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1. Introduction 
 

Inverse Heat Conduction Problem (IHCP) has re-
ceived a special attention from engineers, mathematicians 
and physicists[1]. It has many applications in different 
branches of science and technology. One of the most im-
portant applications of IHCP is solidification processes, 
because the quality of solidified material is deeply depen-
dent on the cooling boundary conditions [2]. So the cool-
ing rate at the boundary and thus the solid-liquid interface 
velocity define the solidified materials quality. Thus, the 
desired material structures with desired quality and me-
chanical properties can be obtained by controlling the 
thermal boundary conditions. 

A wide variety of numerical methods were used 
for direct and inverse modelling of solidification problems. 
Voller [3] presented an enthalpy method with future time 
stepping to solve inverse Stefan problem. The problem was 
investigated with and without fluid flow consideration us-
ing Beck’s method, the steepest descent method and con-
jugate gradient method by references [4-11]. They used 
front fixing and front tracking finite element method. In 
their approach the problem should be treated as two dis-
tinct inverse problems for both liquid and solid phases. 
Frankel and Keyhani [12] and Hale et. al. [13] applied the 
global time method (GTM) to control interfacial tempera-
ture gradient and velocity. Xu and Naterer [14-16] esti-
mated boundary temperature history to control the velocity 
and acceleration of the interface using combined experi-
mental and numerical techniques. The numerical method 
was developed for enthalpy with control volume based 
finite element method and Beck’s inverse method. Re-
cently, Okamoto and Li [17] used Tikhonov regularization 
method to control the velocity and the shape of the solid-
liquid interface. Hinze and Ziegenbaly [18] solved inverse 
Stefan problem for one and two region problems using 
steepest descent method. 

In this study, the heat flux test case is applied as a 
boundary condition and the temperatures at different sen-
sor locations are recorded. These temperatures are used as 
desired temperatures or measured temperatures. Then the 
objective of the IHCP is to reconstruct a boundary heat 
flux which leads to this temperature history at sensor loca-
tions. The cost functional is defined based on temperature 
difference between the desired temperature and the com-
puted temperature at the sensor location. The accuracy of 
the solution can be evaluated in comparison of the results 
with the first input heat flux, used to generate desired tem-
peratures. The effect of different sensor locations is inves-
tigated on the solution of inverse problem. The results 
show that the solution is less accurate especially when the 

sensor is far from the active boundary. A random noise is 
added to the measured temperatures to evaluate the effi-
ciency of solution under the perturbed input data in real 
practical measurements due to the instruments error. The 
simulated results show a close agreement with desired one 
even in high noise levels.  

 
2. Governing equations 
 

The unidirectional conduction-dominated solidifi-
cation of a pure material with boundary conditions is 
shown in Fig. 1. The governing equations of the problem 
in enthalpy form are nondimensioned as equations set (1) 
using following nondimensional distance, time, tempera-
ture, enthalpy, Stefan number and boundary heat flux  
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where H is the enthalpy, T is the temperature and ( )q t  is 
the boundary heat flux, Ste is the nondimensional form of 
latent heat known as Stefan's number. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Schematic problem representation 
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Thus, the nondimensional model equations de-
scribing the temperature distribution in the solidifying re-
gion based on enthalpy form can be written as follows 
[19]. The sign over the nondimensional parameters is ne-
glected for simplicity. 
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 The enthalpy-temperature relations are 
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 The direct problem given by the sets of Eqs. (1) 
and (2) is for the determination of the temperature field 

( , )T x t  and the interface velocity when the boundary heat 
flux ( )q t  at 0x =  is known. 

On the other hand for the inverse problem, the 
heat flux ( )q t  at 0x =  is unknown while the temperatures 
at some points, velocity, acceleration or location of inter-
face are known. The heat flux can be estimated by using 
the measured temperatures or the desired temperatures 
(pseudo measured temperatures). 

So the inverse problem is established which 
minimizes the objective function, cost function, defined 
base on the 2L  norm of the error between the calculated 
and the desired temperatures at sensor location (xm: meas-
urement point). In other words[1, 20] 
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The conjugate gradient method with adjoint prob-
lem is applied to minimize the cost function of Eq. (3). 
 
3. The sensitivity problem 

It is assumed that the temperature ( , )T x t  and the 
enthalpy ( , )H x t change with an amount ( , )T x tΔ  and 

( , )H x tΔ , respectively when ( )q t  undergoes a perturba-
tion ( )q tΔ . By substituting [ ]T TΔ+  for ( , )T x t , 

[ ]H HΔ+  for ( , )H x t  and [ ]q qΔ+  for ( )q t  in the direct 
problem Eq. (1) and subtracting the original direct problem 
the following expressions are obtained as introduced in 
[20] 
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As H TΔ Δ= . Clearly ( , )T x tΔ  represents 
changes in ( , )T x t with respect to the changes in the un-
known ( )q t ; hence, is a sensitivity function. Eqs. (4) can be 
solved to obtain an optimal search step size. 

 
4. The adjoint problem 

To derive the adjoint problem, a new function 
( , )x tλ  called Lagrange multiplier is introduced. In adjoint 

problem the governing equations are multiplied by ( , )x tλ  
and integrated over the spatial and temporal domains. The 
results are then added to the cost functional Eq. (3) as 
achieved in [20] 

2
0

21

20 0

[ ( )] [ ( , ; ( ))]

( , )[ ]

f

f

t
f m

t

s q t T T x t q t dt

T Hx t k dxdt
tx

λ ρ

= ∫ − +

∂ ∂
−

∂∂∫ ∫
  (5) 

The following adjoint problem can be obtained by 
replacing T  by [ ]T TΔ+ , q  by [ ]q qΔ+  and ( )s q  by 

[ ]( ) ( )s q s qΔ+ in Eq. (5) then subtracting the obtained re-
sult from Eq. (5) and further using boundary and initial 
conditions and allowing terms containing ( , )T x tΔ  to van-
ish 
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After eliminating the terms containing ( , )T x tΔ , 
the following integral term is left. 

0
( ) (0, )ft

s q t qdtΔ λ Δ= −∫   (7) 

since 2( ) (0, )fq t L t∈ , one can write: 

0( ) [ ( )]fts q q s q t dtΔ Δ ∇= ∫   (8) 

Comparing the last two equations, one obtains 

[ ( )] (0, )s q t t∇ λ= −   (9) 
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Eq. (9) is used to calculate the objective function 
gradient. Note that in the adjoint problem the last condition 
is the value of ( , )x tλ at ft t= . However, the final value 
problem Eqs. (6) can be transformed into an initial value 
problem by defining a new time variable given 
by ft tτ = − . 

 
5. The conjugate gradient algorithm (CGM) 
 

The unknown function ( )q t  can be determined by 
a procedure based on minimizing of the objective function 

[ ( )]s q t  with an iterative approach by a proper selection of 
the direction of descent and the search step size. The fol-
lowing iterative scheme is considered as conjugate gradient 
method (CGM) to estimate the unknown heat flux[20] 

1( ) ( ) ( )k k k kq t q t d tβ+ = −   (10) 

where k denotes the iteration number. The direction of de-
scent ( )kd t  is approximated from the following formula 
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The conjugate coefficient is defined according to 
the following expression 
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To implement the iterative procedure, one needs 
to develop expression for the optimal search step size kβ  

and solve the sensitivity problem by setting ( ) ( )kq t d tΔ = . 

The following formula is used for the calculation of kβ  
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The following stopping criterion is chosen to stop 
the iterative procedure 

1[ ( )]ks q t ε+ <   (14) 

where ε  is the specified tolerance of the order 6−  for the 
noise free data and will be computed using discrepancy 
principle for noisy data.  
 
6. Simulation and results 

A second order central space finite difference and 
a third order compact Runge-Kutta scheme, RK3, is con-
sidered for computing the spatial derivative and the time 
advancement in direct, sensitivity and adjoint equations, 
respectively. The time advancement scheme developed by 

Wray [21] is used for the time marching of the simulation. 
According to this scheme, the time advancement is per-
formed in three sub-steps. Detailed discussions along with 
some numerical tests to evaluate the order of accuracy of 
the numerical approach can be found in reference [21].  

The aforementioned inverse method is applied for 
a material with Ste = 1.5. To validate the method, consider 
that the liquid is initially at 0.5.iT =  

A known heat flux is exposed to the boundary and 
the calculated temperature at sensor location is used as 
temperature measurement. A triangular heat flux with the 
following equation is applied for time 0.3ft = . 
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The exact and computed heat flux (triangular) and 
resulting interface locations are illustrated in Figs. 2 and 3. 
The accuracy of heat flux reconstruction is weaker when 
the sensor is far from the active boundary as illustrated in 
Fig. 2.  

 
Fig. 2 Desired and reconstructed triangular heat flux for 

different sensor locations 

 
Fig. 3 Desired and computed interface locations for trian-

gular heat flux 

Although the reconstructed heat flux has weak ac-
curacy, it shows a good estimation for the interface loca-
tion. The reduction rate of the objective function is shown 
in Fig. 4. It indicates the convergence rate of the numerical 
solution. 

To evaluate the performance of the numerical ap-
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proach in problems with sharp gradients, the following step 
function is applied as an input and recovered by the inverse 
approach. 
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The desired and computed heat flux for different 
sensor locations is depicted in Fig. 5. Also, Fig. 6 shows 
the reduction rate of the objective function for the step 
function.  

From the obtained results, it is clear that the 
method have a good convergence and acceptable results 
even when the sensor is far away from the active boundary 
for different types of heat flux containing sharp gradient in 
the step function. 

In order to evaluate the difference between the 
desired and estimated heat flux, a relative root mean square 
error RMSe  is defined as 
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where M is the total number of time steps. The comparison 
of the error estimation is illustrated in Fig. 7 for different 
sensor locations. It can be seen that although all sensor 
locations have acceptable range of error, the error increases 
gradually as the sensor becomes far from the boundary. 
Thus in inverse heat flux estimation the sensor must be as 
closely as possible to the active boundary. This phenome-
non will have a special importance in controlling the so-
lidification interface velocity because in such a kind of 
problem there is a moving sensor exactly located at the 
interface and it goes far from the active boundary gradu-
ally. Then it is expected that the solidification control re-
sults become less accurate in comparison with the station-
ary sensor locations. 

 
Fig. 4 Objective function reduction rate for triangular heat 

flux 

The proposed approach is tested over a range of 
Stefan numbers and it is observed that the method is inde-
pendent of the Stefan number. A quantitative representa-
tion of the effect of Stefan number, the RMS error for a 
wide range of Stefan number at different sensor locations 

is presented in Table 1 for step heat flux. It is obvious that 
the Stefan number does not have an important effect on the 
solution of inverse problem using the proposed approach 
especially for the heat flux with sharp gradient.  

 
Fig. 5 Desired and reconstructed step heat flux for different 

sensor locations 

 
Fig. 6 Objective function reduction rate for step heat flux 

7. Effect of measurement errors 

In order to evaluate the effectiveness and stability 
of the inverse method under noisy data, a random noise is 
added to the measured data. This is of the great importance 
for practical applications because there are some noises in 
measured data due to the measuring device errors. The 
simulated measurement data are constructed by perturbing 
the exact temperature exT which obtained from the test 
heat flux simulation, with an artificial measurement error 
ω  using the following formula 

( ) ex
mT X T σω= +   (18) 

where σ  is the standard deviation of the measurement and 
ω  is generated from a zero mean normal distribution with 
variance one. In this study different values of σ  are cho-
sen to evaluate the stability of the method under the real 
practical conditions. 

The stopping criterion in equation (14) is modi-
fied using the following discrepancy principle for the per-
turbed data 

2
ftε σ=   (19) 
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Table 1 
Comparison of RMS of computed heat flux for different Stefan numbers 

 
 RMS Error (%) 

Stefan Number 0.1mX =  0.3mX =  0.5mX =  0.7mX =  0.9mX =  

0.5 2.33 4.39 6.14 8.05 10.15 
1 2.37 4.37 6.52 8.82 10.22 

1.5 2.32 4.39 6.14 8.05 10.16 
2 2.32 4.44 7.83 9.14 10.56 

 

 
Fig. 7 Heat flux RMS error estimation for different sensor 

locations 

Different measurement errors with different stan-
dard deviations are considered at 0.1mX = . Other sensor 
locations are not considered due to the fact that sensors 
which are far from the active boundary make the solution 
less accurate. Thus the sensors at the start and the middle 
point of the mould are investigated.  The reconstructed 
heat flux for noisy and noise free measurements for 

0.1mX =  is shown in Fig. 8 and 9 for triangular and step 
shape heat fluxes, respectively. Table 2 shows the values 
of RMS error of estimation and the final value of objective 
function for different noise values. As indicated, the ob-
tained results are still acceptable even with noisy data of 

0.1σ = . However, due to strong ill-posed of the consid-
ered inverse problem, the accuracy of the solution becomes 
weaker and the estimation results could be unreliable with 
larger noisy data employed. 

 
Fig. 8 Reconstructed triangular heat flux of noisy measured 

temperature at Xm = 0.1 

 
Fig. 9 Reconstructed step heat flux of noisy measured tem-

perature at Xm = 0.1 

                                                                                Table 2  
Comparison of objective function and RMS of computed 

heat flux for different σ  
Triangular Heat Flux 

σ  Objective Function RMS Error (%) 

0 9.88E-07 0.056 
0.02 2.28E-04 0.363 
0.05 1.3E-03 0.58 
0.1 4.9E-03 0.62 

   
Step heat flux 

σ  Objective Function RMS Error (%) 

0 9.65E-06 2.32 
0.02 2.20E-04 2.70 
0.05 1.3E-03 3.32 
0.1 5E-03 3.62 

 
8. Conclusion 

A transient inverse solidification problem was 
formulated and solved by applying the conjugate gradient 
optimization method. In addition, the enthalpy formulation 
was applied to solve the inverse problem in a fixed domain 
to avoid the solution for liquid and solid phases separately. 
Two known heat flux test cases were considered as bound-
ary condition to generate the time history of temperatures 
at sensor locations. These temperatures were used to re-
construct the boundary heat flux. The obtained results indi-
cated that the accuracy and the convergence of the solution 
become stronger when the sensor is located near to active 
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boundary. To evaluate the performance of the method to 
random noise in measured data, a random noise with 

0.02,0.5σ = and 0.1 was added into the measured tem-
peratures. The reconstructed heat fluxes indicated a weak 
dependency on noisy data even for large relative noises. It 
was shown that the stability and accuracy of the estimation 
become weak with large noise amplitudes due to ill-posed 
of the inverse heat transfer problems. 
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Abbas Nejad, M.J. Maghrebi, H. Basirat Tabrizi 
 
SENSORIAUS PADĖTIES ĮTAKA ATVIRKŠTINĖS 
STEFANO PROBLEMOS SPRENDIMUI 
 
R e z i u m ė 
 
 Šio tyrimo tikslas – įvertinti sensoriaus padėties 
įtaką sprendžiant atvirkštinę Stefano problemą. Tiesinis 
laidumas yra panaudotas sukietėjimo procesui valdyti. En-
talpijos sąvoka kartu su jungtiniu gradiento metodu yra 
panaudoti krypties problemoms formuluoti ir tikslo funkci-
jai minimizuoti. Sensoriaus padėties kvadratinio nukrypi-
mo suma tarp išmatuotos ir apskaičiuotos temperatūros 
panaudotos kaip tikslo funkcija. Matuojamos temperatūros 
modeliuojamos naudojant tiesinį trikampio ir slenksčio 
pavidalo ribinį šilumos srovės sprendinį. Parinktos skirtin-
gos sensoriaus padėtys besiplečiančios erdvės skaičiavimo 
srityse. Rezultatai rodo, kad esant sensoriui toliau nuo ak-
tyvių ribų (ribų, kuriose veikia šilumos perdavimo srovės) 
paklaida restauruotoje šilumos erdvėje yra didesnė ir at-
virkščiai. Ištyrus įvedimo duomenų trukdžių efektą matyti, 
kad net esant aukštam matavimo duomenų trukdžių lygiui 
sprendimas būna stabilus. 
 
 
A. Abbas Nejad, M.J. Maghrebi, H. Basirat Tabrizi 

EFFECT OF SENSOR LOCATIONS ON THE 
SOLUTION OF INVERSE STEFAN PROBLEMS  

S u m m a r y 

The aim of this study is to investigate the effect of 
sensor location on the solution of inverse Stefan problems. 
A unidirectional conduction driven solidification process is 
considered. The enthalpy formulation along with conjugate 
gradient method is used to simulate the direct problem and 
minimize the objective function. The sum of square devia-
tion between the measured and the calculated temperatures 
at sensor location is defined as objective function. Meas-
ured temperatures are simulated using direct solver for 
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triangular and step shape boundary heat fluxes. Different 
sensor locations in the spatial extent of the computational 
domain are selected. The results show that as the sensor is 
taken further from the active boundary (the boundary 
which heat flux applied on it) the error in reconstructed 
heat flux becomes larger and vice versa. Also the effect of 
noisy input data is investigated which indicate that the so-
lution is stable even in high noise levels in measured data. 

Аббас Неяд, М.Й.Магхреби, Х.Басират Табризи 

ВЛИЯНИЕ ПОЛОЖЕНИЯ СЕНСОРА ДЛЯ 
РЕШЕНИЯ ОБРАТНОЙ ПРОБЛЕМЫ СТЕФАНА 

Р е з ю м е 

 Целью этого исследования является оценка 
влияния  положения  сенсора  при   решении   обратной  

проблемы Стефана. Для управления процессом затвер-
дения использовалась прямая проводимость. Форму-
лировка энтальпии вместе с методом объединенного 
градиента использовались для решения проблемы на-
правления и минимизации целевой функции. Измеряе-
мые температуры моделировались при использовании 
линейного треугольного и порогового предельного 
решения для теплового потока. Подобранные разные 
положения сенсора в расчетных областях расширяю-
щегося пространства. Результаты расчета показали, что 
при положении сэнсора дальше от активных пределов 
(пределов, где действуют потоки передаваемого тепла) 
ошибка в реставрируемом тепловом пространстве яв-
ляется большей и наоборот. Исследован эффект помех 
вводимых данных показал, что даже значительные по-
мехи измеряемых данных дают стабильное решение.  
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