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1. Introduction 

Condition-based maintenance (CBM) is a mainte-

nance program that recommends maintenance decisions 

based on the information collected through condition moni-

toring [1]. CBM is one of the important maintenance meth-

odologies for prognostics and health management (PHM) 

[2]. Since the degradation process for component\system is 

mainly nonlinear and non-stationary, forecasting of degra-

dations is of uncertainty [3]. Therefore, it is essential to deal 

with CBM optimization incorporating stochastic prognos-

tics [1]. Degradation forecasting is one of important prog-

nostics for CBM optimization, which includes physical-

based model [4], data-driven model [5, 6] and reliability 

model combing monitoring data [1, 7]. 

For CBM incorporating with stochastic degrada-

tion, the current research work can be divided into two types 

in accordance of the planning horizon: infinite horizon and 

finite horizon [8]. CBM for a specified finite horizon can be 

more realistic than that for infinite horizon. In particular, the 

degradation possibility distribution can be dynamical and 

non-stationary [9]. Simulation-based CBM model can be 

applied to deal with this problem [10]. However, for the 

simulation-based CBM optimization, the computational 

complexity can increase in exponent with the number of 

monitoring conditions and stages. Therefore, it is essential 

to explore effective methods to reduce the computational 

complexity for CBM within the finite horizon. In other 

words, effective discretization methods for forecasting deg-

radations can be considered a way to solve the bottle-neck 

in reducing computational complexity for CBM in finite 

horizon. 

Uncertainty also exists in decision making prob-

lems for other application areas, as well as for CBM. Many 

computational methods for solving this kind of problem are 

based on approximating the original uncertainty distribution 

by discretization of the possibility model presenting uncer-

tainty with finitely many scenarios [11]. It is natural to try 

to approximate the original scenarios set with much smaller 

subset that keeps key characteristics, and this process is 

called scenario reduction, as shown in Fig. 1. In general, fine 

discretizations can lead to numerically intractable problems, 

but coarse discretizations may lead to questionable model 

by neglecting important scenarios. Thus, scenario reduction 

has been an important topic in the past decades addressing 

uncertainty in decision making mainly for power system by 

stochastic programming [12-14]. 

The basic idea of scenario reduction is to select a 

few representative scenarios among a large number of sce-

narios (Fig. 1), and to assign probability to each selected 

scenario, so as to span possible output scenarios and capture 

wide range of outcomes in a way that is useful for decision-

making [11]. According to the reduction mechanisms, cur-

rent research of scenario reduction is mainly based on the 

input performance of uncertain parameters [13-15]. For sce-

nario reduction based on input performance, the distance of 

scenarios is measured by the probability metric distance, 

and then the possibilities are redistributed among the se-

lected scenarios by distance given in terms of mass trans-

portation problems, to minimize the probability distance be-

tween initial and reduced scenarios. Heitsch and Römisch 

[15] proposed a kind of fast forward and backward reduction 

to reduce the computational complexity, applying the dis-

cretization of possibility distribution instead of the initial 

continuous probability distribution. A scenario optimal re-

duction technique, introduced by Dupačová et al [14], ap-

plied the Foret-Mourier distance and duality theory to com-

pute the distance between two probability measures. An-

other variant of the scenario optimal reduction, introduced 

by De Oliveira et al. [13], combined with global and local 

(stage-wise) reduction, was to select a small set of se-

quences representing the stochastic process well enough. 

 

 
 

Fig. 1 Initial scenarios (left) and reduced scenarios (right) 

These scenario reduction methods based on input 

performance focus mainly on the scenario parameters, but 

overlooking where the uncertainties appear in the problem 

modelling and their impacts on the optimal decision [16]. 

To deal with this problem, a novel scenario reduction 

method is proposed mainly based on the CBM model fea-

tures. In other words, it is a kind of problem-dependent sce-

nario reduction method, instead of isolating the scenario re-

duction from the problem. 
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The paper is organized as follows: Firstly, CBM 

optimization model and degradation model are introduced 

in Section 2 and 3, respectively.  Secondly, in Section 4, we 

propose the scenario reduction based on the output-perfor-

mance for forecasting degradations, aim to increase the 

computational efficiency of the CBM optimization. A case 

study based on degradation data from rotating machinery is 

presented in Section 5. Finally, conclusions and future 

works are outlined in Section 6. 

2. Control-limit policy for CBM 

For a single-unit system which degrades during the 

operation, the degradations can be detected by sensors at 

equally spaced discrete time epochs k, k=0, 1, 2…NT, with 

t  being the constant time interval between two consecu-

tive observations. The system is considered to fail whenever 

its degradation level reaches a given (i.e. not a decision var-

iable) failure threshold [17]. The decision variable is pre-

ventive maintenance (PM) threshold 1

i
d  based on the moni-

toring degradation scenario. The expected maintenance cost 

rate including the costs entailed by corrective maintenance 

(CM), PM within the planning horizon is written as follows: 

   1

1

NT
i i i i

t F t P t

t

Q d ,Z c IF c IP


  , (1) 

where cF, cP are, respectively, CM and PM maintenance cost 

per time. We define i

t
IF  and i

t
IP  are, respectively, the in-

dicator whether the system should be taken CM action, the 

indicator whether the system should be taken PM action, at 

time epoch t for degradation scenario i. The control-limit 

policy for CBM for a single-unit system is as follows [18]: 

1) For each scenario i, if the degradations i

t
Z  ex-

ceeds the failure threshold, CM will be triggered. CM cost 

will be incurred and 1
i

t
IF  . Otherwise, 0

i

t
IF  . 

2) PM actions will be triggered if the degrada-

tion is above PM threshold but it does not exceed the fail-

ure threshold. PM cost will be incurred as a result and 

1
i

t
IF  . Otherwise, 0

i

t
IF  .  

3) No maintenance actions are required if the deg-

radation is below PM threshold. Therefore, no maintenance 

will be incurred, and both 0
i

t
IF   and 0

i

t
IP  . For the 

CBM model, we assume that the system is as good as new 

after each maintenance action. As a result, the degradation 

of the system after each maintenance is equal to 
1

i
W , if 

1
i i

t t
IF IP  . Otherwise, the degradation will follow the 

forecasting model, i.e., 
1 1

i i

t t
Z W

 
 . Furthermore, the degra-

dation model can be referred to Section 3. For the control-

limit policy of CBM within the finite horizon, the objective 

function is to minimize the expected maintenance cost rate 

for all degradation scenarios as follows: 

 
 

1

1
i

min max

NS
i i

i
d d ,d i

EC min p Q d ,Z


  , (2) 

where i
p  is the possibility of each degradation scenario. 

From (1), (2) and equations in control-limit policy, optimal 

PM threshold can be obtained for each selected scenario. 

3. Mathematical formulation for degradation  

forecasting model 

Since exponential degradation model is common 

for rotating machinery and bearing application [9, 19], we 

use this type of degradation model which is expressed as 

follows: 

   
2

2
W t exp t t t


   

 
    

 

, (3) 

where   is a known nonnegative constant, and   is a 

lognormal random variable,  is normal random variable, 

with mean 1
  and variance 2

1
  and  t  is the error term 

which follows a Brownian with mean 0 and variance 
2

 . 

For simplification, the logarithm of degradation signal  l t

is formed as: 

      l t ln W t ' t t        , (4) 

where    and    are independent and follow normal distri-

bution with mean 
0

  and variance 
2

0
 , and with mean 

1
   

and variance 
2

1
 , respectively. Therefore,    and    can 

be expressed by  2

0 0
~ N ,    and  2

1 1
~ N ,    , re-

spectively. And 
2

1 1
- 2    

2
- 2     is set to be 

0. 

PROPOSITION 1.The predictive distribution of 

the random variable L of stochastic degradation is normal 

with mean and variance [19]: 

   Δk k k
k ,l l k ,l t    , (5) 

   
2

2 2 2
Δ Δk k t t.   

 (6) 

PROPOSITION 2.The posterior distribution of  

, is normal with the following parameters [19]: 

 

 
     

   

2 2 2 2 2 2 2

1 1 0 1 0 0 0

2 2 2 2 2 2

0 1 0 1

Δ Δ

Δ Δ Δ

k

k

l t l t
k ,l

t k t t


        


     

   
 

  
,      (7) 

 

 
 

   

2 2 2 2

1 0

2 2 2 2 2 2

0 1 0 1

Δ

Δ Δ Δ
k

t
k ,l

t k t t


   


     


 

  
. (8) 

From Proposition 1 and 2, it can be seen that each 

time a signal is observed, it is used to update the predictive 

distribution of L. Therefore, it is a kind of non-stationary 

process for degradation, whose evolution is updated based 
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on the monitoring condition for the system. For CBM, the 

optimal decision is made based on various forecasting deg-

radation scenarios, since the degradation evolution process 

is stochastic within the planning horizon. Therefore, the in-

itial scenarios can be generated through Proposition 1 and 2 

by Monte Carlo simulation. 

4. Scenario reduction method based on output  

performance 

For CBM optimization combined with stochastic 

forecasting degradations, it is essential to make the scenario 

reduction to increase the calculation efficiency. Therefore, 

a kind of scenario reduction method based output perfor-

mance is proposed, instead of isolating the scenario reduc-

tion from the problem. The procedures of this proposed 

method are shown in Fig. 2. It is based on the pattern recog-

nition among the output performance (optimal PM threshold 

and the objective function value) and the forecasting degra-

dation scenarios. Specific relationships can be derived from 

the analysis of the solutions for the CBM optimization with 

various degradation scenarios. The major procedure can be 

described by the following four steps.  

Step 1. Monotonize the non-monotonic degrada-

tion processes. 

Some degradation scenarios may be non-mono-

tonic, and the non-monotonic degradation processes W(T) 

are monotonized to be the monotonic degradations Z(T) as 

follows: 

 

    :Z T max W T   . (9) 

 

 
 

Fig. 2 Procedures of scenario reduction method based on 

output performance for CBM optimization 

Step 2. Identify feature points from the monotonic 

degradations. 

1) For degradation scenario i, check whether it will 

exceed the failure threshold within the planning horizon. If 

it does, the first point which is Z  higher than the failure 

threshold is set to be feature point, 
1

Z . Otherwise, there is 

no feature point 
1

Z  for scenario i. 
1

Z  can be formulated as 

follows: 

    1 F 1 1
: ΔT min Z Z Z ,Z Z T     , (10) 

 

where Z  is the unit of discrete degradation evolution, and 

1
T  is the corresponding time of 

1
Z . However, if there is no 

degradation over failure threshold, 
1

T  is set to be equal to 

NT. 

2) For degradation scenario i, the first largest deg-

radation point below the failure threshold ZF is set to be fea-

ture point 
2

Z , and alternatively, it can be formulated based 

on 
1

T  as follows: 

 

    2 1
: 1 1Z max Z ,T    , 

  2 2
:T min Z Z   ,  

 2 2 2
: 1 2

1

NT NT
N N T q T , ,q , ,...

q q

   
     

   

, (11) 

 

where 
2

T  is the corresponding time for feature point 
2

Z . 

Meanwhile,  2
N T  represents that the total number of PM 

actions needed within the finite planning horizon if the first 

maintenance action is made at time 
2

T . E.g. if 
2

0.4T NT , 

so it satisfies  2
3, 2T NT NT , then 2q  , and 

 2
2N T  . That is, if the system is performed first mainte-

nance at time 
2

0.4T NT , then the second maintenance will 

be performed at time 
2

0.8T NT  periodically and there 

will be two maintenance actions within the planning hori-

zon. Moreover, it is assumed that the system is renewable 

after each maintenance action and it will follow the same 

degradation scenario as that before maintenance. 

3) For degradation scenario i, search the first fea-

ture point 
3

Z  whose corresponding time 
3

T  satisfies that 

    3 2
:T min t N t N T  . Alternatively, 

3
T  can be for-

mulated based on  2
N T  as follows: 

 

 
 3 3 3

2

1
1

T
T ,Z Z T

N T
  


, (12) 

 

where  3
Z T  is the degradation evolution process for sce-

nario i during time period 
3

T . Meanwhile, 
3

T  is round num-

ber. 

4) For degradation scenario i, find the last feature 

point Z4 which satisfies that 

    4 2
: 1T max t N t N T   . Alternatively, 

4
Z  can be 

formulated based on 
3

T  as follows: 

 

 4 3 4 4
1,T T Z Z T   . (13) 

 

Step 3. Identify characteristic patterns among so-

lutions and scenario feature points. 

After identifying these four feature points from the 

degradation scenarios, there are four kinds of modes can be 

indentified with different relationships among these feature 

points, as shown in Fig. 3. 
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For Mode 1, no degradations are over failure 

threshold, so there is no feature point 1
Z . The lower and up-

per bound of the optimal threshold are, respectively, 

1 2L
d Z Z    and 1U F

d Z Z   . Since no degradation 

points are over failure threshold, the number of PMs is zero 

within the planning horizon. For Mode 2, 1
Z  exists and 

2 3
Z Z . So,  1 2

1
L

d Z T Z     and 1 2U
d Z . For 

Mode 3, 1
Z  exists, 2 3

Z Z  and 3 4
Z Z . So, 

1 3L
d Z Z    and 1 2U

d Z . For Mode 4, 1
Z  exists, 

2 3
Z Z  and 3 4

Z Z . So, 
1 4L

d Z Z    and 1 2U
d Z . 

For Mode 2, 3 and 4, the number of PM is  2
N T  within 

the planning horizon. 

Step 4. Objective function analysis. 

From the relationship between modes and optimal 

solutions for different degradation scenarios, NPM can be de-

termined by the specific modes of the degradation scenarios. 

The objective function is proportional to NPM, since the ob-

jective is to minimize the total maintenance cost. As shown 

in Fig. 3, for Mode 2, 3, 4, the total number of PMs is deter-

mined by the time when the first PM occurs. That is, it is 

determined by position of the feature point Z2 in the degra-

dation scenarios. For each degradation scenario, the optimal 

threshold is an interval-value data, instead of single-value 

data. Therefore, the scenarios share the same objective func-

tion value can be reduced to one representative scenario for 

the proposed method.  

After the scenario reduction by the proposed method, 

optimal PM thresholds for CBM can be solved based on the 

selected degradation scenarios.  

 

 
 

Fig. 3 Schematic diagram of feature points for degradation 

scenario integrating control-limit policy  

5. Case study 

5.1. Original data 

For the application of proposed scenario reduction 

method based on output performance (short for PSR), we 

utilize the test data of vibration-based signals of the paper 

by Elwany, Gebraeel et al. [9]. According to the monitoring 

signals, exponential degradation model can be used to 

model the bearing degradation. The prior means, variances, 

and the variance parameter of the Brownian error terms are 
3 2 2 5

0 1 0 1
6.031, 8.061 10 , 0.346, 1.034 10 ,   

       

2
0.0073  respectively. The failure threshold is defined 

by the root mean square (RMS) of all over acceleration, and 

it is set to be 0.025
F rms

Z V  (root mean square volts) [9]. 

Cost data in this application including cF=$120 and cP=$10. 

The planning horizon is 300 minNT  , and the time unit 

of degradations is set to be minute. For simplification, mi-

nute is the default time unit in section 5.2 and 5.3 unless 

otherwise stated. 

5.2. Scenario generation for degradation forecasting 

The models of randomness with their finite, dis-

crete realizations are called scenario generators [20]. We 

generate 103 degradation scenarios according to the expo-

nential degradation model as mentioned in Section 3.  

Firstly, the initial signal value is initialized 

 0
( 0.001 6.9078)l log   . Secondly, the posterior distri-

bution of    can be obtained based on the signal value at 

time 0t  . The forecasting signal value of 1t   can be sto-

chastically chosen. Then the posterior distribution of    of 

2t   can be obtained accordingly, and so forth. Then the 

forecasting degradation state, , 1, 2, ,
i

t
Z i NT , can be 

simulated accordingly. 

5.3. Results and discussions 

The initial 103 degradation scenarios are reduced to 

10 representative scenarios by PSR (Fig. 4), according to the 

objective function values. For each kind of degradation sce-

narios, which share the same value of objective function 

value, are replaced by average degradation scenario as one 

representative. Meanwhile, the possibility of the new repre-

sentative scenario is added by that of the same kind of deg-

radation scenarios. According to the proposed scenario re-

duction method, the probability of the reduced scenarios can 

be added to the representative scenario. 

In this section, one of scenario reduction method 

based on input performance, fast forward selection ( short 

for FFS) [21], is chosen to make the comparison study to the 

proposed scenario reduction method, PSR. The initial deg-

radation scenarios are reduced by FFS, and the relative pos-

sibility distance increases as the number of reduced scenar-

ios decrease. The relative possibility distance is around 0.3 

as the number of scenarios is reduced to 10. The correspond-

ing possibility and optimal solutions of each selected sce-

nario are listed in Table 1. Some of these 10 selected sce-

narios share the same number of PMs, instead of completely 

different. E.g. for scenario #426, #823, #910 and #1000, 

1
PM

N  . Meanwhile, NPM for the rest of the selected sce-

narios are 0, 2, 3, 5, 6, and 8, respectively. 

For the control-limit policy of CBM for single-

component system, the optimal threshold is interval-value 

data, instead of single-value data. Therefore, the output per-

formance of CBM can be analysed based on the objective 

function value ( Q ), optimal PM threshold (
1

d ), the lower 
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bound and upper bound for the optimal threshold (
1L

d  and 

1U
d ). 

Table 1 

Ten selected scenarios by FFS 

Scenario #96 #426 #823 #828 #848 

pi 0.001 0.094 0.211 0.001 0.079 

NPM 5 1 1 8 2 

Scenario #866 #910 #923 #990 #1000 

pi 0.017 0.249 0.033 0.286 0.029 

NPM 3 1 6 0 1 

Table 2 

Output performance distance comparison 

Compari-

son 
f or NPM d1 d1U d1L 

OPTI - FFS 0.276 0.067 0.402 0.235 

OPTI - 

PSR 
0.000 0.059 0.396 0.336 

 

The comparison results are shown in Fig. 5 and Ta-

ble 2. Since objective function value is proportional to 

,
PM

N  the output performance of objective function value 

can be analysed by
PM

N , as shown in Fig. 5, a. The proba-

bility distribution of 
PM

N  for selected scenarios (FFS, PSR) 

and initial scenarios (short for OPTI) are shown in Fig. 5, a. 

The probability distance is 0.276 between the probability 

distributions of 
PM

N  for selected scenarios by FFS and by 

OPTI. Meanwhile, the probability distance is 0.000 between 

the probability distributions of 
PM

N for selected scenarios 

by PSR and by OPTI. Compared to FFS, the output perfor-

mance, objective function value Q , of PSR is much closer 

to that of OPTI. 

The probability distributions of d1 for selected sce-

narios (FFS, PSR) and initial scenarios (OPTI) are shown in 

Fig. 5, b. The probability distance is 0.067 between the 

probability distributions of d1 for selected scenarios by FFS 

and by OPTI. Meanwhile, the probability distance is 0.059 

between the probability distributions of d1 for selected sce-

narios by PSR and by OPTI. Compared to FFS, the output 

performance, d1, of PSR is much closer to that of OPTI. The 

probability distributions of 
1U

d for selected scenarios (FFS, 

PSR) and initial scenarios are shown in Fig. 5, d. The prob-

ability distance is 0.402 between the probability distribu-

tions of 
1U

d for selected scenarios by FFS and by OPTI. 

Meanwhile, the probability distance is 0.396 between the 

probability distributions of d1U for selected scenarios by 

PRS and by OPTI. Compared to FFS, the output perfor-

mance distance, 
1U

d , of PSR is much closer to that of OPTI. 

However, the probability distributions of d1L for se-

lected scenarios and initial scenarios are shown in Fig. 5,. 

The probability distance is 0.235 between the probability 

distributions of d1L for selected scenarios by FFS and by 

OPTI. Meanwhile, the probability distance is 0.336 between 

the probability distributions of d1L for selected scenarios by 

PRS and by OPTI. Compared to FFS, the output perfor-

mance distance, d1L, of PSR is a little bit greater to that of 

OPTI. It is the pay for the distance reduction of objective 

function value and 
1

d  by the proposed scenario reduction 

method, PSR. 

 

 
 

Fig. 4 Ten kinds of scenarios by PSR 

From the comparison of the output performance for 

selected scenarios and initial scenarios, it shows that both 

the objection value (Q or 
PM

N ) and optimal threshold 
1

( )d

distribution distance between selected scenarios by PSR and 

initial scenarios are much closer than that between selected 

scenarios by FFS and initial scenarios. The reason is that the 

proposed scenario reduction method can consider the role of 
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the uncertainty in the CBM model. Moreover, it can capture 

the characteristics, which have influence on the output per-

formance. Therefore, the scenarios with same kind of fea-

tures can be reduced to one representative scenario. 

 

 

Fig. 5 Probability distributions of output performance ((a) 

number of PMs NPM, (b) PM threshold d1, (c) Lower 

bound of PM threshold d1L and (d) Upper bound of 

PM threshold d1U) for scenarios by FFS, PSR and 

OPTI 

6. Conclusions 

To improve the efficiency of scenario reduction for 

CBM problem involving uncertainties, such as stochastic 

degradation, a kind of scenario reduction method based on 

the output performance is proposed. This scenario reduction 

method can utilize the influence of the scenarios on their 

output performance, instead of input performance of scenar-

ios. Therefore, the proposed method can increase the effi-

ciency of scenario reduction so as to reduce computational 

complexity for CBM in finite horizon. 

Further extension of this work will focus on inves-

tigating the feature modes for CBM policy of multi-compo-

nent system that based on the proposed scenario reduction 

method. In addition, we assume that the state after mainte-

nance is as good as mew. It is also possible to consider the 

case that the maintenance effect is partial repair or stochastic. 
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Xinbo Qian, Qiuhua Tang 

SCENARIO REDUCTION METHOD BASED ON 

OUTPUT PERFORMANCE FOR CONDITION-BASED 

MAINTENANCE OPTIMIZATION 

S u m m a r y 

Condition-based maintenance (CBM) has been 

widely applied to maintenance policy. Due to the stochastic 

forecasting degradation, scenario reduction method has 

been developed to improve the efficiency of CBM. However, 

most existing scenario reduction methods focus mainly on 

the input performance of the forecasting degradation with-

out considering the significant output performance charac-

teristic based on the model.  

In order to warrant the CBM optimization preci-

sion while reducing stochastic degradation scenarios effi-

ciently, a new scenario reduction method is formulated that 

the scenarios with same objective function values can be re-

duced to one representative scenario. As a result, the re-

duced scenarios by the proposed method can maintain the 

probability distributions of objective values, while keeping 

optimal thresholds close to that of initial scenarios. Finally, 

the method is applied to select the representative degrada-

tion scenarios for CBM optimization model by utilizing vi-

bration-based degradation signals from a rotating machinery 

application. Compared to the traditional scenario reduction 

method, the proposed method further improves accuracy 

and reduction efficiency of CBM optimization. 

Keywords: condition-based maintenance, degradation, sce-

nario reduction, output performance, probability, preventive 

maintenance, optimization. 
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