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1. Introduction 
 

It is shown in the article [1] that the fatigue life of 
the internal threads of body is longer than the fatigue life 
of the stud/bolt threads. If the studs meet all the require-
ments, a separate analysis for the internal threads is not 
performed. If the studs do not meet the fatigue require-
ments for the full design life of a vessel, they can be re-
placed in service. The replacement or repair for a body 
(flange) is difficult, expensive and may be impossible. 
Therefore, it is important to have a reasonable estimate of 
load distribution in the thread of the body for using in its 
fatigue life prediction as a primary data. 
 The analogous estimation is needful for the case 
when a defect existing near the thread in body is fore-
casted. The occurrence of defects is often unavoidable in a 
large dimension cast iron body made by casting [2]. In this 
case it is essential to avoid the defect-crack growth [3-5]. 
At cyclic loading a tightening of a threaded connection 
must be chosen in suit with this requirement. Especially it 
is important in the case of tension body because of the fa-
vourable conditions for a defect-crack opening [6]. 
 In analytical models of load distribution between 
threads the assumption that longitudinal stresses in the 
standard nut wall distribute evenly [7] is used. However 
this assumption is unusable for the stud-body connection. 
 The model of load distribution in the stud-body 
thread presented in current paper estimates the variation of 
longitudinal deformations in contiguous to body thread 
layer, which take place at receeding from turn loads loca-
tions. A stability conditions for defect-crack existance near 
the thread in tension body are also analized. 
 
2. Basic equations for tension body 
 

In the presented model the body 1 is a thick-
walled cylinder with threaded hole (Fig. 1). Its external 
diameter and height are  and , where 
D = 1.5d is external diameter of standard nut, d is nominal 
diameter of the thread and H is the length of the thread 
engagement in connection with stud 2. Stud core and body 
are in the state of tension. Their deformations as well as 
deflections of the engaged turn pairs are in the elastic 
phase. 

DDbd > dHHbd +≥

The representations, needed to calculate longitu-
dinal load intensities of the turns’ q(z) can be obtained by 
using equation for the displacement compatibility of 
threaded connection elements. The equation for a connec-
tion with the tension body as well as with the tension nut 
looks as follows [7] 

 
( ) ( ) ( )s s bd bd

here s HΔ  and s zΔ  variations of the stud lengths H and z, 

bd HΔ  and bd zΔ  variations of the same lengths in contigu-
ous to body thread layer, )(zδ  and )(Hδ  deflections of 
the turns pairs at coordinates z and Hz = . 
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Fig. 1 Connection of stud 1 with tension body 2 
 
 Axial force in the stud cross-section z is 

, therefore after differentiation of 

Eq. (1) the following differential equation was obtained 
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where Q is external force on the stud,  and  are 
modulus of elasticity and cross-sectional area of the bolt 
core, 

sE sA

γ  is pliability of the turns pair, which can be ob-
tained experimentally [8], )(zbdε  is average (nominal) 
deformation of contiguous to the body thread layer at co-
ordinate z . 

Deformation )(zbdε  due to load intensities q(zq) 
(Fig. 1) depends of it’s locations with respect to section z. 
For example, the deformation at point B due to q(zq1), 
q(zq2)...., which are located between z = 0 and z, is 
εB = εbd(z) = εq1(z) + εq2(z) + ... as shown in Fig. 1 (in Fig. 2 
it is shown also for the compressed body). 

Deformation )(zbdε  of the body layer near the 
thread can be expressed as follows 
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z
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where zq is location coordinate of load intensity q(zq), 
ε(1)(z-zq) is nominal deformation of contiguous to the body 
thread layer at the coordinate z due to unit load intensity 
q = 1, which is located at zq. 
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By using Eq. (3) in Eq. (2) and designating 
t = 1/(EsAs) we get 

- ( ) ( ) ( ) ( )(1)
0 0

z z

q q qtQ t q z dz q z z z dz q zε γ ′+ + − =∫ ∫  (4) 

 Load intensity q(z), which is the solution of 
Eq. (4), can be expressed as series 

( ) ...4
4

3
3

2
210 +++++= zazazazaazq  (5) 

where 0 ≤ z ≤ H, and a0, a1, a2, a3, ... are factors which 
needs to be determined. 
 Function ε(1)(z-zq), which is used in Eq. (4) can be 
also expressed as series  

  (6) ( ) ( ) ( ) ( )2 3

(1) 0 1 2 3q q qz z b b z z b z z b z zε − = + − + − + − q

where b0, b1, b2, b3 are factors which could be determined 
by using FE technique. 

Now it is useful to notice that q(z) and q(zq) in 
Eq. 4 are the same function really. Therefore 
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where 0 ≤ zq ≤ z. 

By using Eq. (6) and Eq. (7) it becomes possibly 
to solve integral (3) 
 

 ( ) ( ) +++= 2
110011001 2

1 zbabazbazbdε   

+⎟
⎠
⎞

⎜
⎝
⎛ +++ 3

1201102 2
1

3
1 zbababa   

 +⎟
⎠
⎞

⎜
⎝
⎛ ++++ 4

130211203 3
1

3
1

4
1 zbabababa   

+⎟
⎠
⎞

⎜
⎝
⎛ ++++ 5

131221304 4
1

6
1

4
1

5
1 zbabababa   

+⎟
⎠
⎞

⎜
⎝
⎛ ++++ 6

132231405 10
1

10
1

5
1

6
1 zbabababa   

+⎟
⎠
⎞

⎜
⎝
⎛ ++++ 7

133241506 30
1

15
1

6
1

7
1 zbabababa   

......
35
1

21
1

7
1

8
1 8

134251607 +⎟
⎠
⎞

⎜
⎝
⎛ ++++ zbabababa  (8) 

 
For the solution of Eq. (4) it is needful to put here 

integral of Eq. (5), derivative of Eq. (5) and expression (8). 
By comparing the factors at z with the same exponents of 
power the factors a0, a1, a2, a3, ... have been found. After 
this the Eq. (5) get the next form 
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 Factor a0 of Eq. (9) can be defined by using 
boundary condition  

( ) ( ) ( )HVaHGadzzqQ
H

10
0

+== ∫    (11) 

here )(HG  and )(HV  are values of the integrals of func-
tions  and  at z = H. )(zG )(zV
 
2. Basic equations for compressed body 
 

The displacements compatibility equation for a 
stud connection with the compressed body as well as with 
the compressed nut looks as follows [7] 

( ) ( ) ( ) (0s bdz z zΔ Δ δ δ+ = − )    (12) 

where Δs(z) is variations of the stud length z, Δbd(z) is a 
variation of the same length of contiguous to the body 
thread layer,  and  are deflections of the turns’ 
pairs at coordinates z and 

)(zδ )0(δ
0=z  (Fig. 2). 

 As it is shown in Fig. 2 in the case of compressed 
body coordinate z has contrary direction in comparison to 
the case of tension body. In this case axial force in the stud 

cross-section z is . ( )dzzqzQ
z

∫=
0
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Fig. 2 Connection of stud 1 with compressed body 2 
 
 Distribution of load intensities in the thread has 
been obtained in the same way as in the case of the tension 
body. The solutions for compressed body get the forms of 
Eq. (8-11), in which factor a1 = 0. 
 
3. Nominal longitudinal strains in the body layer 
    near the threads at unit load intensity q = 1 
 
 In the cases of stud-nut connections for the solu-
tion of Eq. (1) or Eq. (12) the nominal (average) longitudi-
nal strains of the stud core and nut wall are used. In the 
case of the body the concept of nominal elastic strains is 
fitted only to longitudinal layer near the internal thread and 
is expressed by Eq. (3). At unit load intensity q(1)=1 it is set 
in Eq. (6). The factors of Eq. (6) have been found by using 
derivative of Eq. (13), which expresses longitudinal dis-
placements  in the body layer near the thread 
m - n (Fig. 3) due to unit load intensity q

(1) ( qz zΔ − )

q +  

(1)=1 kN/mm 
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Fig. 3 Finite element mesh of the threaded body: a - com-

pressed body; b - tension body line m-n is layer near 
the threads 

 
 The factors of Eq. (13) have been found by using 
data of FE analysis (Fig. 3) and least-squares technique. So 
the factors of Eq. (6) are b0 = e1, b1 = 2e2, b2 = 3e3, b3 = 4e4.  

The FE analysis was carried out using the 
ANSYS version 10.0 suite of programs. The body with 
circular turns was modelled using two-dimensional 

isoparametric elements with eight nodes of two degrees of 
freedom at each node. Axisymmetric type of analysis was 
carried out using only half of a section in length. FE mesh 
(Fig. 3) was unstructured, it consist of PLANE 183 ele-
ments. The geometry of the body threads based on ISO 
M20×2.5 was modeled. Material of the body is cast iron 
(modulus of elasticity E = 160 GPa and Poisson’s ratio 
ν = 0.26).  

Longitudinal displacements in tension body layer 
near the thread obtained by FE analysis (points) and by 
least-squares technique (lines) are shown in Fig. 4. 
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Fig. 4 Longitudinal displacements in tension body at 
q = 1.0 kN/mm: 1 - Dbd = 30 mm, 2 - 40 mm,  
3 - 60 mm, 4 - 80 mm 

 
 The values of the factors of Eq. (6) for cast iron 
bodies with internal thread M20×2.5 are presented in Ta-
ble. 
 

Table 
 

The values of the factors of Eq. (6) for cast iron bodies 
 

Dbd
mm 

b0 b1 b2 b3

M20×2.5;  E=160GPa;  ν =0.26;  compressed body 
30 6.87E-05 -8.5E-06 3.736E-07 -3.9E-9 
40 4.61E-05 -8.09E-06 4.88E-07 -1.02E-8 
60 4.01E-05 -7.53E-06 4.78E-07 -9.62E-9 
80 3.84E-05 -6.46E-06 4.15E-07 -8.88E-9 

M20×2.5;  E=160GPa;  ν =0.26;  tension body 
30 6.63E-05 -1.11E-05 9.33E-07 -2.82E-8 
40 5.68E-05 -9.88E-06 7.87E-07 -2.20E-8 
60 5.20E-05 -9.27E-06 7.15E-07 -1.90E-8 
80 5.99E-05 -1.29E-05 1.06E-06 -2.85E-8 

 
4. Distribution of load between turns and deformations 
    of the layer near the thread in the body 
 

By above stated technique the load distribution in 
the thread and deformation of the body has been calculated 
for connections ISO M20x2.5 which lengths are H = 16 mm 
(Figs. 5-7). Steel 4130 was used for the stud and cast iron 
SG was used for the tension body. Average indices of me-
chanical properties of steel 4130: 621=prR  MPa, 

7662.0 =pR  MPa, 930=mR  MPa, %, 59=Z 185=sE  GPa. 
Average indices of mechanical properties of body material 
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cast iron SG: MPa, MPa, 6152.0 =pR 870=mR 0.3=Z %, 
GPa. Experimentally obtained pliability of the 

turns pair by using special connection M20x2.5 is 
m/(MN/m). For this the stud with a single 

turn and threaded body were made from steel 4130 and 
cast iron SG respectively. 

160=bdE

61026.5 −⋅=γ

Calculations of the load distribution in the thread 
have been performed at σsn/Rp0.2 = 0.23 where σsn is nomi-
nal stresses of stud. 
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Fig. 5 Load distribution in the thread of tension body:  
1 - Dbd = 30 mm, 2 - 40 mm, 3 - 60 mm, 4 - 80 mm 
 

In the case of tension bodies the values of load in-
tensities qbd(H) and of longitudinal strains near the internal 
thread εbd(H) are the highest at depth H (in the deepest sec-
tion DS according Fig. 1) as shown in Fig. 5 and Fig. 6. 
The values qbd(H) obtained for the tension bodies Dbd = 40, 
60, 80 mm are by 6.8%, 10.3% and 12.1% less respectively 
than that obtained for detail Dbd = 30 mm.  
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Fig. 6 Deformation in tension body layer near the thread:  
1 - Dbd=30 mm, 2 - 40 mm, 3 - 60 mm, 4 - 80 mm 
 

 The values of εbd(H) are by 21.1, 31.7 and 41.5% 
less at comparison in the same order. 

It is necessary to notice here that wall thickness of 
the external detail with Dbd = 30 mm is the same as of the 
standard nut. In this case because of least wall thickness 
the value of strain εbd(H) is the highest. 
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Fig. 7 Load distribution in the thread of compressed body: 
1, 2, 3, 4 - Dbd = 30, 40, 60, 80 mm 

 
In the case of compressed bodies the values of 

load intensities qbd(H) are the highest in the entry section 
ES (Fig. 7). The location of ES is shown in Fig. 2. The 
values qbd(H) obtained for the compressed bodies Dbd = 40, 
60, 80 mm are by 6.9%, 10.6% and 13.7% less respectively 
than that obtained for the nut (detail Dbd = 30 mm). 
 
5. Determination of tightening stresses for threaded 
    body with defect 
 

Often structural bodies of large dimensions are 
manufactured by using cast iron mouldings in which vari-
ous defects and voids are met. Sometimes modeling of the 
bodies assumes that small void is situated near the thread 
of threaded hole. This void is identified like a crack. In cast 
iron SG which is used in mining industry equipment, typi-
cal dimension of voids is 1-4 mm (Fig. 8).  

The study presented in the previous sections may 
be useful for a preliminary consideration of tightening con-
ditions in the case of tension body with defect near the 
internal thread. A defined level of tightening should safe-
guard against void-crack increasing. A void-crack may 
slightly increase at high cyclic loading if it stick at the root 
of internal thread. However increasing of the crack must be 
stopped when the crack tip leaves a zone of stress concen-
tration. Analysis of the fatigue failure surfaces of the studs 
shows this zone deep to be about 0.36P, where P is thread 
pitch. This dimension was used for the threaded bodies too. 

ε 

 

   
4mm 

 
Fig. 8 The voids in cast iron SG 

 
Preliminary tightening stresses have been defined 

for threaded connection M20x2.5. The dimensions of 
schematic tension body were Dbd = 60 mm, H = 16 mm and 
the wall thickness h = 20 mm. Mechanical properties of 
used connection elements were the same like given in sec-
tion 4.  

The nominal stresses in the stud after tightening is 
σs,t = Q/As. The average stresses of the body layer m - n 
(Fig. 3) here is called nominal body stresses, which are as 
follows 
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( ) ( ) bdbd Ez σ tbd z εσ =,   (14) 

 The highest stress σbd,t(H) appeared in the body’s 
deepest section DS (Fig. 1). Relation of the stresses σs,t and 
σbd,t(H) may be defined by using the calculating method 
given in the section 2. It was assumed that void-crack has 
semielliptical form, which depth is c>0.36P and length 3c 
(Fig. 9). Crack is situated at the free internal threaded sur-
face in the deepest section DS. 
 
 
 
 
 
 
 
 
 

 

Fig. 9 Crack 1 in the tension body cross-section DS 
 
 According to linear fracture mechanics in case of 
elastic cyclic loading the condition of the body crack sta-
bility can be as follows 

, /th r sK K nΔ Δ≤  (15) 

where ΔK is stress intensity factor range for the body 
crack, to be precise , where K1, 1,max minK K KΔ = − 1,max and 
K1,min are maximum and minimum values of the stress in-
tensity factor in loading cycle; ΔKth,r is crack threshold for 
the body material at asymmetry cyclic loading; r is asym-
metry factor of the loading cycle, to be precise 

; n1, 1,/min maxr K K= s is safety factor. 
 Unfortunately, in the text books [9-11] and other 
literature on fracture mechanics authors do not meet with 
success to find formulae for the calculation of K1 (stress 
intensity factor for mode 1) in the case of internal semi-
elliptical crack which is situated in the thick-walled cylin-
der (Fig. 9). Therefore, after special correction the formu-
lae for calculating of the stress intensity factor  in the 
case of circular internal crack, which is situated in the 
thick-walled cylinder (Fig. 10), was used [10] 

circlK1

11 FcK circl πσ=    (16) 

where F1 is the function dependent on ratio T = c/h. 
 By using the data given in Tables of the article 
[10], function F1 have been expressed by cubic equation: 
F1 = 1.0867 - 1.0322T + 1.6409T2 + 0.2685T3. 

To ascertain the magnitude of the correction coef-
ficient for using of formulae (16) in case shown in Fig. 9 
the two values of stress intensity factors ( and ) 
have been compared. Its have been calculated for semi-
elliptical and circular cracks situated in two plates as are 
shown in Fig. 11, a and b by using the formulas given in 
the article [9].  

*
1K **

1K

 These cracks had the same depth c and analogous 
forms to those which are shown in Fig. 9 and Fig. 10 re-
spectively. Also the plates and the considered cylinder 
body had the same thickness h = 20 mm. 

 
 
 
 
 
 
 
 
 
 

Fig. 10 Thick-walled cylinder with circular crack 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11 Cracked plates: a - with semielliptical crack  

b - cracked over all width 
 

The calculated values of ratio K1*/ K1** are 1.42, 
1.47, 1.55, 1.65 and 1.74 at crack depths c = 1, 2, 3, 4, 
5 mm respectively. 

The same analysis was performed for two pipes 
too. The crack in the first pipe had semi-elliptical form like 
as in Fig. 9. In the second pipe the crack was circular like 
as in Fig. 10. Dimensions of pipes were d = 20 mm and 
h = 2 mm. The values of stress intensity factors *

1K  and 
**

1K  for the first and the second pipes have been calculated 
by using the formulas given in the article [11]. The ob-
tained values of the ratio **

1
*

1 / KK  are 1.4 and 1.77 at 
crack depths c = 0.5 mm and c = 1.0 mm respectively. 

It can be noticed that in both cases of the per-
formed comparisons considered ratio is more than 1.4. For 
preliminary analysis the same can be assumed for the case 
of thick-walled cylinder too. So, the stress intensity factor 
for the internal semi-elliptical crack in the thick-walled 
cylinder have been calculated by using formulae (16) with 
the correction coefficient 
 

4.1
1

1

circlK
K =  (17) 

 
 By using formula (17) and (16), in which σ  = 
= σbd,t(H), relation between K1 and nominal tightening 
stresses σbd,t(H) and σs,t for the case of tension body 
(M20 x 2.5, Dbd = 60mm) with internal semi-elliptical 
crack (Fig. 12) have been found.  

To settle tightening parameters for the considered 
threaded connection the condition (15) should be met. For 
this the allowable mean stress intensity factor Km in the 
loading cycle must be defined because it meets the state of 
crack after the connection tightening. By using allowable 
value of Km the allowable tightening stresses σs,t and 
σbd,t(H) could be determined from the graphs in Fig. 12.  
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Fig. 12 Stress intensity factor dependencies on tightening 

of threaded connection: 1, 2, 3, 4 - σn = σs,t; 
1*, 2*, 3*, 4* - σn = σbd,t(H); crack depth c:  
1, 1*- 1 mm; 2, 2*- 2 mm; 3, 3*- 3 mm;  
4, 4*- 4 mm; 5 and 6 - Km = 5.7 and 6.1 mMPa , 
7 - σs,t = 0.4Rpr

 
The mean stress intensity factor is 

 

( )
1

2 2 1m max
KK K K

r
Δ Δ +

= − =
r

−
 (18) 

 
because . ( )/ 1maxK KΔ= − r
 To avoid the crack growth it is necessary in for-
mulae (18) to use ΔK = ΔKth,r/ns, where ns is safety factor. 

In the example under consideration the body is 
made from cast iron SG which is used for mining equip-
ment manufacturing. For determining the threshold ΔKth,0 
(at r = 0) five compact tension CT specimens (M1 - M5) 
were tested in accordance with the ASTM E 647-00 meth-
ods. Thickness and width of the specimens were B = 25mm 
and W = 50mm. The obtained crack growth rate versus 
stress intensity factor range fatigue diagram is shown in 
Fig. 13. The average value of threshold ΔKth,0 is 
9.5 MPa m . 

The value of threshold ΔKth,r at r > 0 may be 
found by using expression [10] 
 

( ), ,0 1th r thK K r λΔ Δ= −   (19) 
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Fig. 13 Fatigue crack growth 

where exponent of power λ = (0.5-1) for steels and λ = 1 
for cast irons. 

, MPanσ  

 In the final analysis the allowable tightening 
stresses of the stud can be defined approximately for the 
case of tension body (M20 x 2.5, Dbd = 60 mm) with the 
internal semielliptical crack (Fig. 9). 
 The asymmetry factor at high cyclic loading for 
mining equipment usually is in range r = 0.7-0.95 and the 
safety factor can be ns = 1.5. By using formulae (18) and 
(19) it was obtained: Km = 5.4 mMPa , when r = 0.7 and 
Km = 6.2 mMPa , when r = 0.95. These values of Km are 
marked in Fig. 12 by the vertical lines 5 and 6. It can be 
seen in Fig. 12 that tightening stresses  σs,t of the stud at 
various crack depths c (lines 1, 2, 3, 4) are disposed below 
the horizontal line 7, which reflect σs,t = 0.4Rpr, and be-
tween lines 5 and 6. It shows the tightening stresses of the 
stud are less than σs,t = (0.4-0.6)Rpr, which is recom-
mended to safeguard stability of tight [7]. 

    K1, MPa√m 

So, at setting conditions for crack stability in the 
case of threaded tension body the problem of connection 
release arises, which should be analysed in particular. 
 In design stage it would be useful to change the 
construction of connected parts in order to get a com-
pressed condition in the threaded body. Then the possibil-
ity of crack growth in the body would be considerably less 
and the tight could be bigger. 
 
6. Conclusions 
 

1. The proposed model of the load distribution in 
the thread of stud-body connection estimates the variation 
of longitudinal strains in contiguous to the body thread 
layer, which take place at the receeding from the location 
of the turn loads. 

2. The increasing of the body volume around the 
internal thread (increasing of Dbd) the maximum value of 
the turn load intensity in stud-body connection thread de-
creases. 

3. In the case of tension bodies the values of turn 
load intensities qbd(H) and the values of longitudinal 
strains near the internal thread εbd(H) are the highest in the 
deepest cross-section of bodies DS where the turns en-
gagement take place. In the case of compressed bodies the 
same is obtained in the opposing cross-section ES of the 
bodies. 

4. The highest values of the turn load intensities 
qbd(H) in threads of examined cast iron compressed bodies 
Dbd=40, 60, 80 mm are respectively less by 6.9, 10.6 and 
13.7% than that obtained for the nut (detail Dbd=30 mm) 
and the like it is in the cases of tension bodies. In these 
cases the values of the longitudinal strains near the internal 
thread εbd(H) are by 21.1, 31.7 and 41.5% less in compari-
son with the same order as above. 

5. In accordance with the preliminary calculation 
the problem of connection release arises if the condition 
for crack stability has been applied and when the crack is 
situated in the cast iron threaded tension body near the 
thread and connection experience the high cyclic loading. 
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A. Krenevičius, M. Leonavičius, J. Selivonec 
 
APKROVOS PASISKIRSTYMAS KORPUSO 
SRIEGYJE  
 
R e z i u m ė 
 

Straipsnyje pateiktas apkrovos pasiskirstymo kor-
puso sriegyje analitinis modelis, įvertinantis išilginių de-
formacijų kitimą, pasireiškiantį korpuso sriegiui gretimame 
sluoksnyje tolstant nuo vijų apkrovų pridėties vietos. Kor-
puso sienelės storio įtaka šiam kitimui, veikiant vieneti-
niam jėgos intensyvumui, nustatyta BE metodu. Apskai-
čiuotas apkrovos pasiskirstymas plieninės smeigės jungčių 

su gniuždomu ir tempiamu korpusais, pagamintais iš ke-
taus, sriegio vijose. 

Straipsnyje pateiktas sudaryto modelio taikymo 
pavyzdys, kuriame preliminariai analizuojamas defekto, 
esančio šalia sriegio tempiamame ketaus korpuse, stabilu-
mo ir jungties įveržimo ryšys, veikiant daugiaciklei apkro-
vai. 

 
 

A. Krenevičius, M. Leonavičius, J. Selivonec 
 
LOAD DISTRIBUTION IN THE THREAD OF BODY 
 
S u m m a r y 
 

This paper presents the analytical model of load 
distribution in the body thread. The model estimates a 
variation of longitudinal strains in contiguous to the body 
thread layer, which takes place at the receeding from the 
locations of the turn loads. The influence of the wall thick-
ness of the cast iron body in case of this variation at unit 
force is assessed by FE method. Load distributions on the 
turns are calculated for the steel stud connections with the 
compressed and tension bodies of cast iron.  

This paper also presents the application of the 
proposed model to a preliminary analysis of the relation 
between the stability condition of the internal defect of the 
tension body and the tight of the connection at high cyclic 
loading. 
 
 
А. Крeнявичюс, М. Ляонавичюс, Е. Селивонец 
 
РАСПРЕДЕЛЕНИЕ НАГРУЗКИ ПО ВИТКАМ 
РЕЗЬБЫ В КОРПУСЕ 
 
Р е з ю м е 
 

В настоящей работе предложена аналитиче-
ская модель распределения нагрузок по виткам резьбы 
в корпусе. Модель учитывает изменение продольных 
деформаций в соседнем к резьбе слое корпуса при уда-
лении от места приложения нагрузок на витках. Влия-
ние толщины чугунного корпуса на такое изменение 
при единичном усилии на витке определено методом 
конечных элементов. 

Приведен пример использования модели для 
приближенного анализа связи между условием ста-
бильности дефекта находящегося вблизи к резьбе рас-
тягиваемого корпуса с напряжениями затяга в шпильке 
при многоцикловом нагружении соединения. 

 
Received August 12, 2008

 


	ISSN 1392 - 1207. MECHANIKA. 2008. Nr.5(73) 
	Load distribution in the thread of body 
	A. Krenevičius*, M. Leonavičius**, J. Selivonec*** 
	*Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania, E-mail: kron@fm.vgtu.lt 
	**Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania, E-mail: minleo@fm.vgtu.lt  
	***Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania, E-mail: ma@fm.vgtu.lt  
	1. Introduction 
	2. Basic equations for tension body 
	 References 






