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1. Introduction 

 

Fiber-reinforced polymeric composites are widely 

used as structural materials in industry so there is an evident 

need for the prediction of their mechanical properties. This 

kind of materials shows various damage phenomena such as 

matrix cracking, interfacial debonding, fiber pullout and 

fracture. The predominant damage mechanism may vary ac-

cording to fiber volume fraction, aspect ratio, strengths of 

the interface, fiber orientation and distribution. Progressive 

damage accumulation in the composite is known to affect 

the global mechanical properties [1]. In order to estimate the 

material overall response, the accumulated damage must 

then be included in the constitutive relations. Furthermore, 

in order to achieve a rigorous description, the constitutive 

equations must be derived from micromechanical consider-

ations.  

Among the most commonly used composite mate-

rials, the Sheet Molding Compound (SMC) is widely used 

in mass production [2]. This study is centered on predicting 

the properties and mechanical behavior by a multi-scale ap-

proach of behavior laws in dynamic, for the study of com-

posites with randomly oriented discontinuous reinforce-

ments. 

The aim of this study is a contribution to mechani-

cal modeling of damage in random fiber composites by 

combining to different models and adding a statistical pa-

rameter. 

This category of composites presents 3 different 

types of damage mechanism, matrix cracking, matrix/fiber 

debonding and fiber failure.  The first mechanism in not 

took in consideration in most models for fiber reinforced 

composites damage prediction, the damage is not consid-

ered until fiber/matrix debonding. The first novelty of this 

work is in the combination of two models to estimate the 

global damage with more accuracy.  The first one is the 

DSGZ model, named after its authors (Duan, Saigal, Greif, 

Zimmerman) [3] which is a phenomenological model for the 

prediction of polymeric matrix behavior. The second nov-

elty is the use of a statistical parameter in the homogeniza-

tion process, because the randomness in the fibers orienta-

tion causes a disparity in the results, and taking in consider-

ation all the fiber orientation lead to heavy calculation. 

The laws of non-linear behavior were made 

through a Mori-Tanaka homogenization based on the theory 

of Eshelby equivalent inclusion. The damage is then intro-

duced at the local level through local criteria reflecting the 

physical phenomena of degradation.  

The objective of the mechanics of heterogeneous 

materials is to estimate the macroscopic properties of an 

equivalent homogeneous material. Several authors include 

the well-known Voigt and Reuss bounds that take only the 

volume fraction of the composite materials into account, 

also Hashin and Shtrikmans introduced the notion of iso-

tropic distribution of phases [1–2]. Other authors estimate 

the effective properties based up on the Mori Tanaka model 

or Self Consistent Scheme, consider only small elastic or 

elastic–plastic deformations on microscopic and macro-

scopic levels [4], [5]. Moreover, homogenization methods 

provide another way for the prediction of mechanical re-

sponse of heterogeneous specimen replaced by a homoge-

neous equivalent material (HEM), which represents the ma-

terial in an averaged sense [6–7].  

In the present paper, the damage behavior of glass 

fiber-reinforced composite with polymeric matrix is inves-

tigated using a combined approach of micromechanical 

modeling and experimental characterization. The resulting 

micromechanical model is numerically implemented and 

used to simulate uniaxial loading for the sake of comparison 

with experimental results. 

2. Material of study 

The composite sheet molding compound random 

(SMC-R) consists of an unsaturated polyester resin loaded 

with chalk (CaCO3) and glass fiber reinforcement randomly 

oriented with a weight content of 26%. These bundles of fi-

bers are discontinuous and have a constant length 

(L = 25 mm). We define a family of reinforcement as a col-

lection of fibers that exhibit the same volume fraction and 

orientation. The reinforcement orientation randomly distrib-

uted confers to the material a microscopic heterogeneous as-

pect and an overall transverse isotropic mechanical behav-

ior. The SMC-R25 plates were prepared of thickness 

2.7 mm and were cured at 140°C with an applied pressure 

averaging between 7 and 8 MPa for 2 min [8–9]. Micro-

scopic observations, using scanning electronic microscope, 

have been performed to investigate the material microstruc-

ture and to assess the random fibers orientation. Specimen 

cartography is then carried out using image analysis to quan-

tify and characterize, at the microscopic scale [10–11]. 

3. Global modeling technique 

The global modeling is carried out in three steps 

like shown in Fig. 1. The first step is the calculation of the 

strain tensor in the matrix and the damage if the elastic limit 

is reached. The second step is the calculation of the stress 

fiber/matrix interfaces stress using the stress tensor of the 

matrix. The last step is the homogenization process using 
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the interfacial stress distribution and the strain tensor in the 

matrix. These steps will be detailed next.   

 
 

Fig. 1 Global modeling technique 

3.1. Modeling the composite behavior 

 

3.1.1. Homogenization technique 

 

In general, engineering and natural materials are 

heterogeneous at a certain scale and this heterogeneous na-

ture has a significant influence on the macroscopic behavior 

of multi-phase materials. To predict the macroscopic behav-

ior of heterogeneous materials various homogenization 

techniques are used.  

There are four basic steps to a homogenization pro-

cess for a multi-phase composite [12]: the first stage is the 

definition of the RVE, the second is to analyze the mechan-

ical behavior of each phase; then the third step is the de-

scription of the boundary conditions and interphase bound-

aries; and finally an homogenization strategy to predict the 

macroscopic behavior based on the mechanical response of 

the REV. 

According to the Hill theory of average [13–14], 

the macroscopic strain and stress tensor components are de-

fined as the average on the REV volume: 

1. Representation step: in this step the laws of behav-

ior of components, shape and distributions geomet-

rically define the REV (Fig. 2). For our material, 

glass fibers are assimilated to ellipsoids.  

 

 
 

Fig. 2 (REV) Schematic representative elementary volume 

 

2. Location step: That allows formalizing the relation 

between the mechanical response at the micro-

scopic and macroscopic scale. Then is established, 

the laws of location and concentration where the 

localization strain tensor, denoted A and the stress 

concentration tensor, denoted B are introduced. 

The laws of location Ai and concentration Bi for the 

"i" phase are given by [9].    

.
i VER i

B       (1) 
 

.
i VER i

A E      (2) 
 

3. Homogenization Step: where representation and 

localization are used to construct the "macro me-

chanics" behavior law of REV [15]. The effective 

stiffness and compliance matrix, Ccomp and Scomp, 

are:  
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3.1.2. Micromechanical approach  

 

In general, the micromechanical modeling meth-

ods permeate research or actual overall behavior from the 

properties of the various components, interfaces and inter-

actions. The first simple models have been proposed by 

Voigt (1889) for a load-imposed displacement, and Reuss 

(1929) for traction imposed stress. These models, as will be 

shown later by Hill (1952), respectively provide upper and 

lower bounds of effective elastic constants. Then came the 

study of Eshelby (1959) that served as the basis for the 

model of Tanaka and Mori (1970, 1972) and the self-con-

sistent scheme of Kroner (1958). The Voigt and Reuss mod-

els do not take into account the shape and orientation of re-

inforcements unlike the model of Eshelby and Mori-Tanaka 

[16].  

The model of Mori-Tanaka is the most suitable for 

our material. It takes into account the actual behavior of the 

homogenized material, the presence of a large number of 

heterogeneities and the interactions between the local 

phases, where the matrix immersed in the heterogeneous 

medium is already disturbed by the presence of other heter-

ogeneities. In addition, this model is an improved model of 

the equivalent inclusion of Eshelby. 

 

3.1.3 Matrix behavior 

 

 
 

Fig. 3 Structure of the DSGZ model 
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For the matrix behavior, we used the DSGZ model, 

[3] with the structure shown in Fig. 3. It is a phenomenolog-

ical model for predicting the constitutive behavior and esti-

mating elastic-plastic responses to static or dynamic solici-

tations of semi crystalline and amorphous polymers [12]. 
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Where:  
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3.1.4. Damage and failure criteria 

 

Generally, damage is defined as a set of micro-

structural changes that causes more or less irreversible dete-

rioration of the mechanical characteristics. In our material, 

the damage observed phenomena are the matrix cracking 

and fiber/matrix debonding; it is called an effective field in 

which we are reduced to solving the problem of heterogene-

ity with loading at infinity. Le localization tensor of phase i 

is given by: 
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AESTis the Eshelby tensor given by: 
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And Ai
ESH is the localization effectif tensor of 

Eshelby for the i phasegiven by: 
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And Ei
ESH is the Eshelby Shape tensor.  

The equivalent stiffness tensor obtained by Mori-

Tanaka’s method is: 
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After numerical application, we obtain the matrix 

and reinforcement stiffness tensors noted Cm and Cr. 
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The Eshelby shape tensor corresponding to ellip-

soidal reinforcements is: 
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ESH
E
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Note that the stiffness tensor of the matrix and the 

reinforcement are isotropic, but the Eshelby tensor is not be-

cause of the ellipsoidal geometry of reinforcements. 

 

3.1.5. Consideration of fiber/matrix interface debonding  

 

The behavior of composite materials is in general 

a damageable elastoplastic behavior. For our study material, 

the main source of the damage nonlinearity is the fiber-ma-

trix interface. To integrate the damage, we are now inter-

ested in the calculation of stress and strain fields in the fi-

ber/matrix interface. The elastic model of Mori-Tanaka al-

lows the calculation of the stress fields and deformation in 

each phase through the localization and concentration ten-

sors. Fields in the fiber/matrix interface are determined by 

the constraints prevailing in the fiber. We consider a single 

fiber representing a family of fibers oriented (θ, φ) in the 

axis system represented in Fig. 2. The vector �⃗� is the outward 

normal vector of the fiber at the point A and �⃗� is the stress 

vector. For a macroscopic stress Σ, the average stress tensor 
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in a fiber/matrix interface is given by the following equation 

(Voigt, 1889): 

 

      1
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where: Qi is the localization tensor for each family of rein-

forcements indexed "i" given by:  
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The stress tensor in the interface can be calculated 

using the continuity condition of the normal stress at the in-

terface. Normal and tangential stresses at an interfacial point 

with the normal vector �⃗�  are obtained by simple projection 

of the stress tensor in the fiber: 
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3.1.6. Failure probability in fiber/matrix interface 

 

The process of breaking the fiber/matrix interface 

(points on the equator of the fiber) emanates from a coupling 

between normal and tangential stress that produces different 

macroscopic damage levels for the different states of strain. 

Several forms of interfacial failure criteria can be adopted. 

There are two forms of failure criteria, linear and quadratic. 

In our study, we used a quadratic criterion with an elliptic 

form like: 
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Where, local normal and shear constraints (σn, τ), 

at the same point of the fiber/matrix interface are function 

of the macroscopic load Σ, the fiber orientation (θ, φ), the 

point considered on the fiber/matrix and the mechanical 

properties of each phase. In addition, two intrinsic material 

parameters (σ0, τ0) of the interface will be identified. 

In short fiber composites, there are two general 

types of microstructure dispersions [10], [15]. The first type 

is the difference in fiber concentration. The second type is 

related to the presence of some relatively large pores, which 

can sometimes be very close to the fibers, thus affecting the 

state of stress at the fibers interface. For this, it is necessary 

to introduce a probabilistic aspect to the failure criterion. 

The introduction of this aspects in the Mori-Tanaka 

model is done through the introduction of statistical func-

tions f(σn,τ,σ0,τ0) that can translate the kinetics of damage 

type of de-bonding. The kinetics of damage mechanisms in-

volved is governed by a Weibull probability [13]: 
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The parameter m is a coefficient reflecting the sen-

sitivity of the dispersion intensity of the damage. The initi-

ation of the interfacial failure is introduced into the multi-

scale model by using a local statistical criterion. We choose 

the quadratic form of the failure criterion. 

σ0, τ0, m are parameters reflecting the strength of 

the fiber/matrix interface as well as the kinetics of damage 

to the statistical point of view.  

There are two methods for assessing the failure cri-

terion interface. The first method is to evaluate the criterion 

at each point of the interface to determine a percentage of 

interface failure. The second method is to evaluate the crite-

rion to find the point where the criterion is maximum2.  In 

this study we use the second method because we are inter-

ested in evaluating the volume fraction of thede-bonded fi-

bers. 

 

3.1.7. Damage evolution by interface de-bonding  

 

The debonding occurs as the criterion is reached on 

one of the points of the interface [16]. This debonding de-

creases the participation of the fiber to the reinforcement of 

the composite. This effect is translated by the replacement 

of the de-bonded fiber, that no longer contribute to the 

strengthening of the composite, by an "equivalent reinforce-

ment" as an ellipsoidal cavity of stiffness zero [15], [17]. 

After this, the composite is consisted of three phases: ma-

trix, reinforcing fibers and debonded fibers. The interface 

debonding occurs after the threshold for nonlinearity when 

the local de-bonding criterion is reached. Later it is this pro-

portion of damaged fibers that will be replaced with ellip-

soidal cavities like shown in Fig. 4. 

It is then necessary to consider the probabilistic as-

pects to estimate the rate of damaged fibers [6], [18]. For the 

i-th family of fibers with the orientation (θ, φ), the volume 

fraction of damaged fibers Vfi is determined by the percent-

age of damage relative to the total volume fraction of fibers 

Vfi. For each family of reinforcement, the maximum value 

of the failure probability maxPr(α) is calculated on achiev-

ing interface with each increment. (Depending on the angle 

α around the fiber): 

 

 Pr , , .
d

i i
Vf Vf      (15) 

 

 
 

Fig. 4 Damage model representation, (a) fiber tow oriented 

θ partially damaged, (b) equivalent system represen-

tation 
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3.1.8. Damage model for fiber/matrix interface 

 

 
 

Fig. 5 Procedure of two-stage homogenization 

 

The Fig. 5 shows the homogenization process 

which is carried out in two successive stages.  

 

 
 

Fig. 6 Structure of the Mori-Tanaka damage model 

 

All the steps of the algorithm are summarized in 

Fig. 6. This schema, takes into account the redistribution of 

stresses and the evolving anisotropy of the material related 

to the evolution of the damage. It also allows predicting the 

evolution of the loss of elastic modulus for all the coeffi-

cients of the stiffness tensor of the composite. 

Initially, the mechanical properties of the matrix 

and the reinforcement are introduced. Then a first homoge-

nization is done before load application. If the applied load 

is less than the damage limit, it is within the elastic field. If 

we go into the plastic range then we calculate interfacial 

constraints and the failure probability, after, if the damage 

criterion is satisfied, that is to say that there was fiber/matrix 

interfacial de-bonding, then is made the two-step homoge-

nizing procedure. 

The composite has three phases: matrix (Vm), rein-

forcing fibers (Vfr) and damaged fiber (Vfd). For the incre-

ment n we have: for n=0: 
0 0

0,
d r

Vf Vf Vf  initial fiber frac-

tion of the formulation. 

 

.
r d

n n
Vf Vf Vf   (16) 

 

1.
m
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At each load increment n+1 we have: 
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
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We define a new material:  
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At each load increment, the introduction of dam-

aged fibers of characteristic zero produces a gradual de-

crease in the stiffness of the composite. The damage is char-

acterized by a loss in Young modulus. 

 

4. Results and analysis 

 

The model built on the basis of the homogenization 

method of Mori-Tanaka is best suited for estimating the 

elastic properties of the material studied. This homogeniz-

ing method allows to take into account the shape and size of 

the reinforcement and to establish a coherent behavior with 

a law of distribution of fiber orientation. 

 

4.1. Influence of the number of reinforcement family  

 

A family is a group of reinforcing fibers that share 

the same geometric properties. For our study, we varied the 

number of families from 1 to 20 to see the influence of this 

parameter on the material properties. The evolution of ten-

sile and shear modulus shows that from a value of Nf = 3, 

the calculated modules tend to a limit. Therefore, we can say 

that the fibers divide into 3 families is sufficient to represent 

the material. 

The equivalent stiffness tensor obtained by com-

bining three families of inclusions is: 
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This tensor is monoclinic and verifies the sym-

metry properties of the tensor rigidities. The first tensor (13 

independent coefficients). If we increase the reinforcements 
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family’s number; the equivalent tensor is transverse iso-

tropic (5 independent coefficients). We find the elastic be-

havior of the equivalent homogeneous material. Thus, the 

random orientation of non-spherical reinforcements led to a 

transverse isotropic composite. 

 

4.2. Influence of the form ratio of reinforcement 

 

The evolution of Young's and shear modulus based 

on the form ratio R (fiber length/fiber diameter) is directly 

related to the length of the fiber as the fiber diameter is con-

stant.  
 

 
 

Fig. 7 Tensile and shear modulus depending on the form ra-

tio (R= [1-120]) 

 

We note, in Fig. 7, that the calculated modules tend 

to a limit from a value of form ratio R=120. The diameter of 

the fibers being constant, it is in fact the length of the fibers.  

More generally, we note that the tensile modulus is 

more sensitive to the value of the form ratio than the shear 

modulus. 

 

4.3. Influence of the volume fraction 

 

We study the influence of the volume fraction of 

reinforcement, taking a ratio of R = 25000/15 (fiber length 

Lf = 25 mm, fiber diameter df = 15 mm). 

 

 
 

Fig. 8 Tensile and shear modulus as function of fibers vol-

ume fraction (R = 25000/15) 

 

We see from Fig. 8 that the extreme values of E1 

are logically those properties of the matrix or fibers, respec-

tively, for Vf = 0 we have Em = 3000 MPa and for Vf= 1 we 

obtain Ef = 73000 MPa. Note that the modules are highly 

sensitive to variations in fiber volume fraction. We find that 

for a volume fraction of 18%, corresponding to our material, 

tensile modulus E1=14,64 MPa. 

In addition, this choice also involves restricting the 

range of variations in study modules depending on the vol-

ume fraction Vf. Indeed, the fiber volume fraction, which 

can go up to 60-70% in the long-fiber reinforced compo-

sites, cannot practically exceed 40% in the case of short fi-

bers and polymer matrix. More, it is important to note that 

beyond a value greater than 40%, the method of Mori-Tanka 

no longer reflects correctly the behavior of the composite. 

The restriction comes from the method itself, it is not capa-

ble of taking into account the interactions "medium dis-

tance" between heterogeneities. 
 

4.4. Parameter identification of interfacial de-bonding  

criterion 
 

To take into account the de-bonding fiber/matrix in 

the model, we identify the parameters (σ0, τ0, m) which are 

the characteristics of the interface and the statistics of inter-

facial failure. The local probability of inter-facial failure is 

given by: 

 
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with 
0 0

( ) (, , ).fm    

The first step is the identification of the local fail-

ure criterion parameters; it is performed by inverse method. 

Indeed, for a set of given parameters (σ0, τ0, m), the model 

predicts the evolution of density dmicro of created cracks in 

fiber-matrix interface in accordance with the imposed defor-

mation. The results are shown in Table 1. 
 

Table 1 

Matrix material parameters for the 

DSGZ model (σ0, τ0, m) 

𝜀̇ (s-1) σ0 (MPa) τ0 (MPa) m 

0.0002 33 30 2.43 

20 67 61 2.74 

22 80 73 2.94 

150 108 98.7 3.21 

160 109 100 3.23 
 

Table 2  

Comparison of experimentally and  

simulation mechanical characteristics 

comparison Exp Mod Error (%) 

𝜀̇ (s-1)=150s-1 

E (MPa) 11500 11121 3.29 

Yield stress (MPa) 46 50.54 9.87 

Threshold deformation 

(%) 

0.4 0.4275 6.88 

σR (MPa) 158 153 3.06 

εR (%) 2.2 2.156 2 

𝜀̇ (s-1)=22s-1 

E (MPa) 12000 11748 2.1 

Yield stress (MPa) 48 50.82 5.88 

Threshold deformation 

(%) 

0.4 0.4348 8.70 

σR (MPa) 130 137.15 10.55 

εR (%) 2.2 2.183 0.77 
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From Table 2, we see that the maximum value of 

the error is 10.55% for the yield stress. For the young mod-

ulus and εr the maximum value is 3.29% which is very ac-

ceptable. 

 

5. Predicting the behavior of SMC-R25 at different 

strain rates  

 

Fig. 9 shows a comparison experiment-simulation 

for the tensile and compression response to different defor-

mation rates.  

 

 
 

Fig. 9 Comparison experimental-simulation for different 

strain rates 

We can see a good concordance regardless of the 

strain rate. It is easy to see that the phase of the elastic be-

havior (ε≤0.50%) remains insensitive to the effect of strain 

rate. On a macroscopic scale, increasing the strain rate cre-

ates a rise of the elastic limit. This then leads to an increased 

level of non-linearity as well as the stress and strain at rup-

ture. Once matched the criteria according to the strain rate, 

the model predicts the stress-strain regardless of the strain 

rate. 

 

5.1. Predicting the macroscopic damage 

 

At the macroscopic scale, the modulus loss is 

translated through a damage variable Dmacro: 
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 (20) 

 

We see from the Fig. 10 that for a strain rate of 

20s- 1, the degradation occurs at a macroscopic level defor-

mation of 0.2%, while for a strain rate of 160 s-1, the first 

stiffness reduction occurs at a deformation of 0.35%.  

In addition, we can see that the damage is relatively 

minor when the strain rate increases. This phenomenon can 

be explained by the fact that the local damage growth is 

changed in terms of deformation and exhibits a reduced ki-

netic due to the effect of strain rate.  

Both aspects are closer to the effect of viscosity 

produced by the delay reaching the dissipation interfacial 

areas. Therefore, we can notice a delay in the macroscopic 

damage thresholds.  

 

 
 

Fig. 10 Evolution of the macroscopic as function of the 

strain for different strain rates 

 

5.2. Predicting the evolution of microscopic damage  

 

Microscopically, damage resulted through the var-

iable dmicro representing the amount of micro-cracks d(θ), in-

troduced at each increment of stress, and is directly func-

tions of interface failure probabilities Pr(θ), calculated for 

each family orientation at each increment of macroscopic 

stress (ΔΣREV).  

We have defined 3 families of orientation: θ1(0°-

30°), θ2(31°-60°), θ3(61°-90°).  

 

 
 

Fig. 11 Evolution of cracks density as function of fiber ori-

entation (�̇�=150s-1) 

 

From the results shown in Fig. 11 we can say that 

for a tensile test, the fiber-matrix interfaces of the θ3 family 

are mainly subjected to normal stress while interfaces of θ1 

and θ2 families are subject to a tensile shear coupling. It was 

noted that the level of deformation increases when the ori-

entation of the fiber decreases. We can conclude that the 

damage coming from the fiber/matrix interface de-bonding 

are mainly caused by pure normal interfacial stress. This 

leads to specify that the fiber-matrix interface damage is an-

isotropic in nature. Therefore, compositesSMC-R25 are 

characterized by a damageable visco-elastic behavior. 

 

5.3. Influence of form ratio 

 

We conduct our numerical simulations with a vol-

ume fraction of reinforcement Vf=18%. Fig. 12 illustrates 

the effect of the reinforcement’s geometry on the equivalent 
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behavior. It is found that the elasto-plastic behavior depends 

on the reinforcement’s elongation. More reinforcement is 

long more modules and the yield increase. 

 

 
 

Fig. 12 Effect of the form ratio on the SMC-R25 behavior   

 

6. Conclusion 

 

The main objective of this study is to establish the 

behavior of composite materials with short fiber in order to 

predict the mechanical properties and damage evolution. 

The modeling technique adopted in this consists on the com-

bination of a phenomenological model for the matrix behav-

ior and homogenization technique with a statistical media.  

It was shown that this approach can be successfully applied 

to predict the macroscopic behavior and damage evolution 

of this range of materials with complex material behavior 

and microstructure.  

The comparison of the simulation results and ex-

perimental response provided an extra assessment of the 

proposed modeling technique. The material parameters ob-

tained for the matrix material have been used with satisfac-

tory agreement.  

The modeling of the macroscopic behavior using 

the viscoplastic model and homogenization method demon-

strates an accurate description of the deformation behavior. 

Finally, additional developments to improve the modeling 

are still required. First, a cavity nucleation criterion is nec-

essary to describe the damage initiation and the uses of a 

computational homogenization method with incremental 

scheme.  

The proposed modeling strategy seem to be an ef-

ficient tool to establish the micro–macro relationship. 
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M.D.D. Boudiaf, N. Mesrati  

 

MICROMECHANICAL MODELLING AND  

EXPERIMENTAL APPROACH OF RANDOM FIBER 

REINFORCED POLYMER COMPOSITES WITH  

PROGRESSIVE DEBONDING DAMAGE 

 

S u m m a r y 

 

In this study, we investigated the mechanical be-

havior of short fiber reinforced composite by using a com-

putational approach for predicting damage evolution and 

mechanical properties according to the respective mechan-

ical characteristics of the matrix, the fibers and the volume 

fraction. In this computational approach, for a more accu-

rate calculation of the fiber/matrix interfacial stress, we 

proposed a combination of two models. The first model is 

an elastic-viscoelastic phenomenological model describing 

the nonlinear behavior of the polymeric matrix for predict-

ing damage in polymers, used to predict the matrix damage 

and the interfacial stress (fiber/matrix). The second model 

is a Mori-Tanaka homogenization model with a probabil-

istic aspect used to predict the global damage in the com-

posite by non-linear laws based on the theory of Eshelby 

equivalent inclusion. The representative volume element 

(REV) chosen in the homogenization process, is con-

structed by assuming local 3D periodicity of the micro-

structure. The macroscopic stresses and strains are ob-

tained by the average stress–strain field in the RVE. The 

validation of both homogenization procedure and the con-

stitutive model is accomplished by a range of comparisons 

with experimental data for uniaxial traction and compres-

sion tests. A fair agreement is obtained between numerical 

and experimental results. 

 
Keywords: dynamic behavior, damage evolution, fibrous 

reinforced composites, homogenization. 
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