would assist metallurgists, machine opera-
tors, and design/manufacturing engineers in producing 
products with unaltered mechanical properties. The work is 
a new mathematical relation that provides an additional 
information for manufacturing industries on how to avert 
alteration or changes in the mechanical properties of mate-
rials that are being turned down and in similar operations. 

С.А. Оке, О.И. Оуедокун, А.О. Бамигбайуе 

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ 
РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ В 
ЦИЛИНДРИЧЕСКОМ ХОЛОДНОМ МЕТАЛЛЕ В 
ЗАВИСИМОСТИ ОТ СПОСОБА ОБРАБОТКИ 

Р е з ю м е 

В статье представлена модель, основана на 
свойстве материалов, имеющих зоны температуры, в 
которых меняется микроструктура материала и это 
влияет на механические свойства материала. Модель 
предлагает математические зависимости между темпе-

ратурой материала и скоростью резания во время об-
работки. Работа основана на комплексном применении 
теории потенциальной энергии, уравнений теплопро-
водности, а также кинетической и тепловой энергии. 
Полученные результаты показывают, что повреждения 
могут влиять на микроструктуру материала, если не 
контролируется скорость резания из-за недостатка ин-
формации о специфической теплоемкости материала. 
Модель можно использовать для оценки состояния 
гомогенного материала, который имеет постоянную 
теплопроводность и равномерно вращается при обра-
ботке. Модель невозможно использовать при обработ-
ке материалов с гетерогенной микроструктурой, а так-
же при обработке не вращающихся деталей. Модель 
может быть полезна металлургам, технологам, а также 
инженерам конструкторам и производственникам при 
изготовлении изделий, механические свойства которых 
в процессе изготовления не меняются. В работе пред-
ставлена новая математическая зависимость, дающая 
дополнительную информацию для исключения изме-
нений механических свойств при обработке. 
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