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1. Introduction 
 

According to previous findings [1], spatial dia-
mond-type lattices can be considered optimal from maxi-
mum stiffness structure points of view. Due to this, the 
intended application of the lattice is civil and space struc-
tures [2]. Considering multiscale application possibilities, 
another potential application field could be sandwich struc-
tures [3, 4].  

For mechanical design purposes, a tetrapod-
shaped superelement had been partitioned off the lattice 
structures [5]. Determination of an optimal shape for the 
superelement according to composite minimum mass – 
maximum stiffness criteria was the aim of the earlier study 
[6]. However, the obtained results corresponded to maxi-
mum stiffness optimal structures, constrained by upper 
mass limit. Since these results were not satisfactory from a 
minimum mass structure viewpoint and could not be con-
sidered as a lattice-type geometry, which was assumed to 
correspond to a lightweight structure, a new study was 
performed. The optimization task was subsequently rede-
fined as mass minimization under the constraint of maxi-
mum allowable displacement.  

The parametric shape optimization [7] in combi-
nation with topology optimization was again utilized for 
the task, allowing for the use of the same parameterized 
geometric model [8], which consequently facilitated com-
parison with the earlier results. For completeness, the 
parameterization and optimization schemes, supplemented 
with new conditions, will be recapitulated. 

All the mechanical and optimization calculations 
for the study were carried out using ANSYS FEM software 
package (version 11.0). The sampling of experimental 
points was carried out using optimization software EDA-
Opt.  

 
2. Problem settings 

 
2.1. Assumptions 

 
For simplification, it was assumed that the model 

could be optimized in the range of linear stress-strain rela-
tions, allowing the use of Hookean material law, and small 
deformations. For the study an isotropic lightweight mate-
rial, corresponding to the properties of amorphous semi-
transparent polyethylene terephthalate (density 
1370 kg/m3, Young's modulus 2800 - 3100 MPa), was cho-
sen to model the structure.  

Due to lightweight considerations, the superele-
ment was modelled as a shell structure, based on a simpli-
fied geometric model (Fig. 1) [8], which was determined 
by a set of five independent shape parameters defining the 
superelement’s midsurface geometry. For each of the pa-
rameters there were lower and upper geometric limits set. 

The shell thickness tk was chosen to be defined as a con-
stant for the initial calculation with the estimate that a 
thickness distribution function, based on the initial results, 
in a parametric form tk(x1, x2) (Figs. 2 - 4), would be de-
fined subsequently.  

 
Fig. 1 Parameterized model of a tetrapod-shaped su-

perelement  

 
Fig. 2 Derivation of superelement’s finite symmetric ele-

ment 
 

2.2. Input parameters 
 
For the sake of scale-independent superelement’s 

geometric model definition, the values for each of inde-
pendent linear shape parameter limit were defined with 
respect to the superelement’s ray length R, which can be 
considered as a scaling factor. A size of 75 mm was as-
sumed for the ray length R. The rest of independent shape 
parameters were consequently constrained as 

( )( )2 2 2 2max maxtk d tan R tkβ< < −  (1) 
 (2) 1,22maxtk r R< <

2900 < α < ° − β  (3) 
0 ;  max maxtk tk tk k R< ≤ =  (4) 

 

where k is coefficient for shell-type geometry. 
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Fig. 3 Descriptive parameterization scheme for superele-

ment’s thickness distribution function definition 
tk(x1, x2), where d2m and rm are replacement dimen-
sions for d2 and r1, r2, respectively, due to additional 
approximation 

 
Fig. 4 Descriptive parameterization scheme for superele-

ment’s cut definition function tk(x1, x2), where 
YR1-YR4 are possible variants for normalizing refe-
rence dimensions 

 
2.3. Boundary conditions 

 
Assuming approximate boundary conditions, 

which would allow the use of symmetries [9] and thereby 
reduce the computing time, it was possible to partition off 
a quadrangle-shaped area (Fig. 2) as the finite symmetric 
element, which corresponds to 1/24 of the superelement 
and is defined by symmetry planes and a 1/6 portion of the 
loaded outer edge of a ray. The magnitude of the axially 
compressive force F (25 N), which corresponds to sym-
metric loading case (Fig. 5), was chosen with the estimate 
that the superelement’s deadweight effect should be at 
least an order lower than the axial force and thus could be 
excluded from the study as negligible. This implied an 
upper mass limit of 250 g or volume limit of 
1.82E+05 mm3.  

 
Fig. 5 Superelement’s loading scheme, where F is axial 

loading force 
 

2.4. Output parameters 
 
The output parameters chosen for defining the op-

timality criteria of superelement’s structural optimization 
include total volume V (m = V/ρ, where ρ is material den-
sity) and the total strain energy U, which according to [10] 
is a characteristic for the global stiffness of structures un-
der elastic loading.  

An equivalent parameter to strain energy U for 
the particular loading case could be the displacement u of 
superelement ray’s outer edge under the axial load F, 
which corresponds to the superelement’s axial stiffness, 
defined as F/u, and also to the work of external forces. For 
simplicity, the displacement u was expressed with respect 
to the geometric centre of the superelement. For the dis-
placement u an upper limit of 1.33E-04 R was defined, 
based on the assumption that a lattice-type geometry 
should yield deformations larger than those corresponding 
to a maximum stiffness structure. The particular displace-
ment limit value was derived from the results correspond-
ing to maximum stiffness optimal structure [6], under the 
mass constraint given above, by defining it as an order 
greater than the displacement values obtained for the re-
spective structures.  

 
3. Solution scheme 

 
3.1. Parameter correlations 

 
In order to justify the assumptions stated in sec-

tion 2.4, a further task was a preliminary study of correla-
tions between selected geometric parameters – diameters 
d1 and d2, which represent the overall shape of the su-
perelement – and the chosen output parameters. For calcu-
lation of the correlation coefficient values it was chosen to 
utilize the so-called space-filling experimental designs of 
Latin hypercube type. The experimental designs can be 
generated according to various criteria. For the particular 
task experimental designs were generated according to the 
Minimal Mean Squared Distance (MMSD) criterion [11]. 
The correlations between the structural and geometric pa-
rameters (Table 1) were evaluated according to the values 
of Pearson’s product-moment correlation coefficient.  

A general observation concerns the correlation 
between mass m and outer edge displacement u, which has 
a negative value and is significant (-0.5). This confirms the 
assumption that to different displacement limits different 
mass ranges and, consequently, different optimal geome-
tries should correspond in accordance with Pareto optima-



 50

lity [7]. The high correlation between the diameters d1 and 
d2 (0.98) allows to conclude that the parameters may be 
considered equivalent for the correlation study. 

Table 1 
Correlation coefficient values of superelement’s structural 
response and geometric parameters for constant thickness 

distribution function (significance level p < 0.00025)  
 

 Parameters 

Parameters d1 d2 m 

d1    

d2 0.98   

m 0.38 0.37  

u -0.21 -0.20 -0.52 

 
Regarding the correlation between overall su-

perelement’s shape, characterized by d1 or d2, and struc-
tural parameters m and u it should be referred to the re-
spective distributions (Fig. 6) of the 321 space-filling de-
sign points which were used for the correlation calcula-
tions. It shows that almost linear parallel lines along distri-
bution boundaries, corresponding to minimum or maxi-
mum values of m and u for different values of d1 or d2, 
could be drawn. This, in line with the respective correla-
tion values, which are negative for u and positive for m, 
allows the conclusion that the overall optimal shapes of the 
superelement should range from bulky or foam-ike, corre-
sponding to large masses and small displacements (also 
result of the earlier study [6]), to slim or truss-like, which 
would correspond to larger displacements and small 
masses (goal of the present study) (Fig. 7). 

 
3.2. Parametric optimization 

 
Since the initial limits of shape parameters in-

cluded most of the geometrically feasible combinations 
(see section 2.2), the metamodeling approach [11], also 
termed subproblem approximation [12], was chosen as the 
main optimization method. The method is generally classi-
fiable as a zero-order method, since it requires only the 
values of the dependent variables (objective function and 
state variables) and not their derivatives. A particular im-
plementation of the method is available as a module of the 
ANSYS software package (version 11.0), which was used 
for the study. 

A specific task for the implementation of the sub-
problem method is the definition of design variable sets, 
required for the definition of approximation functions. The 
option available within the optimization module of 
ANSYS is quasirandom sequences. However, since no 
uniformity of the parameter space was being granted by 
this method [11], it was chosen to apply the Latin hyper-
cube type experimental design points generated by the op-
timization software tool EDAOpt [13] according to the 
MMSD criterion. 

The subproblem approximation method can be 
applied repeatedly after reducing the parameter limits ac-
cording to the results obtained, thereby obtaining a refined 
result.  

 

 
Fig. 6 Distribution of 321 space-filling geometrically con-

sistent design points in the space of total mass m - 
diameter d2 (a) and superelement ray’s outer edge 
displacement u - diameter d2 (b), obtained with con-
stant thickness distribution function  

 
Fig. 7 Distribution of 321 space-filling geometrically con-

sistent design points in the space of total mass m - 
superelement ray’s outer edge displacement u, ob-
tained with constant thickness distribution function  

 
3.3. Topology optimization 

 
The built-in homogenization method based [14] 

topology optimization module of ANSYS software pack-
age was tested for the given loading scheme (Fig. 5). The 
method is applicable to shells and solids. 

Within the task setting of the study, the most ap-
propriate topology optimization criterion from the avail-
able was that of minimizing the volume or mass of the su-
perelement. The minimization is subject to a given con-
straint of maximum increase for the energy of structural 
static compliance, which was set to 90 percent during the 
study. 
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The topology optimization for solids was carried 
out for the maximum volume available for a single su-
perelement (Fig. 8). The shell optimization option allowed 
only for 2-dimensional optimization on a given shell sur-
face geometry. Consequently, it could be applied for the 
definition of thickness variations, including cuts, on sur-
faces obtained by the optimization of constant thickness 
geometry models.  

 
Fig. 8 Design space volume for the superelement’s topol-

ogy optimization showing the position of a topo-
logically equivalent lattice element within 

 
4. Results and discussion 

 
4.1. Preliminary optimization results 

 
Since the constant thickness optimization was in-

tended mainly for general estimation of the optimal ge-
ometry, necessary for subsequent shell topology optimiza-
tion, no detailed analysis of the results was done at this 
stage. The main conclusion was that the obtained geometry 
(Fig. 9) approximately matched the shape expected accord-
ing to the correlation study. Another immediate observa-
tion from the numeric results (Table. 2) was that the mass 
of the obtained structure (27 g) was about an order lower 
than the upper mass limit, which was an active constraint 
for the earlier study [6]. This conforms to the general dis-
tribution of mass m – ray’s edge displacement u (Fig. 7). 

Topology optimization for solids yielded geome-
tries having a thick shell structure with protruding struts at 
the corners (Fig. 10). Specific features of the geometry 
include the outer and inner shapes of the shell 
cross-sections, which are approximately hexagonal and 
circular, respectively. However, the obtained geometry was 
not directly transferrable to the implemented shell model 
due to its complexity. 

In order to define a thickness distribution function 
for further study, topology optimization for the shell ge-
ometry obtained with constant thickness optimization was 
carried out. The results (Fig. 11) demonstrated primarily 
constant thickness distribution with triangular cuts at the 
centres of spherical surface portions and oblong the cuts 
along contiguous sides of rays. Locations of the cuts ap-

proximately coincide with the regions of lowest stresses 
for the constant thickness distribution (Fig. 9).  

 
Fig. 9 Equivalent stress distribution (kPa) for superele-

ment’s geometry, optimized according to minimum 
mass criterion, obtained with constant thickness dis-
tribution function  

Table 2 
Values of shape and output parameters corresponding to 
optimal value of minimum mass criterion, obtained with 

constant thickness distribution function  
 

Type of pa-
rameters Parameter Value 

r1, mm 64.6 
r2, mm 46.1 
d2, mm 11.3 
α, deg 10.1 
tk, mm 1.2 
la, mm 25.5 

Shape pa-
rameters 

d1
a, mm 48.2 

U, µJ 20.2 
u, mm 9.68E-03 Output pa-

rameters m, g 27.1 
a dependent parameters  

 
4.2. Final optimization results 

 
Based on the results of shell topology optimiza-

tion, two piecewise defined thickness distribution functions 
of 6 parameters (see considerations in section 3.2) were 
defined, having explicit thickness parameters, subject to 
(4), and relative parameters having ranges of 0…1. The 
respective meanings of the new parameters are explained 
in Fig. 12 and Fig. 13. The main difference between the 
functions is that the first one includes a triangular cut simi-
lar to the result obtained by topology optimization, 
whereas the second one has one more explicit thickness 
variable compared to the first one. 

An additional note regarding the results presented 
is that in addition to sequential subproblem optimization 
according to minimum mass criterion small final im-
provements with upper mass limit, redefined according to 
the intermediate results obtained, were done according to 
the aggregate criterion mu, known from the earlier study 
[6], thereby attaining additional reduction of mass and 
more uniform stress distributions. According to the earlier 
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results, the optima obtained with the criterion mu could be 
only local, since it had been found that globally the crite-
rion yields optimal geometries close to maximum stiffness, 
which correlates positively with the mass m. 

 
Fig. 10 Pseudodensities of the design volume of the su-

perelement, topologically optimized according to 
minimum mass criterion 

 
Fig. 11 Pseudodensities of the shell volume of the su-

perelement (right view), topologically optimized 
according to minimum mass criterion (the shell 
volume corresponds to minimized mass value, ob-
tained with constant thickness distribution func-
tion) 
 
Geometrically both thickness distribution function 

variants have converged to beam-like shapes (Fig. 14) hav-
ing small diameters d1 and d2 and cone angles α (Table 3). 
The obtained surface geometries bear topologic and geo-
metric resemblance to open-cell metallic foams with rela-
tive density of about 6% [15], which have been modelled 
by analogous tetrahedral unit cells [16]. The optimized 
thickness values are similar for both functions. Both ge-
ometries have thickening at the location of transition radius 

r2 – steep for the first function and gradual for the second – 
but differ at the location of transition radius r1 where the 
first geometry has uniform thickness, which expands up to 
r2, whereas the second geometry has a small thickening, 
which expands onto the spherical surface portion. General-
ly the geometry corresponding to the first function could 
be described as slightly inflated compared to the second 
one. 

 
Fig. 12 Normalized piecewise defined thickness distribu-

tion for the finite symmetry element of the su-
perelement (Variant 1), where γ = arctan(1/YC) 

 
Fig. 13 Normalized piecewise defined thickness distribu-

tion for the finite symmetry element of the su-

perelement (Variant 2), where 3  23   
1  2

Y YY C
Y
−

=
−

  

 
The equivalent stress distribution for the first 

thickness distribution function (Fig. 15) shows relative 
uniformity, having distinct low stress concentration regions 
in the locations corresponding to the oblong cuts yielded 
by shell topology optimization (Fig. 11) and high stress 
concentration in the regions of highest curvature. For the 
second thickness distribution function the equivalent stress 
(Fig. 16) is distributed rather uniformly as well, having a 
region of very diverse stress levels on the spherical surface 
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portion – the location of cut for the first function – and 
similarly varying stress regions around the circumference 
at r1 fillet transition location. Both results allow for the 
conclusion that some thickness variation, including cut 
possibility, along a ray’s circumference should be defined 
in order to achieve uniform stress distribution under the 
given loading. Thus the first thickness distribution function 
can be considered as better. 

 
Fig. 14 Superelement’s overall geometry (front view), op-

timized according to minimum mass criterion, ob-
tained with piecewise defined thickness distribu-
tion function: Variants 1 (a) and 2 (b) 

Table 3 
Values of shape and output parameters corresponding to 
optimal value of minimum mass criterion, obtained with 

piecewise defined thickness distribution functions  
 

Distribution functions Parameters 
Variant 1 Variant 2 

r1, mm 21.9 14.3 
r2, mm 17.5 31.2 
d2, mm 10.4 9.9 
α, deg 4.3 2.5 

TK1, mm 1.9 1.9 
TK2, mm 1.5 1.4 
TK3, mm 1.5 1.7 
TK4, mm - 1.6 

Y1 0.57 - 
Y2 0.10 0.95 

Y3C - 0.89 
GC 0.10 - 

la, mm 54.6 60.1 

Shape 
parameters 

d1
a, mm 27.6 21.8 

U, µJ 20.8 21.0 
u, mm 1.00E-02 1.01E-02 Output 

parameters m, g 23.20 23.27 
a dependent parameters 

 
The sensitivity analysis (Table 5) for the present 

study is purely geometric, since the primary objective 
function – mass m – is determined by geometry only, the 
material density being a constant. The analysis shows that 
for the first thickness distribution function the greatest 
change in the value of objective function is due to the di-
ameter d2, which for small α and moderate r1 and r2 values 
is the main determinant of the overall superelement’s 

shape. It is followed by the thicknesses TK2 and TK3, 
which define the overall thickness distribution along the 
axis of a ray. For the second thickness distribution function 
the sensitivities are similar with the difference that thick-
nesses TK1 and TK2 are mainly accountable for the thick-
ness distribution along the axis of a ray. 

 
Fig. 15 Equivalent stress distribution (kPa) for superele-

ment’s geometry, optimized according to mini-
mum mass criterion, obtained with piecewise de-
fined thickness distribution function (Variant 1) 

 
Fig. 16 Equivalent stress distribution (kPa) for superele-

ment’s geometry, optimized according to mini-
mum mass criterion, obtained with piecewise de-
fined thickness distribution function (Variant 2) 
 
Additional nonlinear buckling analysis, which in-

cluded stress stiffening effects, was carried out for both 
thickness distribution functions (Table 4). Accordingly it 
could be stated that stability constraints were not relevant 
for the study. It should be added, however, that for the first 
function the critical load was about three times lower than 
for the second one, which is most likely due to the triangu-
lar cut, included in the first function.  

Table 4 
Values of stability loss ratios for superelement geometries, 
corresponding to optimal values of minimum mass crite-
rion, obtained with piecewise defined thickness distribu-

tion functions  
 

Distribution functions Fkr/F 
Variant 1 228 
Variant 2 658 

 
Based on the obtained types of geometry, for fur-

ther study from a theoretic point of view the field equa-
tions for thick shells of revolution could be directly appli-
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cable [17], whereas under certain assumptions regarding 
boundary conditions a more simple approach for axisym-
metric thick truncated conical shells could be considered 
[18]. 

Table 5 
Change of the minimum mass criterion value due to +1 % 
change in design variable values with respect to the range 
of each considered variable, the reference values corre-

sponding to optimized value of the criterion, obtained with 
piecewise defined thickness distribution functions  

 

Mass criterion change Parameters Δm a, g Δm b, g 
r1 -5.98E-03 6.52E-03 
r2 -1.41E-02 9.00E-05 
d2 1.71E-01 1.88E-01 
α 3.67E-02 2.55E-02 

TK1 1.29E-02 1.19E-01 
TK2 1.08E-01 9.92E-02 
TK3 1.11E-01 8.89E-03 
TK4 - 6.08E-03 
Y1 1.91E-02 - 
Y2 3.31E-03 8.85E-03 

Y3C - -7.58E-04 
GC 0.00E+00 - 

a distribution functions variant 1 
b distribution functions variant 2 

 
5. Conclusions  

 
• Close-to-optimum geometries for the superele-

ment of spatial hexagonal lattice have been ob-
tained according to minimum mass criterion un-
der the given conditions. 

• The results can be considered as Pareto-optimal 
[7]: the final choice of parameters is application 
dependent. 

• Possible improvements of the results comprise 
additional thickness variations, including cuts, 
along the circumference of superelement’s ray. 

• Further tasks within the given setting include the 
implementation of: 
– deadweight of the calculation model; 
– load cases for actual building structure ap-

plications; 
– anisotropic nonlinear material definitions; 
– other topologic optimization methods, in-

cluding level set methods. 
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O. Verners, M. Dobelis 

LENGVASVORIO KETURKOJO SUPERELEMENTO 
FORMOS OPTIMIZAVIMAS  

R e z i u m ė 

Tyrimų tikslas – nustatyti iš šešiakampio tipo su-
perelemento (keturkojo) sudaryto optimalios formos tinkle-
lio minimalią masę. Optimizavimas taikant metamodelia-
vimo metodą, kuris žinomas kaip šalutinės problemos ap-
roksimacija, rėmėsi formos parametrizavimu. Prieš optimi-
zavimą koreliacijos tarp parinktų geometrinių ir struktūri-
nių parametrų analizei, kurią naudotasi deformacijos para-
metro riboms ir kūno būsimai geometrijai numatyti, buvo 
taikomi lotyniško hiperkubo tipo eksperimentiniai planai. 
Numatomo kevalo storio kitimo funkcijai nustatyti papil-
domai buvo taikoma topologinė optimizacija. Gauti geo-
metriniai duomenys sutampa su numatytaisiais. 

O. Verners, M. Dobelis 

SHAPE OPTIMIZATION OF A LIGHTWEIGHT 
TETRAPOD-LIKE SUPERELEMENT 

S u m m a r y 

Aim of the study was the determination of mini-
mum mass optimal shape for a hexagon-type (tetrapod-
like) lattice superelement. The optimization was shape 
parameterization based and accomplished by metamodel-
ing approach, also termed subproblem approximation. 
Prior to it, Latin hypercube type experimental designs were 
utilized for the study of correlation between selected geo-

metric and structural parameters, which was subsequently 
used for making predictions as to what limits should be 
chosen for the constraining deformation parameter and 
what kind of geometries should be obtained. Additional 
topology optimization results were used as reference for 
defining thickness distribution functions for the intended 
shell geometry. The resulting geometries were in accor-
dance with the expectations. 

О. Вернерс, М. Добелис 

ОПТИМИЗАЦИЯ ФОРМЫ ОБЛЕГЧЕННОГО 
ТЕТРAОБРАЗНОГО СУПЕРЭЛЕМЕНТА  

Р е з ю м е 

Целью настоящего исследования являлось оп-
ределение минимальной массы оптимальной формы 
решетки, формированной из суперэлемента гексаго-
нального типа (тетраобразного). Оптимизация базиро-
валась на параметризации формы и была выполнена 
методом метамоделизации, известным также под на-
званием аппроксимации подпроблемы. Перед этим 
процессом были использованы экспериментальные 
планы в виде латинского гиперкуба для исследования 
корреляции между выбранными геометрическими и 
структурными параметрами, которая впоследствии 
была использована для предсказания границ, которые 
должны быть использованы для ограничения парамет-
ра деформации и определения какого вида геометрия 
должна быть получена. Дополнительно результаты 
топологической оптимизации были использованы как 
ссылка для определения функции изменения толщины 
предполагаемой геометрии оболочки. Полученные 
геометрии согласуются с предполагаемыми. 

 
Received June 15, 2010 
Accepted October 11, 2010 

 


	1. Introduction 
	2. Problem settings 
	2.1. Assumptions 
	2.2. Input parameters 
	2.3. Boundary conditions 
	2.4. Output parameters 
	3. Solution scheme 
	3.1. Parameter correlations 
	3.2. Parametric optimization 
	3.3. Topology optimization 

	4. Results and discussion 
	4.1. Preliminary optimization results 
	4.2. Final optimization results 

	5. Conclusions  
	 
	Acknowledgements 
	References 


