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1. Introduction 

 
Computer simulations of various mechanical sys-

tems and processes have a long history, while computa-
tional mechanics may be referred to the most successful 
subject, taking into account a great number of applications. 
It should be noted that the development of any numerical 
method involves several issues. A description of material 
distribution in space or the so-called discretisation concept 
is of major importance here which significantly increases 
the scope of application of these methods to nonlinear dy-
namics. 

Historically, the finite element method (FEM) 
prevailed in simulation of solids and structures. Originally, 
FEM technique which was based on fixed meshes aimed to 
solve static problems. Probably, the most general FE ap-
proach to non-linear dynamic solid problem is generalized 
in the book of Belytschko et al [1]. This general approach 
describes both the motion of the material and the motion of 
the mesh. It requires the evaluation of a new mesh in each 
time step and is quite expensive when applied to heteroge-
neous solids with changing topology. 

Recently, various discretisation alternatives com-
bined with explicit time integration methods have been 
suggested. A concept of the discrete, originally distinct, 
element method is basically referred to the original work of 
Cundall and Strack [2]. It was aimed at describing me-
chanical behaviour of granular assemblies composed of 
discrete elements, i.e. discs, and (later) spheres, in particu-
lar. Some examples of discrete element method (DEM) 
developments and algorithmic details may be found in [3-
7]. 

DEM concept has been also extensively applied to 
the simulation of heterogeneous solids to study their dy-
namic deformation behaviour and fracture problems. These 
methods could be characterised as being at the develop-
ment stage, theretofore, many issues including the discreti-
sation concept should be clarified. 

Two fundamentally different, particle-shaped and 
lattice-based, approaches have been developed in the 
framework of DEM applied to simulate solids. Particle-
shaped approach presents a rather straightforward exten-
sion of the original Discrete Element Method. In this pa-
per, a solid is replaced by a composition of discrete parti-
cles. Cohesive forces and various link and detachment 
mechanisms acting between the particles may be applied to 
solving this problem [8-10]. 

A lattice-based approach representing the contin-
uum by material particles interacting via the network ele-
ments is considered in this paper. Generally, this approach 
comprises an atomic concept used basically by physicists 
and straightforward application of the structural concept 

used by engineers. The idea to approximate the continua 
dates back to the works of Hrennikoff [11] and later con-
tributions of Kawai [12] and Herman et al. [13]. 

The main problem in developing lattice models is 
associated with proper evaluation of elasticity parameters. 
The earliest models of 2D isotropic continuum were de-
scribed by equilateral triangles in terms of the normal and 
shear spring stiffness. Their explicit expressions were 
probably given first by Savamoto et al. [14], and then theo-
retically derived by Griffiths and Mustoe [15]. The above 
two-spring model has a narrow range of Poisson’s ratio 
restricted by the upper limit value of 0.33 for a plain stress 
problem. Later, the same approach was applied to 3D hex-
agonal assembly [16], cubic lattice [17], and anisotropic 
solids using 2D hexagonal and square lattices [18]. 

The two-spring (normal and shear) model and 
numerical problems have been recently considered in [19]. 
It was shown there that the presence of the shear spring is 
difficult to interpret from the viewpoint of continuum. 

It could be noted that simulations, employing 
classical Bernoulli-Euler beams [20, 21] or Timoshenko 
beams [21, 22] may be treated as a counterpart of non-
classical continua. The interpretation of rotational degrees 
of freedom is largely empirical. 

A comprehensive review and theoretical study of 
the planar elastic lattice models which hold for micro-
mechanical applications is given by Ostoja-Starzewski 
[23]. A comparison of various approaches on the basis of 
numerical analysis is also presented by Karihaloo et al. 
[20]. 

The classical continuum-consistent models in-
volve only translational degrees of freedom, therefore, they 
ideally should be represented by a network of normal 
springs (truss elements). It was proved, however, that for 
isotropic continuum described by periodic triangular lattice 
with central interaction, a single discrete elasticity parame-
ter is available. This model is valid for Poisson’s ratio 
value of 0.33, while its deficiency for other values is nu-
merically illustrated in [24]. 

In [23], it was also shown that a description of 
anisotropic behaviour requires six independent constants, 
while the introduction of angular parameters is the only 
way to vary Poisson’s ratio.  

Several approaches appeared to solve Poisson’s 
ratio problem numerically by employing the microme-
chanical concept. A model for the elastic continua with 
virtual multidimensional internal bonds was developed by 
Zhang and Ge [25]. The basic idea of the presented model 
is that materials are discretised into mass particles, while 
these mass particles are connected with randomized normal 
and shear bonds. The constitutive relationship bridges the 
virtual bond stiffness and the macromaterial constants, i.e. 
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Young’s modulus and Poisson’s ratio. 
In the framework of a similar concept and by ap-

plying megaclustring of DE, a model of homogeneous ma-
terial to determine the DEM contact normal and tangential 
stiffness as functions of the known material properties was 
developed by Tavarez and Plesha [19]. The convergence is 
obtained with model refinement and the correct elastic 
behaviour is produced iteratively. 

Based on the review made, it could be stated that 
the existing DEM models for continuum are diverse, while 
a unified method for the evaluation of discrete elasticity 
constants consistent with the classical continuum theory is 
still at the development stage. In particular, singularity of 
Poisson’s ratio has not been resolved explicitly yet.  

This paper continues the analysis of discretisation 
of elasticity properties considered in the previous work 
[24]. It aims to develop a six-spring lattice-type DE model 
applicable to the description of isotropic and anisotropic 
2D elastic solid problem and exhibiting diversity of Pois-
son’s ratio values. The original contribution is based on the 
alternative description of angular interaction defined by 
applying the natural finite element technique [26].  

The paper is arranged as follows. In Sections 2 
and 3, DEM methodology and relevant discretisation by 
periodic triangular lattice are discussed. Derivation of dis-
crete elasticity relations described in the six-spring model 
by the natural finite element technique is given in Section 
4. Validation and performance of the developed method by 
simulating the dynamic behaviour of the plane stress prob-
lem are presented in Section 5. Finally, some conclusions 
are drawn in Section 6. Evaluation of the natural stiffness 
matrix in term of dimensionless parameters is described in 
the annex. 

 
2. DEM methodology 

 
The time-driven DEM is applied to the simulation 

of dynamic behaviour of the elastic two-dimensional solid. 
Actually, the present work is restricted to the plane stress 
problem, but the extension to plane strain or three dimen-
sions would be a rather formal task. Consequently, the 
plate of constant thickness s is regarded here as two-
dimensional solid. It is subjected to in-plane loads attached 
to the middle plane. The solid is considered in plane Oxy 
of the Cartesian co-ordinates, while axis Oz points thick-
ness direction. 

Generally, elasticity properties of solids are de-
fined by elasticity tensor and may be described in terms of 
3×3-order symmetric elasticity matrix [D]. For an anisot-
ropic material, the elasticity properties are defined by six 
independent constants. For an isotropic material, the elas-
ticity properties are restricted by two independent con-
stants, i.e. by the elasticity modulus E and Poisson’s ratio 
ν. If the material is assumed to be heterogeneous, the mate-
rial constants may be defined as position x = {x, y}T de-
pendent variables, and heterogeneity may be imposed on 
the particular subdomains. 

The DEM discretisation approach relies on the 
concept applied to the description of granular material as 
an assembly of deformable inter-acting particles [2]. Each 
of the particles is considered separately and defined by its 
shape, size and physical properties. DEM operates upon 
binary contact between two particles, however, the equilib-
rium and kinematics of an individual particle are defined 

with respect to the particle center. 
The 2D solid is regarded as a system of the finite 

number N of deformable material particles i (i = 1, …, N). 
The motion of each particle i in time t is described by the 
second Newton’s law. In our problem, the particle i has 
two independent translations denoted hereafter by vector 
xi = {xi, yi}T, therefore, the dynamic equilibrium of a solid 
particle is defined by two equations for forces as follows 

 
( ) ( )

2

2
i

i i

d t
m t

dt
=

x
F  (1) 

 
where mi is mass of the particle, while right hand side pa-
rameters stand for the resultant vector Fi = {Fxi, Fyi}T  of all 
external and inter-particle forces. 

The motion of each particle i, or, more definitely, 
tracking of its position ( )tix , velocity ( ) ( )tt ii xv ≡  and 
acceleration ( ) ( )tt ii xa ≡  in time t is performed by integra-
tion of equations (1). The explicit time integration schemes 
presents the most appropriate technique used in DEM. The 
Verlet velocity algorithm is currently applied to integration 
[3]. 

The DEM approach described above was imple-
mented into the original software code. The code presents 
a modified version of the DEM code DEMMAT developed 
in the Laboratory of Numerical Modelling of Vilnius Ge-
diminas Technical University, see [6]. 

 
3. Discretisation by periodic triangular lattice 

 
The lattice-type discretisation methodology aimed 

at developing DEM models for Eq. (1) and evaluating the 
discrete elasticity parameters is elaborated hereafter in de-
tail. 

The discrete model is implemented by covering a 
computational domain with the hexagonal lattice grid. The 
lattice is constructed by equilateral triangles (Fig. 1, a). 
Each particle i represent a hexagon composed of six equal 
triangles. The hexagon encompasses a half of each connec-
tion line. The location of the particle matches that of the 
lattice node and is defined by the global coordinates 
xi = {xi, yi}T, while the geometry of the particle is defined 
by a characteristic dimension L of the grid. Consequently, 
two types of meshes appear by modelling a planar contin-
uum domain, where another polygonal tessellation is re-
quired for outlining the particle’s shape. The grid cell with 
a particle is shown in Fig. 1, b. 

The density of the material is constant within the 
particle and is assumed to be constant ρ. Mass of the solid 
is described by a set of lumped masses mi, concentrated in 
the centres of particles: 

 

23
2im ρ= L s  (2) 

 
Generally, the lattice concept replaces continuum 

by a discrete network. The actual inter-particle contact is 
not considered here, and is simple replaced by the equilib-
rium of the selected nodes. Consequently, the interaction 
of particles i and j is described by the connection element 
i–j. 
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Fig. 1 Illustration of a discrete model: a - fragment of the 
lattice; b - the material cell with particle; c - network 
element; d - particle forces 

 
The connection element presents a line segment 

of the lattice grid. The network element is shown in 
Fig. 1, c. Constitutive properties of the solid are assigned 
to particular lines, more definitely, to the volume bounding 
connection line i-j. Here, the particle interface, or the ef-
fective section, aimed to transmit interaction forces be-
tween the particles, is of particular importance. For the 2D 
case, the bounding volume (area) is defined by the effec-
tive width . The connection element may generally be 
regarded as a rheological element which reflects a highly 
complicated model of continuum. It should be noted that a 
definition and explicit characterisation of the discrete elas-
ticity parameters present the key issue of the DEM simula-
tions. 

eff
ijB

Referring to the above scheme resultant vector 
 

6

, 
1

n
i i ext ij

j=

= +∑F F f  (3) 

presents the sum of the globally defined external force 
 and centrally interacting interaction particle forces 

. Hereafter, a subscript j denotes six neighbouring par-
ticles. Inter-particle forces, acting on the particle i, are il-
lustrated in Fig. 1, d. Hereafter, the inter-particle force vec-
tor  is y restricted to the elastic force. 

exti  ,F
n

ijf

n
ijf

 
4. A six-spring model L  

Development and implementation of the DE 
model (1) for solids require the evaluation of elastic forces 

 in (3), or more precisely, the evaluation of discrete 
elasticity constants. The continuum properties should be 
presented in terms of discrete network elements. Actually, 
the local constitutive relationship defined along the con-
nection line is assumed to be linear and is expressed as 

n
ijf

 

ij
n
ij

n
ij hKf   =  (4) 

 
where, hij presents inter-particle displacement as length 
change of connection line i–j 

 
ij nj nih u u= −  (5) 

 
which is expressed in terms of the local longitudinal dis-
placements  and iu ju  of the connected nodes i and j of the 
lattice. Consequently, the elasticity properties are defined 
by axial stiffness  of the inter-particle spring. n

ijK
The idea of the recent development is based on 

the structural analogy of the continuum in terms of the 
FEM. Conceptually, each of the elastodynamics problems 
under arbitrary loading may be solved by FEM. In particu-
lar, among various meshes, the periodic triangle lattice 
may be also considered to be the FEM mesh.  

By applying the principle of the virtual work or 
some other energy method and standard constant strain 
triangle finite element, it can be easily shown that the re-
sultant Cartesian particle forces Fi in Eq. (1) may be ex-
pressed in terms of stiffness matrices of the triangles in-
corporated. This may be done by using a standard FE as-
sembling procedure. 

Exploring structural analogy, the internal state of 
each particular triangle may be defined in terms of the ax-
ial forces acting along the triangle sides. The stress-
resultant formulation in the finite element analysis is some-
times called a natural approach [26]. 

In the natural approach, deformation behaviour of 
triangle element e with local nodes 1, 2 and 3 is described 
by three independent degrees of freedom and denoted by 
vector . Natural displacements mean three stretches of 

the element sides 

n
eu

{ }Tnnnn
e u,u,u 3 1232 1=u , where an individual 

component actually presents inter-particle displacements 
.hu ij

n
ij ≡  

The relationship between natural forces and dis-
placements may be expressed in terms of natural stiffness 
matrix [ ]n

eK . Thus, for element e 
 

[ ] n
e

n
e

n
e uKf =  (6) 
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Elements of the matrix 
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are of different nature. The diagonal members nn

e iiK  present 
the conventional axial stiffness. The off-diagonal members

  
ns
e ijK  reflect axial stiffness due to elongations of the 

neighbouring edges. They express angular deformation or 
shear effect. All of the stiffness parameters may be directly 
extracted from the natural stiffness matrix of the triangle. 
A procedure for the evaluation of natural stiffness matrix 

 
is given in [27] and briefly described in the 

Annex by (A1)-(A6). 
[ ] [ N

fe
n
e KK ≡ ]

s

 

For the sake of generalisation, the members of the 
above stiffness may be expressed in terms of the dimen-
sionless coefficients  as follows n

ijk
 

   
(7) n n

ij ijK k E=
 

The DEM technique operates, however, upon mu-
tual interaction between two particles, therefore, local in-
teractions should be considered.  

Let us revise the two-dimensional hexagonal cell 
depicted in Fig. 2, a. This cell may be regarded as a com-
position of e (e = 1, …, 6) triangle finite elements. The 
mesh of the cell contains j (j = 1, …, 6) lines intersecting in 
the node i, where a particular line i–j connects the nodes i 
and j. This line is considered to be a boundary line between 
two adjacent elements e and e +1. 

For the triangle e defined by nodes i, j and j-1, the 
natural force vector is , while for 
the triangle e+1 defined by nodes i, j and j+1, the force 
vector is . 

{ }Tn
jje

n
ije

n
ije

n
e f,f,f 1 1  −−=f

{ }Tn
jje

n
ije

n
ije

n
e f,f,f 1 11 1 11 ++++++ =f

Now, the particle equilibrium, derived from the 
lattice model as illustrated in Fig. 1, d, may be reformu-
lated in terms of the above forces. Actually, the inter-
particle force , as shown in Fig. 2, b, is composed of 
two components reflecting a contribution of two adjacent 
triangles. 

n
ijf

Hence, we may compose 
 

 1
n n n

ij e ij e ijf f f += +  (8) 
As a consequence, it was found that each of the 

edge forces  
n

e ijf  is composed of the components of differ-

ent nature   
nn
e ijf  and  

ns
e ijf  involving the influence of the 

axial deformation due to normal interaction of contacting 
particles and due to shear caused by interaction of the 
neighbouring particles.  

Finally, the resultant force analogous to the earlier 
expression (4) may be defined in terms of elongations hij 
and six discrete elasticity parameters 
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Fig. 2 Illustration of forces: a - a cell as composition of 
triangles with natural forces, b - inter-particle forces 

 
Thus we arrived at the model having merely six 

discrete elasticity constants. It may be classified as a six-
spring model with angular interaction [23], expressed, 
however, in the alternative form. 

It is easy to confirm that for anisotropic contin-
uum the elasticity matrix [D] defined by (A3) contains six 
independent parameters. Therefore, the expression (A6) 
presents a unique reversible relationship between discrete 
constants and elasticity constants of the continuum. 

For homogeneous isotropic continuum, elasticity 
properties are defined by two elasticity constants, elasticity 
modulus E and Poisson’s ratio ν. Thereby, discrete pa-
rameters are expressed as  and 

. In this way, we arrive at a sim-
plified expression of elastic interaction force (9) with two 
discrete constants: 

nnnnnnnn KKKK === 332211

nsnsnsns KKKK === 231312

 
( )11112 ++−− ++++= ijjjijjj

ns
ij

nnn
ij hhhhKhKf   (10) 

Finally, regarding (7), for homogeneous isotropic 
material two discrete nondimensional elasticity constants 
are defined explicitly as Poisson’s ratio dependant parame-
ters 
 

( ) ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
−

+
+

=
νν 13

21
132
1nnk  (11) 

( )2

3 1
6 3 1

nsk ν
ν

−
=

−
 (12) 

 
The variation of constants defined by Eqs. (11), 

(12) against ν is shown in Fig. 3, a. The graph illustrates 
the sign change of shear stiffness at ν = 0.33. +

 
(9)
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Fig. 3 Variation of the discrete dimensionless elasticity 
constants: a - isotropic material, b - anisotropic ma-
terial 

 
A significant difference of the present model from 

the earliest developments [15, 18] is based on a specific 
approach to shear stiffness. In our approach, the shear 
stiffness works only in combination with axial stiffness, 
therefore, resultant stiffness is insensitive to change of sign 
in shear stiffness. Considering the above results, it may be 
stated that a six-spring model is physically and mathemati-
cally consistent for a larger range of Poisson’s ratio, in-
cluding ν ≥ 0.33. 

Orthotropic material where two principal axes 
match the coordinate directions is defined by four inde-
pendent constants. Assuming two independent elasticity 
modula E1 and E2, Poisson’s ratio ν and shear modulus G, 
the elasticity matrix is presented as 

 

[ ]
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-nvm

 nv
nvn
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where two dimensionless parameters are 
 

22

1    
E
G

m,
E
En ==  

 
In this case, the discrete constants are defined by 

four parameters , ,  and . 
By assuming n = 2.0 and m = n/(2(1+ν)), the influence of 
orthotropy is illustrated in Fig. 3, b. It is shown that non-
positive shear stiffness occurs at smaller values of ν. 

nnK11
nnnn KK 3322 = nsns KK 1312 = nsK 23

The developed methodology could be applied to 
nonhomogeneous solids. 

 
 
 

5. Simulation results and discussion 
 

For validating the relevance and accuracy of the 
developed six-spring DE model and numerical algorithm, 
the plane stress problem was examined numerically. A 
sample of the rectangular plate was considered. The ge-
ometry of the domain defined by two characteristic dimen-
sions, B and H = 4B, is shown in Fig. 4. The thickness of 
the plate is s = 0.1B. The plate boundaries AB and CD are 
assumed to be clamped by connecting it to rigid walls, 
while AD and BC are free boundaries. The external excita-
tion is kinematical. It is implemented via the motion of the 
boundary CD defined by the constant velocity v and the 
prescribed displacement value umax. 
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Fig. 4 Geometry of the plate with boundary conditions 

 
5.1. Validation of discretisation parameters  

 
Dynamic behaviour of the discretised structure is 

obtained by numerical integration of equations of motion 
(1) for each individual particle by applying explicit inte-
gration with a constant time step. The time step must be 
sufficiently small in order to ensure the stability of integra-
tion. Following the reported recommendations for various 
DEM models [3], the time step Δt is defined as a fraction 
of the critical time step Δtcr

 

crtt Δ
β

Δ 1
=  (14) 

 
where constant β is fraction factor. The lower bound of this 
factor is β ≥ 10, while the upper bound is evaluated on the 
basis of numerical experiments. 

In turn, the critical time step is related to the pe-
riod of the highest natural frequency of the smallest parti-
cle. Because of the difficulties in precise calculations via 
eigenvalues of cell parameters, crude estimation in terms 
of the mass m of the particle and the largest inter-particle 
stiffness may be given as follows nn

max KK 2=
 

cr
max

mt
K

Δ =  (15) 

 
Validation was performed by assuming that iso-

tropic elastic material is characterized by the following 
local properties at an arbitrary point: density of the mate-
rial is ρ, elasticity modulus is E and Poisson’s ratio – ν. By 
substituting mass of the particle (2) and general expression 
of the inter-particle stiffness (10), the estimate may be 
scaled with respect to the size of computational domain H 
as shown in Fig. 2, a. A characteristic lattice size L is re-
lated to discretisation density as L = H/nx, where nx is the 
number of subdivisions along the axis x. Finally 
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( ),cr
Ht nx
c

Δ α ν=  (16) 

 
where α is a dimensionless Poisson’s ratio-dependent fac-
tor, while ρEc =  is the material constant, i.e. the speed 
of sound. For isotropic material maximal stiffness is de-
fined by (11), and factor α may be expressed explicitly as 
 

( ) ( )(
( )

)
ν
νννα

−+
−+

=
1128

12291
nx

nx,  (17) 

 
From this expression it follows that, for isotropic 

material, critical time step would be minimal if Poisson’s 
ratio approaches zero ν → 0. With the increase of nx, the 
influence of ν vanishes. 

After specifying the geometry and the material, a 
series of numerical tests were conducted for validation 
purposes. The geometry of the plate is defined by the pa-
rameters H = 400 mm, B = 100 mm and s = 10 mm. The 
isotropic material is characterized by ρ = 2500 kg/m3 and 
E = 17.1 GPa. 

Five schemes were used to evaluate the influence 
of the characteristic lattice size L. Assuming different 
numbers of subdivisions nx1 = 63, nx2 = 126, nx3 = 252, 
nx4 = 504 and nx5 = 1008, different lattices, having the 
characteristic sizes L1 = 6.349 mm, L2 = 3.175 mm, 
L3 = 1.587 mm, L4 = 0.794 mm and L5 = 0.397 were gene-
rated. In the case of the finest lattice, the DEM model con-
tained 291457 particles with 582914 degrees of freedom. It 
should be noted that the geometry of interacting particles at 
the boundary is described by cutting the lattice grid. 

The influence of the factor β was examined in the 
first series of numerical experiments. The experiments 
were conducted according to the second discretisation 
scheme with nx2 = 126 subdivisions, while Poisson’s ratio 
ν = 0.2 was assumed. The impact load on the wall CD is 
induced by prescribed velocity 1.0 m/s. 

After calculating the critical time step 
Δtcr = 601.38 ns according to (15), six values of β1 = 10, 
β2 = 20, β3 = 40, β4 = 60, β5 = 80 and β6 = 100 yielding six 
time steps Δt1 = 60.138 ns, Δt2 = 30.069 ns, 
Δt3 = 15.034 ns, Δt4 = 10.023 ns, Δt5 = 7.5172 ns, and 
Δt6 = 6.0138 ns were employed for the sake of comparison. 

Simulation results yielded actually identical time  
histories. The influence of the time step was evaluated by 
comparing the displacement values averaged in the entire 
loading interval 

 

1

q

av k
k

u u
=

= ∑ q  

where, subscript k stands for the time steps (k = 1, q). It 
was found that the difference for different β was insignifi-
cant and varied in the range between 0.135 and 0.136 %. 

Time history of transversal displacement uE of the 
point E is exhibited in Fig. 5. 

The accuracy of DEM simulations for this prob-
lem was studied by comparing DEM results with finite 
element simulations. The unique lattice grid serves as the 
base for both DEM and FEM models. The FEM analysis 
was performed with the second mesh with nx2 = 126 sub-
divisions by applying the second–order triangles PLANE2 

of the ANSYS code [28]. The transient FE problem was 
solved implicitly. Time step Δt = 58.3 ns was kept constant 
during the simulations. 
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Fig. 5 A comparison of transversal displacement histories 
obtained by FEM and DEM 

 
Qualitatively, the time histories exhibited in Fig. 5 

show perfect identity. The comparison of average transver-
sal displacements at point E yields qav FEM = 12.37 μm and 
qav DEM =12.38 μm with a sufficiently small 0.136 % differ-
ence. A general tendency can be observed that DEM mod-
els are stiffer compared to the FE discretisation. 

The influence of the mesh refinement was studied 
in the second series of numerical experiments by solving 
the above impact problem by using five discretisation 
meshes and fixed fraction factor β = 40. The simulation 
results are presented in Fig. 6. 
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Fig. 6 The histories of transversal displacement value for 
various meshes 

 
The results of coarse mesh with nx = 63 and me-

dium size mesh with nx = 252 are presented in Fig. 6. It 
should be mentioned that the influence of finer meshes is 
not important. Based on the results obtained, it can be 
stated that the quality of the developed method could be 
approved, while the time step factor β = 40, and the mesh 
with the characteristic refinement parameter nx3 = 252 may 
be recommended for further analysis. 

 
5.2. Diversity of Poisson’s ratio 

 
The developed six spring DEM model is applied 

to improve the deficiency of the earliest approaches [15, 
18] for higher values of the Poisson’s ratio, ν > 0.33. To 
investigate this influence, the above example of the plate 
for the selected values ν = 0.10, ν = 0.20, ν = 0.30 ν = 0.33 
and ν = 0.40 were examined. Following the above recom-
mendation, the time step Δt3 = 15.034 ns, and the mesh 
with the characteristic element size L = 3.175 mm were 
applied to the simulations described below. Along with the 
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DEM simulations, the FE analysis was performed. The 
small 2.6% difference was obtained. 
 
5.3. Orthotropic material 

 
The suitability of the six-spring DE model for the 

analysis of orthotropic material was tested by solving the 
above elastodynamic plane stress problem. Orthotropic 
material is characterised by four independent elasticity 
constants, two different elasticity modulus E1 = 17.1 GPa 
and E2 = 8.55 GPa, reflecting its different properties in two 
orthogonal directions, shear modulus G = 7.125 GPa and 
Poisson’s ratio, including ν = 0.20. This value yields nega-
tive shear stiffness (Fig. 4), therefore, it is suitable for il-
lustrating the possibilities of the developed technique. The 
elasticity matrix is defined by (7), thus n = 2 and 
m = 0.833. The time step factor β = 40, and the mesh with 
the characteristic refinement parameter nx3 = 252 are as-
sumed. Simulation results are presented in Fig. 7. 
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Fig. 7 Variation of transversal displacement against Pois-
son’s ratio 

 
6. Concluding remarks 

 
The continuum consistent six-spring lattice-based 

DE model was developed. The original contribution is 
based on the alternative description of angular interaction 
defined by applying natural finite element technique.  

It has been found that the suggested alternative 
formulation allows as to present axial and angular interac-
tion by sequentially connected springs and to avoid singu-
larity in a larger range of Poisson’s ratio, including 
ν ≥ 0.33, for plane stress problem. 

The six-spring model with six independent dis-
crete elasticity parameters is applicable to anisotropic ma-
terial, while the number of independent constants for iso-
tropic material is two. 

The suitability of the model was tested by solving 
the elastodynamic plane stress problem and comparing it to 
‘exact’ FE results. The numerical results show that the 
refinement of the lattice grid yields actually exponential 
convergence of DEM model to exact solution. 

From the physical point of view, binary interac-
tion is extended to the neighbouring particles within the 
cell, while the new approach requires a modification of the 
DEM algorithm and the code.  

 
APPENDIX. Natural stiffness of triangle. 

 
Geometry of the triangle element fe is defined by 

three angles α, β and γ and three edges with the lengths Lα, 
Lβ, Lγ. Its deformation behaviour is described by three in-

dependent deformation-related degrees of freedom 
{ }TN

fe
N
fe

N
fe

N
fe u,u,u γβα   =u . In natural approach, they mean 

three stretches of the element. Generally, the element may 
be arbitrary oriented in the coordinate plane (Fig. A1). 
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Fig. A1 Natural presentation of triangle 
 

The symmetric natural (3×3) stiffness matrix of 
the element is denoted hereafter as 
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 K  (A1) 

 
According to [25], it s defined explicitly as 

 
[ ] [ ] [ ] [ ][ ] [ ]-1T11

fefefefefe
N
fe sA lCDClK −−−=  (A2) 

 
here, the constants Afe and s stand for the triangle area and 
the element thickness, respectively. 

The constitutive properties of planar solid are de-
fined by elasticity matrix as follows 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

33

2322

131211

 
dsym
dd
ddd

D  (A3)  

reflecting isotropic and anisotropic properties of planar 
solid. 

The diagonal matrix [ ]  
presents side lengths. The transformation matrix [ ] 
relates natural and Cartesian strains. It is expressed in 
terms of direction cosines  and 

[ ]γβα LLLdiagfe =l

feC

( αα L,xcoscx = )
( )αα L,ycoscy =  of the triangle sides with respect to Car-

tesian axes x and y (Fig. A1). It reads  
 

2 2 2

2 2 2
xα xβ xγ
2 2 2

fe yα yβ yγ

xα yα xβ yβ xγ yγ

c c c
C c c c

c c c c c c

⎡ ⎤
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 (A4) 

For equilateral triangle angles 
32 /πγβα === , the lengths LLLL === γβα  are 

equal, while the area is 23 2 /LAfe = . Assuming the co-
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ordinate axis Ox along the side, the direction cosines are 
expressed as 

 
1 11, ,
2 2
3 30, ,

2 2

x x x

y y y

c c c

c c c

α β γ

α β γ

⎫= = − = − ⎪⎪
⎬
⎪= = = − ⎪⎭

 (A5) 

 
Finally, discrete elasticity constants are given as 
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General expressions (A6) may be easily applied to 

particular materials, when the elasticity matrix (A4) is de-
fined explicitly. 
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R. Kačianauskas, V. Vadluga  

ŠEŠIŲ SPYRUOKLIŲ TINKLELIO DISKREČIŲJŲ 
ELEMENTŲ MODELIS DVIMATĖMS 
IZOTROPINĖMS IR ANIZOTROPINĖMS TERPĖMS 
DISKRETIZUOTI 

R e z i u m ė 
 

Šiame darbe pasiūlytas šešių spyruoklių tinklelio 
modelis skirtas dvimatei tampriajai izotropinei ir anizotro-
pinei terpei diskretizuoti diskrečiųjų elementų metodu 
(DEM). Diskretusis modelis remiasi šešiakampiu periodi-
niu tinkleliu. Sudarant modelį pritaikyti natūriniai trikam-
piai baigtiniai (BE) elementai, o diskretieji tamprumo ro-
dikliai išreiškiami BE standumo matricos koeficientais. 
Anizotropinės terpės modelis paprastai aprašomas šešiais 
nepriklausomais tamprumo rodikliais. Esant izotropinei 
terpei, tamprumo rodiklių skaičius sumažėja iki dviejų. 

Sudarytas šešių spyruoklių diskrečiųjų elementų  
modelis yra žinomo tinklelio modelio su ašine ir kampine 
sąveika alternatyvus pavidalas. Ašinių ir šlyties standžių 
derinimas leidžia išvengti modelio singuliarumo, pasireiš-
kiančio, kai Puasono koeficientas ν ≥ 0.33. Modelis įdieg-
tas į DEM programą DEMMAT. Pasiūlyto modelio tinka-
mumas patikrintas sprendžiant dvimatės izotropinės ir ani-
zotropinės terpės dinaminio deformavimo uždavinius ir 
gautus rezultatus lyginant su „tiksliais“ BEM rezultatais.  

 
 

R. Kačianauskas, V. Vadluga  
 
LATTICE-BASED SIX-SPRING DISCRETE ELEMENT 
MODEL FOR DISCRETISATION PROBLEMS OF 2D 
ISOTROPIC AND ANISOTROPIC SOLIDS 
 
S u m m a r y 

 
Development of the six-spring lattice-type dis-

crete element (DE) model for planar classical continuum is 

considered. The discrete model is shaped by periodic 
HEXAGONAL lattice. A natural triangle finite element is 
employed for the development of the model, while discrete 
elasticity parameters are defined in terms of the natural 
stiffness matrix. The model operates using the stiffness of 
six springs for a general case of anisotropic material. For 
isotropic material the number of independent parameters is 
reduced to two.  

The developed six-spring discrete element (DE) 
model may be characterised as an alternative lattice model 
with central and angular interaction. The combination of 
axial and shear stiffness allows us to avoid singularity a 
wider range of Poisson’s ratio, including ν ≥ 0.33 for plane 
stress problem. The model validated by simulating the dy-
namic behaviour of the plane stress problem for isotropic 
and orthotropic material. 

 
 

Р. Качанаускас, В. Вадлуга 
 

МОДЕЛЬ РЕШЕТКИ С ШЕСТЬЮ ПРУЖИНАМИ 
ДЛЯ ДИСКРЕТИЗАЦИИ ДВУХМЕРНЫХ  
ИЗОТРОПНЫХ И АНИЗОТРОПНЫХ СРЕД  

 
Р е з ю м е 

 
Предложена разработанная модель решетки с 

шестью пружинами для дискретизации двухмерных 
изотропных и анизотропных сред методом дискретных 
элементов (МДЭ). Основу модели составляет периоди-
ческая гексагональная ячейка. Модель составляется 
при помощи натурных конечных элементов, а дис-
кретные жесткости пружины непосредственно выра-
жаются коэффициентом матрицы жесткости треуголь-
ника. В общем случае модель анизотропной среды 
описывается шестью независимыми параметрами, а в 
случае изотропной среды количество параметров со-
кращается до двух. 

Предложенная модель представляет альтерна-
тивный вид сеточной модели с центральным и угло-
вым взаимодействием. Особая комбинация осевых и 
боковых жесткостей позволяет избежать сингулярно-
сти при коэффициенте Пуассона µ≥ 0,33. Модель вве-
дена в программу MДЭ DEMMAT и проверена сравни-
вая решения динамической задачи деформирования 
изотропных и анизотропных пластин с решениями 
МКЭ. 
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