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1. Introduction

Torsional vibrations in drive shafts are impercep-
tible by human senses. There is no noise, no vibrations on
the machine bed human beeings can hear or feel. But
measurements of the shaft torque show up to 25 times of
the nominal machine torque [1] during the change over
from one stable operation point to another like speed rever-
sal or switch on situations. Especially in low-damped drive
systems — as servo drives or direct driven machines — reso-
nance excitation of torsional vibrations is critical to the
mechanical strength of the shaft [2].

Resonance excitation of a vibrational system may
be caused by different occurences:

1. impact;
2. excitation of the system with resonance fre-
quency;

3. excitation by a sweep function.

An impact always happens at switch on, switch
off operations. Excitation with resonance frequency is un-
usual but happens when the torsional resonance frequency
is the net frequency or nearby. A sweep function excitation
is the most problematically situation, because it runs conti-
nously through a wide range of frequencies. A sweep func-
tion is characterized by the following equation (1) and
looks like Fig. 1.

ft)y=sin2xF(0)) (1)

with F(¢)=k,(?).

The research of torsional vibrations in various be-
haviors is also dedicated in papers [3-7]. This paper ex-
plains a sweep function excitation as the result of nonlinear
parametric excitation.

2. Mathematical description of the induction machine
for transient phenomena

Transient phenomena in an induction machine are
difficult to describe, because quasistationary approaches
cannot be employed, as no stable operation point during
transients exists. Linearization is likewise inappropriate, as
the nonlinear effects of interest in this instance are elimi-
nated by definition. The Kovacs space vector theory [8] is
suitable for describing induction machine transients. The
space vector theory leads to a set of nonlinear differential
equations which cannot be solved in a general manner.
Numerical methods are necessary to solve this set of non—
linear differential equations. So it is possible to describe

the transient behaviour of induction machines in the time
scale.
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Fig. 1 Sweep function and excitation result

The description of the induction machine by the
space vector theory in complex numbers looks as follows
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u is voltage space vector, i is current space vector, ¥ is flux
space vector, f'is frequency, r is resistor, x is inductive re-
actance, index S is stator, index R is rotor.

Variables are all space vectors and additionally
the rotor frequency fz(?).

The equation for the electrical torque m, is
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where ¢, is a normative time constant, which represents

the time the nominal torque of the induction machine needs
to speed up the rotor mass to nominal rpm.
These equations show three things:
1. the system has a product

—Im{gje (1)i (t)}
t
ity of the set of equations;

of variables

, which shows the nonlinear-
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2. the rotor frequency fz is a time dependent parame-
ter in equation (3) in combination with the rotor
flux f, (t)zR (t) ;

3. the system has only terms in the first derivation,

what means, that the system is not able to swing.

Looking to the mechanical system, we have a free
two—mass torsion oscillator. @; is representative for the
rotor, where the eletrical torque M, is the input to the tor-
sional oscillator, i.e. drive system. Via a shaft, a flywheel
with the mass @, is coupled to the rotor mass @,. The shaft
can be considered as a spring with the stiffness ¢ and a
damper with the damping constant & (Fig. 2).
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Fig. 2 Single degree—of—freedom torsional system

The differential equations for the torsional system
are as follows [1]

0L (1) (1) (1)) ¢
+e(ay (1) = (1)) =M, (1) )
@2%%(t)-k%(al(t)_az(t))-
—c(a (t)=a, (2)) =0 (8)

According to the second derivation of the vari-
ables a;(f) and a,(?) the mechanical system is able to
swing. The torsional oscillator with low damping constant
is a very good indicator for vibrations caused by the elec-
trical torque M. ().

Angular speed %al (t) of O is linked to the ro-

tor freqency fz(¢) as follows

2z

_al(t)_?(fs_fk(t)) ©)

dt

The set of differential equations from Eq. (2) to
Eq. (9) has to be solved.
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3. Numerical simulation of the run-up phase for an in-
duction machine

A test constellation as in Fig. 2 is assumed to si-
mulate the transient phenomena. To solve the described set
of differential equation, a special numerical differential
equation solver is used. To start the simulation, the stan-
dardized voltage space vector ug Eq. (2) jumps from 0 to 1.

This jump function is causing electromagnetic
compensation phenomena in the electrical torque M, dur-
ing start up (Fig. 3, a).
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Fig. 3 a - simulation electrical torque (run-up); b - analysis
of electrical torque after switch on; ¢ - parametric
excitation of the shaft torque (run-up); d - simulated
speed (run-up)



The frequency starts with line frequency (50 Hz)
and goes down to 43 Hz as analysed in Fig. 3, b.

The electrical torque shows the behavior of sweep
function, as shown in Fig. 1. Responsible is the parametric
excitation in Eq. (3), where the rotor frequency fz(¢) is mul-
tiplied with the flux space vector ¥x(¢). According to Eq. 6,
Yr(?) is one of the multiplier for the electrical torque M.,
which explains the sweep behavior.

The conclusion is, that the sweep frequency of the
electrical torque runs from line frequency (50 Hz) at start
up down to 0 Hz at nominal speed.

The shaft torque M,, shows in the first half second
(Fig. 3,c) an overlay from the forced electrical torque
(50 Hz - 43 Hz) and the resonance frequency of 28 Hz
from the torsional oscillator.

Further on at about 1.2 seconds the amplitude of
the shaft torque increases again with only the resonance
frequency of 28 Hz of the torsional vibration system.

Looking at the speed (Fig. 3, d) at that moment,
the relative speed is n = 0.44.

Eq. 9 can also be written in a normative way as

follows
ﬁ = 1—& (10)
N, /s

with %: 0.44, fz is calculated to fr = (1-0.44)-50 Hz =
1
=28 Hz.

28 Hz is the resonance frequency of the mechani-
cal system. Thus parameter fz leads to the excitation of
torsional vibration system, that can be explained by
Eq. (3). This is a typical parametric excitation phenomena.

Understanding the parametric excitation as a
sweep function, the excitation condition can be determined
very easily by Fig. 4.
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Fig. 4 Excitation condition diagram for run-up

To prove this theory a simulation is made with re-
sonance frequency of 75 Hz of the torsional vibration sys-
tem. The motor is 55 kW induction machine with a squirrel
cage rotor. As the maximum excitation frequency is 50 Hz,
no resonance excitation is shown in the shaft torque.

To show the power of the space vector model it is
to expect, that the resonance frequency should be excited
during reversal, because the rotor frequency f; runs from
100 Hz to 0 Hz during reversal. According to Eq. (10) the
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torsional system with the resonance frequency of 75 Hz
should be excited at a speed of

Jr

N, s

- 75Hz
50Hz

-0.5 (11)

The simulation for reversal starts with the condi-
tions at idle speed of 1500 rpm.

After the switch, the torsional oscillator is excited
at its resonance frequency of 75 Hz (Fig. 5, a) by the im-
pact of the electrical torque. After decline of the amplitude,
the resonance frequency is again excited (Fig. 5, a) by the
parameter f.
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Fig. 5 a - parametric excitation of the shaft torque during
reversal; b - simulation of the speed during reversal;
¢ - simulation of electrical torque (reversal)

The parametric excitation takes place as calcu-
lated according Eq. (11) (Fig. 5, b).

High amplitudes of the shaft torque, which are up
to about 25 times of the nominal torque of the electrical
machine, shows the feedback of the mechanical system to
the electrical system during the parametric excitation.

Fig. 6 shows the impact of electrical torque with



about 20 times of the nominal torque. The shaft torque
reacts with an amplitude of about 30 times of the nominal
torque, due to the low damping of D = 0.007.
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Fig. 6 Electrical impact and response of shaft torque at
reversal switch

So the excitation diagram of Fig.4 can be ex-
panded as follows
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Fig. 7 Expanded excitation diagram
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With the excitation diagram for an induction ma-
chine, it is very easy to predict parametric excitations of
torsional vibrations during transients as speed up or rever-
sal.

4. Experimental results

According to Fig.2 a test rig was designed
(Fig. 8).

flywheel

Fig. 8 Test rig to investigate torsional vibrations
The motor is a 1.8 kW induction machine with

51

squirrel cage and synchronous speed N, of 3000 rpm. The
resonance frequency of the mechanical system is f;=
= 33.5 Hz. No damping clutches are used so the damping is
D =0.007.
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Fig. 9 a - measured parametric excitation of the shaft tor-
que (run-up); b - measured speed (run-up); ¢ - mea-
sured electrical torque (run-up); d - measured spec-
trum of the electrical torque (run-up)
To determine the electrical torque M., also angu-



lar acceleration ¢, (¢) of the rotor mass has to be measured

according to Eq. (12).

M, (t)=M, (1)+6,4q(t) (12)

The shaft torque has been measured with strain
gauges, applied on the shaft. Angular acceleration ¢, (t)

has been measured with Ferraris sensor, which has been
developed by the author [9]. The measuring chain was ap-
proved linear for the range 0 - 1000 Hz (-3 dB).

The shaft torque shows the same typical paramet-
ric excitation of the resonance frequency (33.5 Hz) as al-
ready simulated with the space vector theory (Fig. 3, ¢).

The measured speed shows, that the excitation
happens, when the condition according to Eq. (10) is ful-
filled

N Se g

N, s

33.5Hz
50Hz

=0.33

(13)

The electrical torque shows the typical transient
phenomena with the sweep effect.

In the spectrum of the electrical torque (Fig. 9, c)
sweep effect is also visible. It shows a wide range of fre-
quencies below 50 Hz and lower amplitudes down to 0 Hz
according the amplitudes in Fig. 9, c. The feed back of the
mechanical resonance is also visible with a clear peak
around 33 Hz.

The alternating torques after switch-on are clearly
recognizable, with the values of roughly 6 times rated
torque. Of special note is the fact, that the electrical torque
frequently becomes negative, resulting for example in the
much-feared “chattering teeth” effect on rigidly-coupled
gears (geared motors) [10].

5. Conclusion

During transient phenomena the induction ma-
chine causes parametric all excited torsional vibrations.
The excitation mechanism is a sweep that runs through all
frequencies from 100 Hz to 0 Hz. In low damped systems
this might cause an overload of torque in the mechanical
system.

As amplitudes of the torque become also nega-
tive, in geared drives chattering of the teeth will reduce the
lifetime of the gearbox.
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PARAMETRISKAI ZVADTNAMO INDUKCINIU
VARIKLIU VARANCIOJO VELENO VIRPESIU
ANALIZE

Reziumé

Tiriant pereinamuosius procesus, surijusius su pa-
rametriniu Zadinimu ir silpnu kylan¢iy virpesiy slopinimu
indukciniuose varikliuose, reikia spresti netiesines diferen-
cialines lygtis. Variklio elektriniy ir mechaniniy kintamyjy
dydziy derinys diferencialinése lygtyse apsunkina vykstan-
¢iy reiskiniy fiziking interpretacija.

Siame darbe parodyta, kaip varandiojo veleno
nestacionarius virpesius, kylancius pereinamuyjy procesy
metu, galima paaiskinti parametriniu Zadinimu. Zadinimo
proceso analizé leido sudaryti diagramas, kuriomis naudo-
jantis galima nustatyti virpesius zadinan¢iy kritiniy greiciy
diapazonus.

P. Hantel, M. Bogdevicius, B. Spruogis,
V. Turla, A. Jakstas

ANALYSIS OF PARAMETRIC EXCITED VIBRA-
TIONS OF DRIVE SHAFTS CAUSED BY INDUCTION
MACHINES

Summary

A description of transient phenomena in an induc-
tion machine in connection with oscillation excitation in
low—damped drive systems requires the solution of a sys-
tem of nonlinear differential equations. The coupling of
variables from the electrical and mechanical system in the



differential equations complicates physical interpretability
of the observed phenomena. The paper shows how nonsta-
tionary oscillations in the drive shafts, produced by tran-
sients in the induction machine, are explained in terms of
parametric excitation. The knowledge of the excitation
mechanism enables a simple excitation diagram to be con-
structed, indicating critical speed ranges for the excitation
of oscillations.

I1. Tarrens, M. borgssuutoc, b. Cripyoruc,
B. Typna, A. Sxmrac

AHAJIN3 TAPAMETPUYECKU BO3BYXJIAEMBIX

KOJIEBAHHI BEJIYILETO BAJIA
NMHAYKINWOHHBIX JIBUT'ATEJIEN

PesmomMme

Onwncanne IMEpexOJHBIX NMPOIECCOB B MHIYKIH-
OHHBIX JIBUTATEISIX, CBSI3aHHBIX C ITAPaMETPUIECKHM BO3-
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Oy>XIICHHEM W HEIOCTaTOYHBIM JEeMI(QHUPOBAHUEM BO3HHU-
KaoUmx KojeOaHWi TpeOyeT PEelIeHHs CUCTeM HeNNHeH-
HBIX TUQdepeHInaIbHBIX ypaBHeHHH. COBOKYITHOCTD Iie-
PEMEHHBIX BEJIMUMH JICKTPUIECKON M MEXaHWYEeCKOW Jac-
Teil aBurarenss B AudQepeHIaIbHBIX ypaBHEHHAX YcC-
JIOXKHSACT (M3MUYECKYI0 HHTCPHPETANIO HPOUCXOIINX
sBIeHUH. B maHHOW paboTe moka3aHo, Kak HecTallMOHap-
HbIe KOJieOaHMsI BEAYILEro Bajla, BO3HHMKAIONINE B Iepe-
XOJIHBIX TPOIECCaX, MOXKHO OOBSICHUTD MapaMeTpUIeCKUM
BO30YXIeHHEeM. AHaJIH3 Tpolecca BO30YKICHHS IMO3BO-
JIJI TIOCTPOUThH JUArpaMMbl BO30YKICHUS, C TOMOIIBIO
KOTOPBIX MOXHO ONPCACIUTh KPUTUYCCKUC JTUAIla30HbI
CKOpOCTEH, BO30YKIAIOIIUX KOJIeOaHUs.
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