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1. Introduction

The mathematical model of minimal volume de-
sign of steel structure, which implicates plastic strains and
is subjected to the varying repeated load, is created based
on energy principles of the mechanics of deformable body
[1-3], shakedown of the structures [4—7] and mathematical
programming theories [8, 9]. Varying repeated load (VRL)
is a system of loads, which can vary independently [10,
11]. In all cases, the load is treated as quasi-static, and
VRL is described by the lower and upper bounds of vary-
ing loads rather than a particular loading history (i.e. by the
law dependent on time ?).

In this work, only the deterministic formulation of
structures’ continuous optimization problems is analyzed.
Usually only one design parameter of element’s cross-
section is optimized (e.g. an area or resistance moment of
element’s cross-section), the other parameters were ex-
pressed by mean curves [12]. However, this approach is
very unaccurate especially in the case of discrete optimiza-
tion problems [13], when the evaluation of dispersion of
geometrical characteristics of profile assortment sets is still
important [14]. A new principle of biparametric optimiza-
tion for optimal shakedown design is investigated in this
paper, where already two design parameters of separate
element’s cross-section are selected for optimization [15—
17]. This treatment expands the applicability of optimiza-
tion problem in optimal design of steel frame structures by
performing the optimization of biparameters in admissible
fields of geometrical characteristics of profile assortment
sets, and allows us to estimate the dispersion adequately.

The structure adapted to VRL is safe in terms of
plastic failure, but not always satisfies serviceability re-
quirements, for example it may have unallowable deflec-
tions [18, 19]. Therefore, not only strength (shakedown),
but also stiffness conditions [20, 21] are included in
mathematical models of plastic systems’ optimization
problem in this paper. The stiffness conditions are usually
realized by restraining deflections and nodes’ displace-
ments of the structure [22, 23]. The evaluation of stability
is also relevant to trusses [24]. The analysis and evaluation
of design of structures with plastic strains’ allows more
effective use of its load-bearing capacities and design more
economical projects [25, 26].

The structures are modeled by the bar equilibrium
finite elements with interpolation functions of internal
forces [27-29]. The elements are designed using HE, IPE,
RHS (Rectangular Hollow Sections) steel profile assort-
ments and considering dispersion of geometrical character-
ristics of profile assortment sets [17]. The biparametric
optimization principle of the main (leading) design geome-
try I of cross-sections and the control-corrective (driven)
geometry I7; is used to realize the design of elements [15,
17]. Idealization of distribution (expressed by approxima-

tion of mean curves) of geometrical characteristics of steel
profiles determines the application of the objective func-
tion, which approximately expresses the volume of the
structure [16, 17]. Similarly, the approximate minimization
function of volume is well suited for practical application
of the structures’ optimization principles.

In general, the design task of volume minimiza-
tion of steel structures, which is described above, is associ-
ated with the problem of nonlinear and non-convex
mathematical programming (NLP) [8]. The convergence of
the problem is being achieved by an iterative method, sol-
ving a number of nonlinear optimization problems. To sim-
plify the solution of the NLP, the complementary slackness
conditions can be moved into the objective function [25].

Actually, the optimization problem of steel struc-
tures is implemented in the modeling, analysis and optimal
design system JWM SAOSYS Toolbox v0.47 developed in
MATLAB environment by the authors [15, 17, 30]. A spe-
cial solution module SAOSYS/EPSOptim-SD is designed
for designing elastic-plastic structures subjected to VRL.
The previous version of the architecture SAOSYS v0.42
[17] was based on the database principle. Now, after a
number of improvements made it has become a structu-
rized hierarchical model of fully object-oriented compo-
nents. The reconstruction of SAOSYS v0.47 enabled us to
use new integration and development facilities applied in
modern information technologies. Besides the structural
part of SAOSYS system, the graphical user interface
(Fig. 1) is created, which may be used in structural model-
ing, the control of problem solution and graphical interpre-
tation of the results of analysis.
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Fig. 1 Frame design model in SAOSYS system

The possibilities of the system SAOSYS are dem-
onstrated by a numerical example of industrial building
frame design with strength, stability and stiffness con-
straints. The assumption of small displacements is adopted
in calculations.



2. A general mathematical model of the structure
optimization problem

The elastic-plastic bar structures of known topo-
logy subjected to varying repeated and dead loads are con-
sidered. In the case of monotonic load F(7)=
=ni{F;|i=1,2,..,m<< i€ DOF}, all loads F; vary pro-
portionally to one general multiplier 7. Here, m is the
number of degrees of freedom of the structure (DOF). The
real structures are usually subjected to different, unrelated
effects and their combinations F(¢) = {F(f) |i € DOF?},
which vary in time ¢ [7, 10-12]. Eliminating the loading
history, the VRL vector F(f) may be described only by the
lower and upper bounds Fj,; F,,, which are not related to
the time . F,; < F(f) < Fy,.

The stress-strain state of the structure at shake-
down depends on the loading history F(f). For example,
the displacements of the elastic-plastic structure may be
described by the sum of elastic and residual components —
u(t) = u,(t) + u,(t). When loading is given only by the vec-
tors F,rand F,,, it is possible to calculate only the lower
and upper bounds of displacements range. Therefore, in the
case of VRL, only the lower and upper values of node dis-
placements wu,,; u,,, are used, such that u;,, < u(f) < u,,.
The elastic displacements here can be calculated by the
formula wu.(f)=[K]'F(¢) [27]. Meanwhile, the residual
displacements u,(¢) of the structure at shakedown vary un-
evenly and various methods [12, 20, 22, 26] were created
to define the limit values of residual displacements u, ;s
u, . Slightly simplified stiffness conditions-constraints
[25] are used in the mathematical model presented in this
paper. Thus, the global displacement vectors of lower and
upper bounds are calculated as follows

ue,irlf = [Igsup ]Enj + [ﬂlnf ]F‘Sup (1)
Uy = By oy + 1B,y 1E, s 2)
where

[IB] = [ﬂm/] + [IBsup ]3 _ﬂirg/',i,j 2 O’ ﬂxup,i,j 2 0 (3)

here, [f] = [K] " is the influence matrix of elastic displac-
ements; [K] is the stiffness matrix of the structure.

Assume that the structure is subjected to u
(1 £ m) unrelated varying repeated loads and load sets. It is
possible to create p=2* different load combinations,
which compose the following final VRL combination ma-
trix of the structure

[F]E[Fj|j=1,2,...,p<:>jej:| 4)

The matrix of elastic internal forces of the structure is as
follows

[5.]= [se’j je J] —[«][F] )
where [ ] is the influence matrix of internal elastic forces.
In addition to VRL, the structures are also sub-
jected to dead load F,. The vectors of elastic displacements
and internal forces of the structure subjected to dead load
are as follows: u, . = [f|F,; S.. = [a]F..
The structure is modeled by the equilibrium finite

elements with interpolation functions of internal forces
[27-29]. The finite elements of truss (LINK11) and frame
(BEAM31) types are used for discretization [16, 17]. Yield
and stability (truss elements) conditions are controlled at
the nodes of the elements.

The main characteristics 11 = {{y | k € K} of the
elements’ cross-sections, such as, cross-section areas
A=y, k € Ky for the truss elements and plastic resis-
tance moments W, ,<>Ihy, k € K3 for the frame ele-
ments are optimized (Fig. 2), where K = K;;UKj3,;. In addi-
tion, based on the biparameters as main (leading) 77, and
the control-corrective (driven) I = {/l;|ke K}
mink=> 1, k € K13 A>Ty, k € K3) principles of cross-
section geometry, the elements are designed using HE,
IPE, RHS steel profile assortments and considering disper-
sion of geometrical characteristics of profile assortment
sets [15-17].
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Fig. 2 Admissible fields €2 of the discrete characteristics of
HE and RHS profiles

The project of minimal volume ¥V of the structure
should be sought, when the optimality criterion is secured
and strength, stiffness and stability (truss part) require-
ments are evaluated. A general mathematical model for the
problem of minimal volume of the structure is as follows

find min V=L" A(Il,)+Y i g, (6)
subjectto: ¢, =[Z]A-[B]H, < —ij, Vied (7)
z:ij (8)
22 ;), Vied 9)
[H]i U, —U,, — U, (10)
[H]A<u,, -u, -u.,, (1)
. <l <I,,. (12)
where: Iy i (I )< T, < 1T, (TT) (13)
o, ={11,,1T,}eQ2 cR*(0;+) (14)
1,=1,(11,), kek; (15)
s e (HE, IPE, RHS), keK (16)

The optimized parameters /7, and the plastic mul-
tipliers 4, j € J are the unknowns of the problem (6) - (16).
The mathematical model is composed of the nonlinear ob-
jective function (6) and the conditions-constraints: the lin-
ear inequalities (7), (9); the linear stiffness constraints (10),
(11); the structural constraints (12). The aim of the optimi-
zation problem is to find the optimal distribution of the



elements’ cross-section parameters IZ, of the structure,
subjected to VRL and dead loads with such additional con-
ditions of biparametrical optimization principle: during
optimization the biparameters IL-I7; satisfie the nonlinear
boundary conditions (13) of characteristics’ fields (2 (14)
of steel profile assortments (Fig.2). In addition, the ap-
proximation (15) for evaluation the inertia moments /,; of
cross-sections of the frame elements are used [17].

The vector of parameters /7, must ensure reliabi.
lity requirements, which implicates not only elastic but
also plastic strains. Thus, minimization is performed, when
the configuration of the whole structure, physical charac-
teristics of the material, the loading and the displacement
vectors U, Uy, Of admissible variation bounds at the
structure nodes are known (the latter are used for stiffness
constraints’ verification).

After considering the general character of the
problem (6) - (16), the introduced denotations are dis-
cussed in details. In the mathematical model (6) - (16) L is
the length vector of the structure’s elements; A(-) is the
vector-function of cross-section geometry conversion into
the area of cross-section, when /1y € (Aor, Wpipoi); @; 1s the
vector of values of yield conditions under the j-th point in
the locus; u, ;,; ., are the vectors of the lower and upper
values of elastic displacements in the structure subjected to
VRL (1), (2); u,., S.. are the vectors of elastic displace-
ments and elastic internal forces in the structure subjected
to the dead load; I s, I max are the vectors of the lower
and upper values of the cross-section parameters. In addi-
tion, such expressions of matrices are used

[z]=[2][G]. [¥]=[¥]ies]=[®][S.] a7
[S.]=[8.,+8.]ie/] (18)

where [ @], [B] are the configuration matrices of the yield
conditions of the structure; [H], [G] are the influence ma-
trices of residual displacements and internal forces. The
vectors of residual displacements and residual internal
forces are as follows

u, = [l 4][K][@] 2=[H]2 (19)
s, =([K1[4] [#]-[K][@] )2=[G]2 (20)

where [A4] is the matrix of coefficients of equilibrium equa-
tions of the structure. Finally, state of the structure is de-
scribed by the total elastic and residual internal forces,
strains and displacements

S, =5,,.+8,,;+S,
0. -0 +0 0 jeJ (21)
i e,c+ e,j+ r
uinf = ue,c + ue,inf + ur
22
{usup = ue,c + ue,sup + u, ( )

To simplify the solution of the NLP problem, the
nonlinear complementary slackness Kuhn-Tucker condi-
tions can be moved into the objective function (6) [25].

3. Design algorithm

The design algorithm of the elastic-plastic steel
structures is implemented in the SAOSYS system devel-
oped in MATLAB environment by the authors. A new
analysis module EPSOptim-SD was created for designing
such structures. Further, we will describe the main parts of
the algorithm (Fig. 3).

Preliminary calculations. Before starting the so-
lution of the structure’s optimization problem (6) - (16),
these preliminary operations and calculations were per-
formed: 1. the finite element model of the structure was
prepared; 2. the matrices of coefficients of equilibrium
equations [4;], k € K of the separate finite elements and
assemblage matrix [4] of the whole structure were created;
3. the external VRL and dead loads of the structure were
collected to the respective vectors and matrices Fj,; Fip,
[F], F. of the bounds and combinations of loads; 4. the
vectors of the admissible bounds of displacements u,,;,,
u,,,, were prepared; 5. the total length vector L of the sets
of structural elements and the element length vector L,
composed of the longest elements in the sets were created,;
6. the edge values’ vectors JZ i, LI maxs L0 mins Lh max OF
the leading and driven biparameters were created.

Solving the optimization problem. To solve the
optimization problem (6) - (16), we use an iterative ap-
proximation and begin with the highest geometrical values
of the vectors Ihy = IL yuay, I = I, 145

Step I: the design parameters IZ, and I1; are as-
signed to the respective cross-sections of the finite ele-
ments (initialization of the elements’ cross-sections).

Step 2: the interpolation procedure of the theoreti-
cal inertia moments /,; = I,(-), k € K3, of cross-sections is
performed with respect to dispersion [17].

Step 3: the stiffness matrices [K;], k € K of the
elements are recalculated, and the stiffness matrix [K] of
the whole structure is assembled.

Step 4: the influence matrices of the elastic inter-
nal forces [ ] and elastic displacements [ /] are calculated.

Step 5: with reference to the conditions (3) the po-
sitive and negative members of the matrix [f] are selected.
The vectors of elastic displacements of the lower and upper
values U,y U5, of the structure subjected to VRL are
calculated. The vetor of elastic displacements u,. of the
structure subjected to the dead load F. is calculated.

Step 6: the matrices of yield-strength conditions
[D], [Bi], k € K of separate elements are recalculated and
the whole structure matrices [ @] and [B] are assembled.

Step 7: the influence matrices of residual dis-
placements and internal forces [H], [G] (19), (20) and de-
rivative matrices [Z], [Y] (17) of the mathematical model
(6) - (16) are prepared.

Step 8: the routine P1 solves one iteration of non-
linear mathematical programming optimization problem
(6)—(16). If the procedure of solving is successful (i.e. op-

timal solution is found), we have a new vector IT, of pa-

rameters and a new vectors Zj., j €J of plastic multipliers

for every point of the locus. If the solution fails (i.e. the
admissible point and optimal solution are not found), the
leading geometry vector /7, is increased recurrently:
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Fig. 3 The algorithm of optimal shakedown design of steel frame structures (SAOSY S/EPSOptim-SD solver)
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where 77}, = I1,;” is the leading geometry vector of the

previous successful iteration; ¢ is the relative threshold of
recurrent /1y increase; ¢ is the partial ratio of 7%y direct
increase. The routine P3 corrects the driven geometry vec-
tor of cross-sections /7;; then, we return to Step 1.

Step 9: the routine P2 performs the adaptation

procedure of the leading geometry vector IT, with respect

to the strategy Recurrent-General-Aero (RGA) of optimi-
zation and convergence control.

Step 10: the vectors of the total plastic multipliers
A, the residual displacements u, and the residual internal
forces S, are calculated. The boundary vectors of true dis-
placements u;,; u, and the matrix of combinations of
true internal forces [S] are calculated with reference to all
points of the locus.

Step 11: the routine P3 performs a correction pro-
cedure of the driven geometry vector Z7; [17].

Step 12: the structure’s volume V is calculated.
This iterative process is performed until the convergence
condition of the problem is satisfied.

4. Reconstructed SAOSYS system of structural
modeling, analysis and optimal design

The system JWM SAOSYS Toolbox v0.47 for
MATLAB environment is presented as a prototype of tool-
box software for numerical analysis. Actually the system is
intended for the analysis and optimal design of steel struc-
tures by the finite element method. The previous version of
the architecture SAOSYS v0.42 was based on the database

principle [15, 17]. When some improvements were made,
it became a structurized hierarchical model of fully object-
oriented components (Fig. 4). The reconstructed architec-
ture of the system embraces: 1. the databases of system
registers and steel profiles’ assortments (DBs); 2. a general
model of structure geometry and finite elements (Model-
Space); 3. the solving modules of analysis and optimal
design problems (Solvers); 4. the graphical user interface
(GUI). The above reconstruction of SAOSYS enabled us to
apply new integration and development facilities widely
used in information technologies now. In addition to the
structural part of SAOSY'S system, the graphical user inter-
face was created, which can be used in structural modeling,
the control of problem solution and graphical interpretation
of the results of analysis (Fig. 1).

(- sAosysApp )

DBs ModelSpace

(+ Registry (- Model )

(+ Sortiments }— |+ Parametersi |
U H+ ElementTypes |

(+ M™ainwnd }- H+ CrossSections |
Sovere H+  Materials |

(- EPSOptim_SD }— H+ Reals |
[+ MixedLoads H+ Keypointsi |
[+ Synchronizers H + Lines |
[+ Constraints H+  Nodes |
[+ Strategies L{+  Elements |

(+ StatAn_EPPSM |

Fig. 4 Object model of partially expanded JWM SAOSYS
Toolbox v0.47 architecture
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Fig. 5 Design pattern relationships: a) ideology of the finite element model in SAOSYS v0.47; b) the structure of EPSOp-
tim-SD solver and its collaboration with the finite element model

A new general object model of the structure and
the collaboration ideology of the components in the recon-
structed SAOSYS v0.47 is shown in design pattern
(Fig. 5, a). A general object model of the structure defined
in this way gives the complete information about the struc-
ture and is ready for being directly used in the SAOSYS
solution modules [30].

Also a new solution module EPSOptim-SD (Elas-
tic-Plastic Structural Optimization at Shakedown) is spe-
cially created for design of the elastic-plastic steel struc-
tures subjected to VRL. The main components of this
module (Fig. 5, b) are as follows: 1. the collection of loads
MixedLoads is intended for collecting the information
about loads (i.e. nodal and distributed loads, dead and
varying repeated loads), acting on the structure’s model
(Model); 2. the synchronizers (Synchronizers) are intended
for uniting and synchronizing separate VRLs into the load
sets, which may be treated as a single effect (e.g. the mod-
eling of wind effects); 3. the collector of information about
stiffness requirements of the structure (the constrains of
node displacements and deflections) (Constraints); 4. de-
signed strategies (Strategies) of optimization, adaptation
and convergence control of biparameters /7, - I7; in itera-
tive algorithm.

5. A numerical example

Design structure. One-span industrial building
frame is designed (Fig. 6): elastic-plastic stage; the case of
varying repeated load. The frames are placed along the
building at a distance of L =9.0 m. The elements’ material
is steel S275: £ =210 GPa, f, = 275 MPa.

The frame is subjected to three varying repeated
loads (#=3): 1. snow from the left [s;;,=0]<s.(f) <
[Srsup = 18.720] kKN/m; 2. snow from the right [sg ;= 0] <
Sg(f) < [Spsup = 18.720] KN/m; 3. the united and synchro-
nized wind loads from the left and the right (a set of ef-
fects):

(Wi, =-0.842] < wi’ (1) < [wf"),, =1.685] kN/m;
[Whly =—1.685] < w (1) < [wl),, =0.842] KN/m.

In addition, the frame is subjected to the dead load of roof-
ing g.=2.340 kN/m. The own weight of the structure is
not evaluated.

The frame is modeled by using equilibrium finite
elements (Fig. 6). It consists of 11 nodes, 17 finite ele-
ments and n» =8 design parameters R; - Rg (i.e. element
cross-sections). The columns R; are designed from HE
type profiles. The truss top chord R, is designed from IPE
type of profiles, and the bottom chord and the grid R;.5 —
from RHS profiles.

The stiffness conditions of the structure are as fol-
lows: 17, max-min] < 0.050 m, (uoy, maxs Uioymar) < 0.077 m.

The structure of finite elements is modeled di-
rectly referring to the object-oriented application pro-
gramming interface (API) of the system SAOSYS (Fig. 4).
Thus, in MATLAB environment, the initial data and a
batch file (BDF) is created for execution [30].

Optimization problem. A general characteristics
of the optimization problem (6)-(16) of mathematical
programming are as follows: nonlinear objective function;
unknowns n, = 2%n, + np = 2>-130 + 8 = 1048; linear con-
straints inequalities n;,, = 2092. The optimization problem
belongs to a group of nonlinear and non-convex mathe-
matical programming problems (NLP) [8].

The results obtained. Structural design was per-
formed by using an iterative procedure. In general, 16 it-
erations were made (Fig. 7). As a result, optimal biparame-

ters 11,-II, of theoretical cross-sections were found. The

profiles closest to them are presented in the table. The vol-
ume of the designed structure is ¥'=0.2041 m’. It is worth
noticing that discrete optimization of the structure, which
was not described in this paper, is also required to find the
optimal discrete solution [13, 29].

The displacements of the structure wugy =
=-0.045m, 7 5p=0.045m, o, 5p = Uiy = 0.077 m
(Fig. 8) show that stiffness requirements for the nodes of
the structure are satisfied. An envelope diagram of bending
moments M(f) of the structure subjected to VRL effect
shows the distribution character of bending moments with
reference to all points of the locus (Fig. 9). The diagram of
strength reserve of structural elements (Fig. 7) shows the
location of plastic hinges. The elements £{7, 9, 11, 16} are
designed under strength reserve state (i.e. plastic flow, or
stability loss in the case of LINK11 can be observed). The
strength reserve of the elements E{8, 13, 14} is below
5.0 % (the plastic hinges have not been formed yet).
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Fig. 6 A structural model discretized by BEAM31 and LINK11 finite elements
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Table
The calculated optimal theoretical cross-sections

1, )
R; Wi 0] 40100 Closest profiles

brn3 1’1’12
1 5.255 5.585 HE:240AA, 240AA, 220AA

5.253 4.554 |IPE: A300, 270, 0240
3 7
AO/;'nlzo Lnin&}o RHS:

3 1.886 5.534  140x80x3, 30x70x6, 50x70x3.5
4 2.290 8.687  140x90x3.5, 40x80x5, 60x80x3.5
5 0.923 1.173  [30x42x4, 35x50x2, 30x45x3.5
6 1.956 30.860  |60x120x5, 120x80x4, 40x120x7
7 0.833 0.952  [30x45x2.5, 20x45x3.5, 30x42x3
8 0.855 4299  B0x70x4, 40x60x5, 40x70x3.5

6. Conclusions

1. The complementary slackness conditions of
mathematical programming does not allow evaluation of
possible unloading phenomena at cross-sections of the
structure and nonmonotonic variation of residual dis-
placements. Thus, the optimal shakedown design problem
is not a traditional mathematical programming problem,
i.e. during the solution process, it is necessary to check
stiffness conditions to determine lower and upper bounds
of residual and elastic displacements.

2. The biparametric optimization principle of the
admissible fields (2 of geometric characteristics of the dis-
crete assortment profiles (the optimized leading geometry
11 and the controlled driven geometry 77;) allows the de-
sign of the elements depending on the dispersion of geo-
metric characteristics of the profile sets in assortments.
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V. Jankovski, J. Atkocitunas

BIPARAMETRIS PLIENINIUJ KONSTRUKCIJU
PROJEKTAVIMAS PRISITAIKOMUMO SALYGOMIS

Reziumé

Sudarytas prisitaikanéiyjy  strypiniy plieniniy
konstrukcijuy minimalaus tirio nustatymo biparametrio
optimizavimo uzdavinio matematinis modelis. Atsizvel-
giama ne tik { prisitaikomumo ir stabilumo (santvariné
dalis) ribojimo salygas, bet ir i konstrukcijos standumo
reikalavimus (ribojant ilinkius arba poslinkius). Straipsnyje
konstrukcijy ttirio optimizavimo uzdavinys sudaromas re-
miantis deformuojamo kiino mechanikos ekstreminiais
energiniais principais, tampriyjy plastiniy konstrukcijy
prisitaikomumo ir matematinio programavimo teorijomis.
Diskretizacijai naudojami pusiausvirieji strypiniai baigti-
niai elementai su jrazy interpoliacijos funkcijomis. Re-
miantis optimizuojamy biparametry principu, elementai
projektuojami i§ sortimentiniy plieniniy profiliuo¢iy HE,
IPE, RHS, atsizvelgiant { profiliuo¢iy geometriniy charak-
teristiky sklaida sortimentuose. Biparametris plieniniy
konstrukcijuy  projektavimas  realizuojamas  autoriy
MATLAB aplinkoje sukurtaja jrankiy sistema JWM
SAOSYS Toolbox v0.47. Straipsnyje pristatomas naujas
EPSOptim-SD skai¢iavimo modulis. Sistemos SAOSYS
galimybés atskleidziamos pramoninio rémo su stiprumo,
stabilumo ir standumo norminiais apribojimais projektavi-
mo pavyzdziu. Netiesiniai optimizacijos uzdaviniai spren-
dziami atsizvelgiant tik { mazy poslinkiy prielaidas.

V. Jankovski, J. Atkocitinas

BIPARAMETRIC SHAKEDOWN DESIGN OF STEEL
FRAME STRUCTURES

Summary

The paper presents a mathematical model created
for solving the biparametric optimization problem of
minimal volume design steel frame structures at shake-
down. The shakedown and stability (for a part of the truss)
constraints-conditions as well as the structure’s stiffness
requirements (i.e. the restriction of displacements and de-
flections) are evaluated. Extreme energy principles of the
deformable body mechanics, as well as shakedown and
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mathematical programming theories of elastic-plastic
structures are used in the work for creating the structure’s
volume optimization problem. Discretization is based on
equilibrium finite elements with interpolation functions of
internal forces. The elements are designed using HE, IPE,
RHS steel profile assortments and considering dispersion
of geometrical characteristics of profile assortment sets by
principle of design biparameters. Biparametric design of
steel structures is realized by using the tool system JWM
SAOSYS Toolbox v0.47 created by the authors in
MATLAB environment. A new analysis module EPSOp-
tim-SD is also presented. The possibilities of the system
SAOSYS are demonstrated by a numerical example of
industrial building frame design with standard strength,
stability and stiffness constraints. The assumption of small
displacements is adopted in optimization of nonlinear
problems.

B. SIukoBcku, FO. Atkouronac

BUITAPAMETPUYECKOE ITPOEKTUPOBAHHE
CTAJIBHBIX KOHCTPYKIINH B YCJIOBUAX
IMTPUCITIOCOBJIAEMOCTU

Pesome

ITocTpoena maremaTudeckasi MOJENb 334N OH-
MapaMeTPUYECcKOll ONTHUMHU3AlMKM MHUHHMAJIBHOTO 00BbeMa
CTAJBHBIX CTEPKHEBBIX KOHCTPYKINI B YCIOBHAX IPHCIO-
coOMsIeMOCTH. YUHUTBHIBAETCSI HE TONBKO YCIOBHS OTpaHU-
YeHHS IIPHUCIIOCOOIIEMOCTH, HO M YCIIOBHUS IKECTKOCTH
(orpanmuenus Ha mepemernneHus win nporuOsr). [Ipuse-
JICHHasl 33j1aya pacCMaTPHUBAEeTCsl HA OCHOBE SKCTPEMallb-
HBIX DHEPreTUYECKHX IPHUHIMIIOB MEXaHWUKH TBEPJOro
TeJla U OCHOBHBIX IIOJIOKEHUI TEOpUH MpPUCIIOCOOIIsIeMO-
CTH YHPYTOIUIACTUYECKUX KOHCTPYKLMI C TPHUBIICUCHUEM
MaTeMaTH4ecKoro MporpaMMHUpoBaHus. JlMCKpeTH3amus
KOHCTPYKIUH TPOBOJUTCS CTEPKHEBBIMH PaBHOBECHBIMH
KOHEYHBIMH 3JIEMEHTaMH C (YHKOUSMH WHTEPIOJISIINH
BHYTPEHHUX CHJI. VICHonb3ysl MPUHIMIT ONTHMHU3UPYEMBIX
OurapameTpoB, 3JIEMEHTHI NPOEKTHPYIOTCS W3 CTAIBHBIX
npoduneit HE, IPE, RHS ¢ ygetom pa3bpoca AHCKpPETHBIX
XapaKkTEepUCTHK B AacCOpPTUMEHTax. bumapamerpmueckoe
MIPOEKTUPOBAHKNE CTAIBHBIX KOHCTPYKLHMH PEasn30BaHO B
cpene MATLAB, npu nomoImy co3gaHHON aBTOPaMH MpH-
KJIaIHOMHCTpyMeHTanpHONH cuctemoit JWM  SAOSYS
Toolbox v0.47. Tlpencrasusiercs HOBbIH Moaynbs EPSOp-
tim-SD I perieHust Takoro TUIa 3amad. Bo3MOXHOCTH
cucreMbl SAOSYS packpbIBaroTcs Ha NpUMEpe MPOEKTH-
POBaHMsI OJHOIPOJIETHOW paMbl POW3BOJCTBEHHOTO 371a-
HUSI C OTPAaHMYEHUSIMU TTPUCTIOCOOISIEMOCTH M )KECTKOCTH.
HccnenoBanust MpoBeNeHbI C yYETOM MPEIIIOJIOKEHUS O
MaJIbIX MepEMEIICHHSX.

Received October 12, 2010
Accepted February 07, 2011



	1. Introduction 
	 2. A general mathematical model of the structure optimization problem 
	 3. Design algorithm 
	4. Reconstructed SAOSYS system of structural modeling, analysis and optimal design 
	5. A numerical example 
	6. Conclusions 
	References 

