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1. Introduction 
 

Functionally graded materials (FGMs) are a new 
type of advanced composites that are introduced for use in 
high temperature environments. The composition, micro-
structure and/or crystal structure of the FGMs change 
gradually which lead to form a nonhomogeneous material 
with continuously varying thermomechanical properties. In 
recent years, FGMs have been used widely in other appli-
cations [1].  

According to the experimental studies of Kawa-
saki and Watanabe [1], when sudden cooling is applied to 
ceramic/metal FGMs, some edge cracks are created on the 
ceramic surface. Therefore, examining the surface crack 
problem in FGMs under thermal loading, especially ther-
mal shock, is important in failure analysis of these materi-
als. 

Jin and Noda [2] derived the general form of the 
thermoelastic crack-tip fields in FGMs. They assumed that 
the material properties are continuous and piecewise dif-
ferentiable function of spatial position and some of them 
are not zero at the crack-tip. According to their study, the 
variation of material properties does not affect the order of 
singularity of thermoelastic crack-tip fields. Kishimoto et 
al. [3] showed that in the presence of thermal loading, the 
path independency of original J-integral is lost. They pre-
sented a path-independent form of J-integral included extra 
term to regard the thermal effect. Analytical approaches 
including perturbation method and singular integral equa-
tions have been used to consider thermal fracture of FGMs 
[4, 5]. It is important to know that using analytical ap-
proaches is limited to some simple problems or especial 
conditions. For example, Noda and Guo [5] have studied 
the edge crack problem in FGMs under thermal shock us-
ing the perturbation method. For the sake of simplification, 
they assumed that the Poisson's ratio is constant. Yildirim 
[6] and Dag [7] developed an equivalent domain integral to 
compute the mode-I stress intensity factor (SIF) under 
steady-state and transient thermal loading in isotropic and 
orthotropic FGMs, respectively. Dag and Yildirim [8] im-
plemented the Jk-integral to evaluate the mixed-mode 
stress intensity factors in FGMs under thermal loading. 
These analyses were performed by using very fine meshes 
of regular elements in HEAT2D and FRAC2D software. 
KC and Kim [9] used the interaction integral to evaluate 
the mixed-mode SIFs under steady-state thermal loading. 
Chen [10] used interaction integral in conjunction with 
element-free Galerkin (EFG) method to compute SIFs for 
an interface crack in orthotropic functionally graded coat-
ing under steady-state thermal loading. These results were 

obtained by using first-order polynomial basis functions 
which lead to a fine node arrangement. Also, Chen re-
ported the value of J-integral was not completely path-
independent and results were unreliable for small integral 
domain sizes. 

The EFG method provides an efficient and robust 
framework to analyze fracture mechanics problems. This 
method has been implemented for fracture analysis of 
cracks in FGMs under mechanical loading e.g. [11] or 
steady-state thermal stresses [10]. In this paper, the EFG 
method is applied in both steady-state and transient ther-
mal fracture of FGMs. The transient thermal loading is 
imposed in the form of thermal shock.   

This paper is organized as follows. Section 2 pre-
sents the thermoelastic governing equations. Section 3 
provides the EFG discretization form of governing equa-
tions. Section 4 explains the use of the equivalent domain 
integral for thermal fracture of FGMs. Section 5 describes 
the modal decomposition technique to obtain the transient 
temperature field. Section 6 presents numerical results and 
discussion about the relevant aspects of the results. Finally, 
section 7 draws conclusions. 
 
2. Governing equations 
 

A body occupying a space Ω surrounded by a sur-
face Γ under external and body forces and prescribed ther-
mal boundary conditions has been considered. The govern-
ing equations for static linear thermoelasticity in the do-
main Ω are 
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Also, the heat flux is obtained based on the Fou-
rier law 

∇−= Iq      (3) 

The constitutive equation is defined as 
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Here, the material properties are the forth-order Hooke 
tensor C̃̃, isotropic conductivity k, expansion coefficient α, 
density ρ and specific heat c. The field variables are dis-
placement u, strain tensor ε, stress tensor σ, and thermal 
strain εth and the imposed values are heat source Q and 
body force b. I is the identity second-order tensor and  
is the symmetric gradient operator on a vector field. The 
boundary conditions are as follows 

s∇
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where h is the convection coefficient and n is the outward 
unit vector which is normal to Γ. 
 
3. Element-free Galerkin method in thermoelasticity 
 

We implement the EFG method to solve govern-
ing partial differential equations (PDEs) of 2D thermoelas-
tic problems. This method needs only a set of nodes to 
construct the discretized model. In EFG, using moving 
least square (MLS) approximation leads to stability in 
function approximation and applying the Galerkin proce-
dure provides stable and well-behaved system of discre-
tized equations. Here we use the EFG discretization in the 
space dimensions only and follow the Kantorovitch semi-
discretization process. According to the EFG method, the 
final discrete equations can be obtained as 
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where the dot (.) denotes differentiation with respect to 
time and 
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In the enriched EFG method, the singularity prob-
lems due to the presence of a crack are alleviated by en-
richment functions. In the intrinsic enrichment, the stan-
dard basis (usually polynomials) vector is enriched by in-
cluding the near-tip asymptotic displacement field as [12] 
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where r and θ are the usual crack-tip polar coordinates. 
 
4. Equivalent domain integral for thermal fracture 
 

The J-integral is an energy-based method which is 
widely used to calculate SIFs e.g., [13]. The J-integral 
originally was derived in the form of contour integral [14] 

∫ −=
AΓ

Aj,iijj dΓnuσWδJ )( 11        (28) 

where ΓA is an arbitrary contour enclosing the crack-tip 
and nj is the jth component of the outward unit vector nor-
mal to ΓA. Because of calculating purpose, it is suitable this 
contour form is converted into an equivalent domain inte-
gral (EDI). Defining a smooth weight function q and ap-
plying divergence theorem, the equivalent domain form of 
J-integral is derived as [6] 

,1 1 , ,1( ) ( )ij i j j explA A
J σ u Wδ q dA W qdA= − +∫ ∫     (29) 

where A is the area inside the contour ΓA. The second inte-
gral contains (W,1)expl i.e., the explicit partial derivatives of 
W with respect to x1. It should be noted that in FGMs tem-
perature field and material properties are dependent on the 
spatial coordinates. In linear elastic fracture mechanics, J-
integral is equal to the energy release rate and the relation-
ship between the energy release rate and the mode-I SIF is 
given by 

2
IJ K E= *
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3. composite strip with an edge crack; where  for plane stress and *
tip tipE E= 2(1 )tip tipE ν−  for 

plane strain. Etip and νtip are Young's modulus and Pois-
son's ratio, respectively, evaluated at the crack-tip. 

4. edge crack in an FGP: micromechanics model. 
The FGP of length W and height H with a crack of 

length a is considered. The thickness (in the x3 direction) 
of plate is assumed quite thin for plane stress analysis and 
large enough for plane strain analysis. The crack is aligned 
parallel to the direction of material property gradation. 
Initially, the FGP is at a uniform stress-free temperature T0. 
The thermal boundary conditions are applied on the x1 = 0 
and x1 = W faces. All other faces, including the crack sur-
faces, are assumed to be insulated which results in a one 
dimensional heat conduction problem in the x1 direction. In 
all cases, the calculated SIFs will be normalized by divid-
ing to 

 
5. Transient heat conduction problem 
 

To obtain temperature field, we should solve the 
first-order matrix differential Eq. (12). Among many meth-
ods, we choose the modal decomposition technique [15]. 
Modal decomposition is an analytical approach to solve 
systems of ordinary differential equations (ODEs) without 
the introduction of additional approximations. Based on 
modal decomposition procedure, a coupled system of 
ODEs is turned into uncoupled equations by using eigen-
vectors. The solution of Eq. (12) can be expressed as linear 
combination of all eigenvectors of the homogenous sys-
tem , where M is an 
N×N square matrix whose columns are the eigenvectors. 
Substituting above definition into Eq. (12) and premulti-
plying it by M

[ ] )()()( 21 ttt N ψMψTTTT ==

T, we can obtain the uncoupled system of 
equation 
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6.1. An edge cracked plate: exponentially gradation 
 

An unconstrained FGP with an edge crack of 
length a as shown in Fig. 1, a is considered. Fig. 1, b pre-
sents the complete node arrangement of the FGP which 
consists of 1695 regular nodes and 40 crack-tip nodes, with 
a total of 1735. Fig. 1, c shows the crack-tip node ar-
rangement. In this case, the FGMs with exponentially 
varying thermomechanical properties, in the x1 direction, 
(for E, ν, α, k, ρc) are considered, e.g., as 
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The system of Eq. (31) contains N uncoupled 
equations where the nonhomogeniety parameters are define, e.g., as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)0(
)(1

E
WEln

W
PE       (36) 

*
ii

i
iii s
C
Λ

=+ ψψ    (i=1, 2,…, N)     (33) 

Here, the ceramic/metal ZrO2/Ti-6Al-4V material with 
properties of Table 1 is assumed. 

where * /th th
i ii iis = *K C  and Λ=MT(Fth+ Fγ

th). The initial 
condition ψ(0) can be obtained from T(0) =M ψ(0). De-
pending on the complexity of right-hand side of Eq. (31), it 
is solved either analytically or numerically. 

For the sake of comparison, two different cases of 
the thermal boundary conditions are considered in the 
steady-state analysis. In the third case, a transient analysis 
is also carried out for different temperatures at the left and 
right sides of the plate. 

 
6. Numerical results and discussion 
 In order to verify the implementation of the dis-

placement correlation technique (DCT) which is a conven-
ient direct method for evaluation of SIF [16] and EDI ap-
proach in the framework of EFG method, we first present 
comparisons of the calculated SIFs and the available refer-
ence solutions. In this case, the temperature of x1 = 0 and 
x1 = W faces are decreased from T0 to T1 and T2, respec-
tively. 

In this section, we consider calculation of the 
mode I stress intensity factor for an edge crack in function-
ally graded plate (FGP) under thermal stresses. The distri-
bution of material properties is determined by means of 
continuum functions, e.g., exponential function or micro-
mechanics models, e.g., self-consistent model. The follow-
ing examples are presented: 

1. an edge cracked plate: exponentially gradation; 
2. an edge cracked plate: linear gradation; 

 
Table 1 

Material properties of ZrO2 and Ti-6Al-4V 
 

Materials 
Young's 
modulus, 

GPa 

Poisson's 
ratio 

Coefficient 
of thermal 
expansion 

10-6 /K 

Thermal 
conductivity, 

W/(m K) 

Mass density, 
kg/m3

Specific 
heat, 

J/(kg K) 

ZrO2 151.0 0.33 10.0 2.09 5331 456.7 
Ti-6Al-4V 116.7 0.33 9.5 7.5 4420 537.0 
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Table 2 compares the normalized SIFs with the 
results provided by Erdogan and Wu [4], KC and Kim [9] 
and Yildirim [6]. As shown in Table 2, the obtained solu-
tions are in good agreement with the references. It is inter-

esting to note that our model is comprised of 1735 nodes, 
while the 2D mesh discretization in KC and Kim [9] con-
sists of 966 elements and 2937 nodes in the framework of 
the finite element method. 

 
Table 2 

Normalized mode I SIF in FGP under steady-state thermal loading  
 

Normalized SIF 
Present Material pa-

rameters 
Analysis 

type Load 
EDI DCT 

Erdogan and 
Wu [4] 

KC and 
Kim [9] 

Yildirim 
[6] 

Plane 
strain 0.0124 0.0126 0.0125 0.0128 0.0128 T1=0.5T0

T2=0.5T0 Plane 
stress 0.0090 0.0088 _ 0.0090 0.0090 WPE=ln(5) 

WPα=ln(2) 
T1=0.05T Plane 

strain 
0 0.0246 0.0240 0.0245 0.244 _ T2=0.05T0

Plane 
strain 0.0334 0.0343 0.0335 0.0334 0.034 T1=0.2T0

T2=0.5T0 Plane 
stress 0.0234 0.0239 _ 0.0235 0.024 

WPE=ln(5) 
WPα=ln(2) 

WPk =ln(10) T1=0.05T Plane 
strain 

0 0.0405 0.0411 0.0410 0.0406 _ T2=0.5T0
 

Since the surface crack is usually created during 
cooling, the FGP problem subjected to a cooling shock is 
here considered. To consider the thermal shock, we assume 
that the FGP is initially at a uniform stress-free tempera-
ture T0 and suddenly cooled down to constant temperatures 
T1 and T2 at the left and right hand side faces, respectively. 
The assumed values are T1=0.25 T0 and T2=0.75 T0. 

  

 
 

Fig. 1 An FGM plate with an edge crack: a - geometry,  
b - complete node arrangement, c - crack-tip node 
arrangement  

The obtained results for the transient temperature 
distribution in the ZrO2/Ti-6Al-4V FGM versus normal-
ized time τ, as is defined in Eq. (37), is depicted in Fig. 2. 

t
W

ck
2

)0()0()0( ρτ =        (37)  

According to these results, the temperature gradi-
ent near the plate edges is considerably large at the early 
times after imposing the thermal shock. This large tem-
perature gradient leads to significantly large tensile stresses 
near the edges of FGP [4]. Here, we assume that ΔT =  
= T(x1,t) - T0. Also, these transient temperature and others 
in the next examples indicate that the modal decomposition 

technique is an efficient tool to obtain the transient tem-
perature distribution in thermal shock problems. Because 
the order of time points in which analysis is performed 
varies between -4 and 2. 

 
 

 
 
 
 
 
 
 
 
 

 

τ=0        τ=1e-4        τ=1e-2       τ=1e-1        τ=1     

∆T
/T

0 

x1/W 

a b c 

Fig. 2 Transient temperature distribution in the FGP 
(ZrO2/Ti-6Al-4V) for various normalized time with 
T1/ T0 = 0.25 and T2/ T0 = 0.75 

Figs. 3 and 4 present normalized SIFs in the 
ZrO2/Ti-6Al-4V plate resulting from the transient tempera-
ture field versus the normalized time τ and the normalized 
crack length a/W for plane strain and plane stress cases, 
respectively. As shown in these figures, the SIF increases 
quickly to a peak value that is drastically larger than steady 
value and then decreases rapidly to the corresponding 
steady value for all crack lengths. In addition, the magni-
tude of SIF decreases as the normalized crack length a/W 
becomes larger in both transient and steady states that are 
in agreement with the results recently reported by Noda 
and Guo [5]. As the final point, the magnitude of SIF for 
plane strain is larger than plane stress. Noda et al. [17] 
have derived thermal stresses analytically for a homogene-
ous isotropic strip under one-dimensional transient tem-
perature distribution. These results indicate that the ther-
mal stresses for the plane strain case are equal to those of 
plane stress multiplied by a factor of 1/(1 - ν). Regarding 
the fact  0 < ν < 0.5, this factor is greater than one, that 
implies a larger SIF for the plane strain in comparison with 
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the plane stress problem, which can be noticed from 
Figs. 2 and 3. The agreement between SIFs evaluated by 
means of EDI and DCT is found to be acceptable. 

 
 
 

  
  
 
 
 
 
 
 
 
 
 
 

Fig. 3 Normalized mode I SIF in the ZrO2/Ti-6Al-4V plate 
versus normalized time and different crack lengths 
in plane strain condition 

 

 

 

 

 

 

Fig. 4 Normalized mode I SIF in the ZrO2/Ti-6Al-4V plate 
versus normalized time for different crack lengths in 
plane stress condition 

6.2. An edge cracked plate − linear gradation  
 

The configuration of the first example is consid-
ered here assuming a linear gradation for material proper-
ties. Moreover, a different set of thermal boundary condi-
tions is imposed on the uncracked face of FGP. To apply a 
thermal shock, the cracked face is assumed to be quenched 
to a constant temperature of T1 = 0.15 T0 while having the 
free convection at other face with a convection coefficient 
of h = 1 W/(m2K) and the ambient temperature is assumed 
T0. The transient temperature distribution in the ZrO2/Ti-
6Al-4V plate is presented in Fig. 5. The effect of the con-
vection at the x1=W face on the temperature distribution is 
observed at the steady-state. Figs. 6 and 7 show the tran-
sient thermal SIF versus crack lengths for plane strain and 
plane stress cases, respectively. As it is seen, the variation 
of the thermal SIF is the same as the previous example. 
The effect of the thermal boundary condition applied on 
the uncracked face, is illustrated in the Fig. 8. Here, the 
h = 0 corresponds to the insulated thermal boundary condi-
tion and h = ∞ corresponds to the known temperature 
boundary condition. According to this figure, while the 
value of the SIF is independent of the type of the thermal 
boundary condition applied on the uncracked face, the 
steady-state value is completely dependent on. Moreover, a 
greater value for the steady-state SIF is obtained for the 
case of constant temperature faces. 
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EDI- a/W=0.1 
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DCT- a/W=0.3 

K
I/K
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Fig. 5 Transient temperature distribution in the ZrO2/Ti-
6Al-4V plate for various normalized times with 
T1/T0 = 0.15 and free convection at x1 = W 

 

 

 

 

 

 

Fig. 6  Normalized mode I SIF in the ZrO2/Ti-6Al-4V plate 
versus normalized time and different crack lengths 
in plane strain condition 

 

 

 

 

 

 

Fig. 7 Normalized mode I SIF in the ZrO2/Ti-6Al-4V plate 
versus normalized time for different crack lengths in 
plane stress condition 

 

 

 

 

 

 
Fig. 8 The effect of thermal boundary condition at x1 = W 

on the variation of normalized thermal SIF 

6.3. Composite strip with an edge crack 
 

Crack analysis in composite structures requires 
consideration of the piecewise continuous nature of the 
material properties comprising the structure. Here, we con-
sider a composite plate composed of two different materi-

EDI- a/W=0.1 
EDI- a/W=0.2 
EDI- a/W=0.3 
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DCT- a/W=0.3 

K
I/K

0 

EDI- a/W=0.1 
EDI- a/W=0.2 
EDI- a/W=0.3 
DCT- a/W=0.1 
DCT- a/W=0.2 
DCT- a/W=0.3 

K
I/K

0 

EDI- a/W=0.1 
EDI- a/W=0.2 
EDI- a/W=0.3 
DCT- a/W=0.1 
DCT- a/W=0.2 
DCT- a/W=0.3 

K
I/K

0 

h=0 
h=1 
h=10 
h=∞ 

I
0 

K
/K
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als with an graded interface zone. The variation of material 
properties is approximated by a hyperbolic-tangent func-
tion as follows 

Figs. 11 and 12 show transient thermal SIFs in the 
FGP versus the normalized crack length a/W for plane 
strain and plane stress cases, respectively. According to 
these figures, the SIF increases quickly to a peak value and 
then decreases rapidly until the crack is closed. The corre-
sponding time of the crack closure increases as the crack 
length is increased. In this example, the crack closure was 
occurred in steady-state for all crack lengths. 
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 when η→∞ a jump occurs in the gradation of material 
properties across the interface at x  

EDI- a/W=0.1 
EDI- a/W=0.2 
EDI- a/W=0.3 
DCT- a/W=0.1 
DCT- a/W=0.2 
DCT- a/W=0.3 

K
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1 = -d. The configuration 
under consideration and the variation of the Young's 
modulus are shown in Figs. 9, a and b, respectively. 
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K
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Fig. 11 Normalized mode I SIF in the FGP versus normal-
ized time and crack length in plane strain condition 

 

  
 
Fig. 9 A cracked FGM plate (a) configuration (b) the varia-

tion of the Young's modulus in the FGP 

a 
 

b 

 
The following data were used for the plane strain 

and plane stress cases  

Fig. 12 Normalized mode I SIF in the FGP versus normal-
ized time and different crack lengths in plane stress 
condition 

a/W = 0.1 - 0.3, H/W = 2  

d = - 0.5, ηE = 15, η = ην α = η = ηk ρc = 5  

(E (W), E (0)) = (1,3), (ν (W), ν (0)) = (0.1,0.3)  
6.4. Edge crack in an FGP: micromechanics model 

(α (W), α (0)) = (0.03,0.01)   
Prediction of the effective macroscopic properties 

is one of the important problems of interest in composite 
material theory. For FGMs, as one of the graded compos-
ites, a few micromechanical models of composites have 
been developed. Among the micromechanical models de-
veloped for FGMs, the self-consistent method (SCM) is 
here used. Zuiker has been pointed out that the SCM pro-
vides a simple and initial estimate for the effective proper-
ties which is beneficial for the related optimal property 
distributions [18]. Moreover, in this method the properties 
are determined independent of the phases of inclusions and 
matrices. This is important for FGMs in which the volume 
fraction of the constituent phases varies in a wide range.  
For two-phase FGMs, the volume fraction of the ceramic 
and the metal phases are assumed in the form of a power 
function, i.e., 

(k (W), k (0)) = (3,1), (ρc (W), ρc (0)) = (1,1)  

Here, we assume that only the left hand side face of the 
FGP is suddenly cooled down to the constant temperature 
T1 = 0. The transient temperature distribution in the FGP 
versus normalized time τ, as is defined in Eq. (37), is de-
picted in Fig. 10. The effect of the conductivity difference 
of plate sides on the temperature distribution is clearly ob-
served in the steady-state graph. 
 
 

 

 

 

 

 

Fig. 10 Transient temperature distribution in the FGP for 
various normalized times with T1 = 0 and T2/ T0 = 1 

Vc = 1 - (x1/W)p      (39) 

Vm = 1 - Vc                   (40) x1/W 

τ=0             τ=1e-4        τ=1e-3       τ=.1        τ=100     

∆T
/T

0 

x1/W 
in which W is the material gradation length and the expo-
nent p is the gradient index. Here x1 = 0 corresponds to the 
pure ceramic phase and x1 = W to the pure metal material. 
For two-phase composite, the effective material properties 
are determined from [18, 19]. 
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mmcc VcVcc += , mmcc VV ρρρ +=                     (44)  

where the subscripts m and c stand for metal and ceramic 
phases, respectively. We consider an edge crack in an un-
constrained FGP of length W = 1 and height H = 8W. With 
the purpose of imposing the thermal shock, we assume that 
only the cracked face of the FGP is suddenly cooled down 
to the constant temperature T1 = 0 from the stress-free tem-
perature T0. The transient temperature distribution in the 
FGP is shown in Fig. 13. 
 

 
  
 
 
 
 
 
x1/W 
 
 
 

Fig. 13 Transient temperature distribution in the FGP for 
various normalized times with T1 = 0 and T2/ T0 = 1 

Fig. 14 depicts the transient thermal SIF versus 
normalized crack lengths a/W for the plane strain case. 
Although the steady value of SIF is greater for longer 
cracks, the peak value of SIF is significantly larger for the 
short ones. 

 
 
 

 

 

 

 

Fig. 14 Normalized mode I SIF in the FGP versus normal-
ized time and different crack lengths in plane strain 
condition 

7. Conclusions 
 

In this paper, fracture behaviour of functionally 
graded materials under steady-state and transient tempera-
ture field is studied. Both domain form of J-integral (EDI) 
and displacement correlation technique (DCT) in conjunc-
tion with element-free Galerkin method are implemented 

to evaluate mode I stress intensity factor. The modal de-
composition approach is used to obtain the transient tem-
perature field analytically. The present study points out 
that: 

1. In the enriched EFG framework a coarse mesh 
is sufficient to accurate analysis of cracks in FGMs under 
thermal loading.  

2. At early time of thermal shock, the SIF gets to 
a large peak value which is significantly greater than corre-
sponding steady value and then decreases rapidly to the 
steady value. Moreover, although the crack is closed at 
steady state for some cases, the value of SIF might be 
reach to a large positive peak value during the thermal 
shock period. These phenomenons imply that in thermal 
fracture analysis of FGMs, the SIF at the beginning of 
thermal loading might be the main factor in fracture failure 
analysis.    

3. Comparison of numerical results with the refer-
ence solutions points out both energy-based EDI method 
and direct approach DCT in the framework of enriched 
EFG are efficient tools to analyze thermal fracture of 
FGMs. 
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M.B. Nazari, M. Shariati, M.R. Eslami, B. Hassani 

 
FUNKCIONALIAI KOKYBIŠKŲ TERMIŠKAI 
APKRAUTŲ MEDŽIAGŲ SUIRIMO ANALIZĖ 
 
R e z i u m ė 
 
 Analitiniu Galiorkino metodu atliekama kokybiš-
kų medžiagų suirimo, esant I tipo nestacionariam termi-
niam apkrovimui, analizė. Įtempių intensyvumo koeficien-
tai buvo nustatyti naudojant ekvivalentinį erdvinį integralą 
ir poslinkio koreliacijos metodą. Medžiagos mechaninėms 
savybėms apibūdinti buvo panaudotos kontinuumo funkci-
jos ir mikromechaninis modelis. Šiluminio šoko analizei 
taikytas modalinis suskaidymo metodas, kuris yra pusiau 
diskretinė priemonė nestacionariam temperatūros laukui 
nustatyti. Skaitinio tyrimo rezultatams patikrinti buvo pa-
sinaudota kitų autorių darbais. Tyrimas parodė, kad įtem-
pių intensyvumo koeficientas yra didžiausias pradinėje 
terminio šoko stadijoje, taigi ši stadija yra svarbi suirimo 
procesui.  
 
 

M.B. Nazari, M. Shariati, M.R. Eslami, B. Hassani 

MESHLESS ANALYSIS OF CRACKED 
FUNCTIONALLY GRADED MATERIALS UNDER 
THERMAL LOADING  

S u m m a r y 
 
 The element-free Galerkin method which is en-
riched intrinsically is applied for fracture analysis of func-
tionally graded materials under mode I steady-state and 
transient thermal loading. The stress intensity factors are 
evaluated by means of both equivalent domain integral and 
displacement correlation technique. Continuum functions 
and micromechanical model are used to describe the distri-
bution of material properties. For thermal shock analysis, 
the modal decomposition method which is a semi-
discretization approach is implemented to obtain the tran-
sient temperature field. The accuracy of numerical results 
is verified using the available reference solution. The re-
sults imply that the magnitude of the stress intensity factor 
gets to a large peak at the early time of the thermal shock 
which indicates its significant role in the fracture failure. 
 
 
М.Б. Назари, М. Шариати, М.Р. Еслами, Б. Хассани 
 
АНАЛИЗ РАЗРУШЕНИЯ ФУНКЦИОНАЛЬНО 
КАЧЕСТВЕННЫХ ТЕРМИЧЕСКИ НАГРУЖЕННЫХ 
МАТЕРИАЛОВ 

 
Р е з ю м е 
 
 Аналитический метод Галеркина использован 
для анализа разрушения качественных материалов с 
применением I типа нестационарного термического 
нагружения. Коэффициент интенсивности напряжений 
определен при помощи эквивалентного пространст-
венного интеграла и метода корреляции перемещения. 
Функции континуума и микромеханическая модель 
использована для описания механических характери-
стик материала. Для анализа теплового удара исполь-
зован модальный метод разделения, который является 
полудискретным способом для определения постоян-
ного температурного поля. Надежность полученных 
результатов оценена при помощи работ других авто-
ров. Результаты исследования показали, что коэффи-
циент интенсивности напряжении максимальное зна-
чение принимает в начальной стадии теплового удара, 
что подтверждает важность этой стадии для процесса 
разрушения. 
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