
 5

ISSN 1392 - 1207. MECHANIKA. 2011. 17(1): 5-12 

Biparametric shakedown design of steel frame structures 

V. Jankovski*, J. Atkočiūnas** 
*Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223 Vilnius, Lithuania, E-mail: JWMsoftcorp@gmail.com 
**Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223 Vilnius, Lithuania, E-mail: Juozas.Atkociunas@vgtu.lt 
 

1. Introduction 

The mathematical model of minimal volume de-
sign of steel structure, which implicates plastic strains and 
is subjected to the varying repeated load, is created based 
on energy principles of the mechanics of deformable body 
[1–3], shakedown of the structures [4–7] and mathematical 
programming theories [8, 9]. Varying repeated load (VRL) 
is a system of loads, which can vary independently [10, 
11]. In all cases, the load is treated as quasi-static, and 
VRL is described by the lower and upper bounds of vary-
ing loads rather than a particular loading history (i.e. by the 
law dependent on time t). 

In this work, only the deterministic formulation of 
structures’ continuous optimization problems is analyzed. 
Usually only one design parameter of element’s cross-
section is optimized (e.g. an area or resistance moment of 
element’s cross-section), the other parameters were ex-
pressed by mean curves [12]. However, this approach is 
very unaccurate especially in the case of discrete optimiza-
tion problems [13], when the evaluation of dispersion of 
geometrical characteristics of profile assortment sets is still 
important [14]. A new principle of biparametric optimiza-
tion for optimal shakedown design is investigated in this 
paper, where already two design parameters of separate 
element’s cross-section are selected for optimization [15–
17]. This treatment expands the applicability of optimiza-
tion problem in optimal design of steel frame structures by 
performing the optimization of biparameters in admissible 
fields of geometrical characteristics of profile assortment 
sets, and allows us to estimate the dispersion adequately. 

 The structure adapted to VRL is safe in terms of 
plastic failure, but not always satisfies serviceability re-
quirements, for example it may have unallowable deflec-
tions [18, 19]. Therefore, not only strength (shakedown), 
but also stiffness conditions [20, 21] are included in 
mathematical models of plastic systems’ optimization 
problem in this paper. The stiffness conditions are usually 
realized by restraining deflections and nodes’ displace-
ments of the structure [22, 23]. The evaluation of stability 
is also relevant to trusses [24]. The analysis and evaluation 
of design of structures with plastic strains’ allows more 
effective use of its load-bearing capacities and design more 
economical projects [25, 26]. 

The structures are modeled by the bar equilibrium 
finite elements with interpolation functions of internal 
forces [27–29]. The elements are designed using HE, IPE, 
RHS (Rectangular Hollow Sections) steel profile assort-
ments and considering dispersion of geometrical character-
ristics of profile assortment sets [17]. The biparametric 
optimization principle of the main (leading) design geome-
try Π0 of cross-sections and the control-corrective (driven) 
geometry Π1 is used to realize the design of elements [15, 
17]. Idealization of distribution (expressed by approxima-

tion of mean curves) of geometrical characteristics of steel 
profiles determines the application of the objective func-
tion, which approximately expresses the volume of the 
structure [16, 17]. Similarly, the approximate minimization 
function of volume is well suited for practical application 
of the structures’ optimization principles. 

In general, the design task of volume minimiza-
tion of steel structures, which is described above, is associ-
ated with the problem of nonlinear and non-convex 
mathematical programming (NLP) [8]. The convergence of 
the problem is being achieved by an iterative method, sol-
ving a number of nonlinear optimization problems. To sim-
plify the solution of the NLP, the complementary slackness 
conditions can be moved into the objective function [25]. 

Actually, the optimization problem of steel struc-
tures is implemented in the modeling, analysis and optimal 
design system JWM SAOSYS Toolbox v0.47 developed in 
MATLAB environment by the authors [15, 17, 30]. A spe-
cial solution module SAOSYS/EPSOptim-SD is designed 
for designing elastic-plastic structures subjected to VRL. 
The previous version of the architecture SAOSYS v0.42 
[17] was based on the database principle. Now, after a 
number of improvements made it has become a structu-
rized hierarchical model of fully object-oriented compo-
nents. The reconstruction of SAOSYS v0.47 enabled us to 
use new integration and development facilities applied in 
modern information technologies. Besides the structural 
part of SAOSYS system, the graphical user interface 
(Fig. 1) is created, which may be used in structural model-
ing, the control of problem solution and graphical interpre-
tation of the results of analysis. 

 

 
Fig. 1 Frame design model in SAOSYS system 

The possibilities of the system SAOSYS are dem-
onstrated by a numerical example of industrial building 
frame design with strength, stability and stiffness con-
straints. The assumption of small displacements is adopted 
in calculations. 
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2. A general mathematical model of the structure 
optimization problem 

The elastic-plastic bar structures of known topo-
logy subjected to varying repeated and dead loads are con-
sidered. In the case of monotonic load F(η) = 
= η⋅{Fi | i = 1, 2, ..., m ⇔ i ∈ DOF}, all loads Fi vary pro-
portionally to one general multiplier η. Here, m is the 
number of degrees of freedom of the structure (DOF). The 
real structures are usually subjected to different, unrelated 
effects and their combinations F(t) = {Fi(t) | i ∈ DOF}, 
which vary in time t [7, 10–12]. Eliminating the loading 
history, the VRL vector F(t) may be described only by the 
lower and upper bounds Finf, Fsup, which are not related to 
the time t: Finf ≤ F(t) ≤ Fsup. 

The stress-strain state of the structure at shake-
down depends on the loading history F(t). For example, 
the displacements of the elastic-plastic structure may be 
described by the sum of elastic and residual components – 
u(t) = ue(t) + ur(t). When loading is given only by the vec-
tors Finf and Fsup, it is possible to calculate only the lower 
and upper bounds of displacements range. Therefore, in the 
case of VRL, only the lower and upper values of node dis-
placements uinf, usup are used, such that uinf ≤ u(t) ≤ usup. 
The elastic displacements here can be calculated by the 
formula ue(t) = [K]–1F(t) [27]. Meanwhile, the residual 
displacements ur(t) of the structure at shakedown vary un-
evenly and various methods [12, 20, 22, 26] were created 
to define the limit values of residual displacements ur,inf, 
ur,sup. Slightly simplified stiffness conditions-constraints 
[25] are used in the mathematical model presented in this 
paper. Thus, the global displacement vectors of lower and 
upper bounds are calculated as follows 

, [ ] [ ]e inf sup inf inf supβ β= +u F F  (1) 

, [ ] [ ]e sup sup sup inf infβ β= + Fu F  (2) 

where 

, , , ,[ ] [ ] [ ]; 0, 0inf sup inf i j sup i jβ β β β β= + − ≥ ≥  (3) 

here, [β] ≡ [K]–1 is the influence matrix of elastic displac-
ements; [K] is the stiffness matrix of the structure. 

Assume that the structure is subjected to μ 
(μ ≤ m) unrelated varying repeated loads and load sets. It is 
possible to create p = 2μ different load combinations, 
which compose the following final VRL combination ma-
trix of the structure 

[ ] 1, 2, ...,jF j p j⎡≡ = ⇔ ∈⎣F J ⎤⎦  (4) 

The matrix of elastic internal forces of the structure is as 
follows 

[ ] [ ][ ],e e jS j J α⎡ ⎤≡ ∈ =⎣ ⎦S F  (5) 

where [α] is the influence matrix of internal elastic forces. 
In addition to VRL, the structures are also sub-

jected to dead load Fc. The vectors of elastic displacements 
and internal forces of the structure subjected to dead load 
are as follows: ue,c = [β]Fc; Se,c = [α]Fc. 

The structure is modeled by the equilibrium finite 

elements with interpolation functions of internal forces 
[27–29]. The finite elements of truss (LINK11) and frame 
(BEAM31) types are used for discretization [16, 17]. Yield 
and stability (truss elements) conditions are controlled at 
the nodes of the elements. 

The main characteristics Π0 ≡ {Π0k | k ∈ K} of the 
elements’ cross-sections, such as, cross-section areas 
A0k⇔Π0k, k ∈ K11 for the truss elements and plastic resis-
tance moments Wpl,y0k⇔Π0k, k ∈ K31 for the frame ele-
ments are optimized (Fig. 2), where K = K11∪K31. In addi-
tion, based on the biparameters as main (leading) Π0 and 
the control-corrective (driven) Π1 ≡ {Π1k | k ∈ K} (I
min,k⇔Π1k, k ∈ K11; Ak⇔Π1k, k ∈ K31) principles of cross-
section geometry, the elements are designed using HE, 
IPE, RHS steel profile assortments and considering disper-
sion of geometrical characteristics of profile assortment 
sets [15–17]. 
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Fig. 2 Admissible fields Ω of the discrete characteristics of 

HE and RHS profiles 

The project of minimal volume V of the structure 
should be sought, when the optimality criterion is secured 
and strength, stiffness and stability (truss part) require-
ments are evaluated. A general mathematical model for the 
problem of minimal volume of the structure is as follows 

 
find min ( )0

T
j j

j
V = + ∑L A TΠ λ φ  (6) 

subject to: [ ] [ ] 0 ,j jZ B j J= − ≤ − ∀ ∈φ λ Π Y  (7) 

 j
j

= ∑λ λ  (8) 

  (9) ,j j J≥ ∀ ∈λ 0

 [ ] , ,min e c e infH ≥ − −λ u u u  (10) 

 [ ] , ,max e c e supH ≤ − −λ u u u  (11) 
 0, 0 0,min max≤ ≤Π Π Π  (12) 

where: ( )1 , 0 1 1 , 0k min k k k max kΠ Π Π Π Π≤ ≤ ( )  (13) 

 { } (2
0 1,k k k sΠ Π Ω )0;≡ ∈ ⊂ + ∞Π  (14) 

 ( ), ,y k y k 31I I k= Π K∈  (15) 

 ( ), , ,s HE IPE RHS k K∈ ∈  (16) 
 
The optimized parameters Π0 and the plastic mul-

tipliers λj, j ∈ J are the unknowns of the problem (6) - (16). 
The mathematical model is composed of the nonlinear ob-
jective function (6) and the conditions-constraints: the lin-
ear inequalities (7), (9); the linear stiffness constraints (10), 
(11); the structural constraints (12). The aim of the optimi-
zation problem is to find the optimal distribution of the 
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3. Design algorithm elements’ cross-section parameters Π0 of the structure, 
subjected to VRL and dead loads with such additional con-
ditions of biparametrical optimization principle: during 
optimization the biparameters Π0-Π1 satisfie the nonlinear 
boundary conditions (13) of characteristics’ fields Ωs (14) 
of steel profile assortments (Fig. 2). In addition, the ap-
proximation (15) for evaluation the inertia moments Iy,k of 
cross-sections of the frame elements are used [17]. 

The design algorithm of the elastic-plastic steel 
structures is implemented in the SAOSYS system devel-
oped in MATLAB environment by the authors. A new 
analysis module EPSOptim-SD was created for designing 
such structures. Further, we will describe the main parts of 
the algorithm (Fig. 3). 

Preliminary calculations. Before starting the so-
lution of the structure’s optimization problem (6) - (16), 
these preliminary operations and calculations were per-
formed: 1. the finite element model of the structure was 
prepared; 2. the matrices of coefficients of equilibrium 
equations [Ak], k ∈ K of the separate finite elements and 
assemblage matrix [A] of the whole structure were created; 
3. the external VRL and dead loads of the structure were 
collected to the respective vectors and matrices Finf, Fsup, 
[F], Fc of the bounds and combinations of loads; 4. the 
vectors of the admissible bounds of displacements umin, 
umax were prepared; 5. the total length vector L of the sets 
of structural elements and the element length vector Lmax 
composed of the longest elements in the sets were created; 
6. the edge values’ vectors Π0,min, Π0,max, Π1,min, Π1,max of 
the leading and driven biparameters were created. 

The vector of parameters Π0 must ensure reliabi-
lity requirements, which implicates not only elastic but 
also plastic strains. Thus, minimization is performed, when 
the configuration of the whole structure, physical charac-
teristics of the material, the loading and the displacement 
vectors umin, umax of admissible variation bounds at the 
structure nodes are known (the latter are used for stiffness 
constraints’ verification). 

After considering the general character of the 
problem (6) - (16), the introduced denotations are dis-
cussed in details. In the mathematical model (6) - (16) L is 
the length vector of the structure’s elements; A(⋅) is the 
vector-function of cross-section geometry conversion into 
the area of cross-section, when Π0k ∈ (A0k, Wpl,y0k); ϕj is the 
vector of values of yield conditions under the j-th point in 
the locus; ue,inf, ue,sup are the vectors of the lower and upper 
values of elastic displacements in the structure subjected to 
VRL (1), (2); ue,c, Se,c are the vectors of elastic displace-
ments and elastic internal forces in the structure subjected 
to the dead load; Π0,min, Π0,max are the vectors of the lower 
and upper values of the cross-section parameters. In addi-
tion, such expressions of matrices are used 

Solving the optimization problem. To solve the 
optimization problem (6) - (16), we use an iterative ap-
proximation and begin with the highest geometrical values 
of the vectors Π0 = Π0,max, Π1 = Π1,max. 

Step 1: the design parameters Π0 and Π1 are as-
signed to the respective cross-sections of the finite ele-
ments (initialization of the elements’ cross-sections). 

[ ] [ ][ ]Z GΦ= ,  [ ] [ ]j eY j J Φ⎡ ⎤ ⎡ ⎤≡ ∈ = ⎣ ⎦⎣ ⎦Y S  (17) 

, ,e e j e cS ⎡⎡ ⎤ = + ∈⎣ ⎦ ⎣S S j J ⎤⎦

= λ

)T T

 (18) 

Step 2: the interpolation procedure of the theoreti-
cal inertia moments Iy,k = Iy(⋅), k ∈ K31 of cross-sections is 
performed with respect to dispersion [17]. 

Step 3: the stiffness matrices [Kk], k ∈ K of the 
elements are recalculated, and the stiffness matrix [K] of 
the whole structure is assembled. where [Φ], [B] are the configuration matrices of the yield 

conditions of the structure; [H], [G] are the influence ma-
trices of residual displacements and internal forces. The 
vectors of residual displacements and residual internal 
forces are as follows 

Step 4: the influence matrices of the elastic inter-
nal forces [α] and elastic displacements [β] are calculated. 

[ ][ ][ ][ ] [ ]T
r A K Hβ Φ=u λ  (19) 

[ ][ ] [ ] [ ][ ]( [ ]r K A H K GΦ= − =S λ λ  (20) 

Step 5: with reference to the conditions (3) the po-
sitive and negative members of the matrix [β] are selected. 
The vectors of elastic displacements of the lower and upper 
values ue,inf, ue,sup of the structure subjected to VRL are 
calculated. The vetor of elastic displacements ue,c of the 
structure subjected to the dead load Fc is calculated. 

Step 6: the matrices of yield-strength conditions 
[Φk], [Bwhere [A] is the matrix of coefficients of equilibrium equa-

tions of the structure. Finally, state of the structure is de-
scribed by the total elastic and residual internal forces, 
strains and displacements 

Bk], k ∈ K of separate elements are recalculated and 
the whole structure matrices [Φ] and [B] are assembled. 

, ,

, ,

j e c e j r

j e c e j r

j J
= + +⎧⎪ ∈⎨ = + +⎪⎩

S S S S

θ θ θ θ
 (21) 

, ,

, ,

inf e c e inf r

sup e c e sup r

= + +⎧⎪
⎨ = + +⎪⎩

u u u u

u u u u
 (22)  

Step 7: the influence matrices of residual dis-
placements and internal forces [H], [G] (19), (20) and de-
rivative matrices [Z], [Y] (17) of the mathematical model 
(6) - (16) are prepared. 

Step 8: the routine P1 solves one iteration of non-
linear mathematical programming optimization problem 
(6)–(16). If the procedure of solving is successful (i.e. op-
timal solution is found), we have a new vector *

0Π  pa-

rameters and a new vectors *,jλ f plastic multipliers 
for every point of the locus. If the solution fails (i.e. the 
admissible point and optimal solution are not found), the 
leading geometry vector Π

of 

j J∈  o

0 is increased recurrently: 

To simplify the solution of the NLP problem, the 
nonlinear complementary slackness Kuhn-Tucker condi-
tions can be moved into the objective function (6) [25]. 
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Fig. 3 The algorithm of optimal shakedown design of steel frame structures (SAOSYS/EPSOptim-SD solver) 
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′ −′ + ≥
′= ∈  (23) 

where  is the leading geometry vector of the 
previous successful iteration; ε is the relative threshold of 
recurrent Π

*,
0 0

prev
k kΠ Π′ ≡

0k increase; ξ is the partial ratio of Π0k direct 
increase. The routine P3 corrects the driven geometry vec-
tor of cross-sections Π1; then, we return to Step 1. 

Step 9: the routine P2 performs the adaptation 
procedure of the leading geometry vector *

0Π  with respect 
to the strategy Recurrent-General-Aero (RGA) of optimi-
zation and convergence control. 

Step 10: the vectors of the total plastic multipliers 
λ, the residual displacements ur and the residual internal 
forces Sr are calculated. The boundary vectors of true dis-
placements uinf, usup and the matrix of combinations of  
true internal forces [S] are calculated with reference to all 
points of the locus. 

Step 11: the routine P3 performs a correction pro-
cedure of the driven geometry vector Π1 [17]. 

Step 12: the structure’s volume V is calculated. 
This iterative process is performed until the convergence 
condition of the problem is satisfied. 

 
4. Reconstructed SAOSYS system of structural 

modeling, analysis and optimal design 

The system JWM SAOSYS Toolbox v0.47 for 
MATLAB environment is presented as a prototype of tool-
box software for numerical analysis. Actually the system is 
intended for the analysis and optimal design of steel struc-
tures by the finite element method. The previous version of 
the architecture SAOSYS v0.42 was based on the database 

principle [15, 17]. When some improvements were made, 
it became a structurized hierarchical model of fully object-
oriented components (Fig. 4). The reconstructed architec-
ture of the system embraces: 1. the databases of system 
registers and steel profiles’ assortments (DBs); 2. a general 
model of structure geometry and finite elements (Model-
Space); 3. the solving modules of analysis and optimal 
design problems (Solvers); 4. the graphical user interface 
(GUI). The above reconstruction of SAOSYS enabled us to 
apply new integration and development facilities widely 
used in information technologies now. In addition to the 
structural part of SAOSYS system, the graphical user inter-
face was created, which can be used in structural modeling, 
the control of problem solution and graphical interpretation 
of the results of analysis (Fig. 1). 

 

 
Fig. 4 Object model of partially expanded JWM SAOSYS 

Toolbox v0.47 architecture
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Fig. 5 Design pattern relationships: a) ideology of the finite element model in SAOSYS v0.47; b) the structure of EPSOp-

tim-SD solver and its collaboration with the finite element model 

A new general object model of the structure and 
the collaboration ideology of the components in the recon-
structed  SAOSYS v0.47 is shown in design pattern 
(Fig. 5, a). A general object model of the structure defined 
in this way gives the complete information about the struc-
ture and is ready for being directly used in the SAOSYS 
solution modules [30]. 

Also a new solution module EPSOptim-SD (Elas-
tic-Plastic Structural Optimization at Shakedown) is spe-
cially created for design of the elastic-plastic steel struc-
tures subjected to VRL. The main components of this 
module (Fig. 5, b) are as follows: 1. the collection of loads 
MixedLoads is intended for collecting the information 
about loads (i.e. nodal and distributed loads, dead and 
varying repeated loads), acting on the structure’s model 
(Model); 2. the synchronizers (Synchronizers) are intended 
for uniting and synchronizing separate VRLs into the load 
sets, which may be treated as a single effect (e.g. the mod-
eling of wind effects); 3. the collector of information about 
stiffness requirements of the structure (the constrains of 
node displacements and deflections) (Constraints); 4. de-
signed strategies (Strategies) of optimization, adaptation 
and convergence control of biparameters Π0 - Π1 in itera-
tive algorithm. 

 
5. A numerical example 

Design structure. One-span industrial building 
frame is designed (Fig. 6): elastic-plastic stage; the case of 
varying repeated load. The frames are placed along the 
building at a distance of L = 9.0 m. The elements’ material 
is steel S275: E = 210 GPa, fy = 275 MPa. 

The frame is subjected to three varying repeated 
loads (μ = 3): 1. snow from the left [sL,inf = 0] ≤ sL(t) ≤ 
[sL,sup = 18.720] kN/m; 2. snow from the right [sR,inf = 0] ≤ 
sR(t) ≤ [sR,sup = 18.720] kN/m; 3. the united and synchro-
nized wind loads from the left and the right (a set of ef-
fects): 

(1)
,[ 0.84L infw = − (1) ( )Lw t2]  ≤  ≤  kN/m; 

 ≤  ≤  kN/m. 

(1)
,[ 1.685]L supw =

(1)
,[ 1.685]R infw = − (1) ( )Rw t (1)

,[ 0.842]R supw =

In addition, the frame is subjected to the dead load of roof-
ing gc = 2.340 kN/m. The own weight of the structure is 
not evaluated. 

The frame is modeled by using equilibrium finite 
elements (Fig. 6). It consists of 11 nodes, 17 finite ele-
ments and nΠ0 = 8 design parameters R1 - R8 (i.e. element 
cross-sections). The columns R1 are designed from HE 
type profiles. The truss top chord R2 is designed from IPE 
type of profiles, and the bottom chord and the grid R3÷8 – 
from RHS profiles. 

The stiffness conditions of the structure are as fol-
lows: |u7x,max-min| ≤ 0.050 m, (u9y,max, u10y,max) ≤ 0.077 m. 

The structure of finite elements is modeled di-
rectly referring to the object-oriented application pro-
gramming interface (API) of the system SAOSYS (Fig. 4). 
Thus, in MATLAB environment, the initial data and a 
batch file (BDF) is created for execution [30]. 

Optimization problem. A general characteristics 
of the optimization problem (6) - (16) of mathematical 
programming are as follows: nonlinear objective function; 
unknowns nx = 2μ⋅nλ + nΠ0 = 23⋅130 + 8 = 1048; linear con-
straints inequalities nlieq = 2092. The optimization problem 
belongs to a group of nonlinear and non-convex mathe-
matical programming problems (NLP) [8]. 

The results obtained. Structural design was per-
formed by using an iterative procedure. In general, 16 it-
erations were made (Fig. 7). As a result, optimal biparame-
ters 0 1-* *Π Π  of theoretical cross-sections were found. The 
profiles closest to them are presented in the table. The vol-
ume of the designed structure is V = 0.2041 m3. It is worth 
noticing that discrete optimization of the structure, which 
was not described in this paper, is also required to find the 
optimal discrete solution [13, 29]. 

The displacements of the structure u7x,inf = 
= −0.045 m, u7x,sup = 0.045 m, u9y,sup = u10y,sup = 0.077 m 
(Fig. 8) show that stiffness requirements for the nodes of 
the structure are satisfied. An envelope diagram of bending 
moments M(t) of the structure subjected to VRL effect 
shows the distribution character of bending moments with 
reference to all points of the locus (Fig. 9). The diagram of 
strength reserve of structural elements (Fig. 7) shows the 
location of plastic hinges. The elements E{7, 9, 11, 16} are 
designed under strength reserve state (i.e. plastic flow, or 
stability loss in the case of LINK11 can be observed). The 
strength reserve of the elements E{8, 13, 14} is below 
5.0 % (the plastic hinges have not been formed yet). 
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Fig. 6 A structural model discretized by BEAM31 and LINK11 finite elements 
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Fig. 7 Variation of ||Π0|| and volume V in iterative calcula-
tions 

Fig. 8 The diagram u(t) of displacements of the structure 
subjected to VRL [m] 
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Fig. 9 The envelope diagram of bending moments M(t) of 
the structure subjected to VRL 

Fig. 7 Strength reserve diagram of structural elements 
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Table 
The calculated optimal theoretical cross-sections  

*
0Π  *

1Π  
Ri Wpl,y0k⋅10–4

m3
Ak⋅10–3

m2

Closest profiles 

1 5.255 5.585 HE: 240AA, 240AA, 220AA 
2 5.253 4.554 IPE: A300, 270, O240 
 A0k⋅10–3

m2
Imin,k⋅10–7

m4 RHS: 

3 1.886 5.534 40×80×3, 30×70×6, 50×70×3.5 
4 2.290 8.687 40×90×3.5, 40×80×5, 60×80×3.5
5 0.923 1.173 30×42×4, 35×50×2, 30×45×3.5 
6 1.956 30.860 60×120×5, 120×80×4, 40×120×7
7 0.833 0.952 30×45×2.5, 20×45×3.5, 30×42×3
8 0.855 4.299 30×70×4, 40×60×5, 40×70×3.5 

 
6. Conclusions 

1. The complementary slackness conditions of 
mathematical programming does not allow evaluation of 
possible unloading phenomena at cross-sections of the 
structure and nonmonotonic variation of residual dis-
placements. Thus, the optimal shakedown design problem 
is not a traditional mathematical programming problem, 
i.e. during the solution process, it is necessary to check 
stiffness conditions to determine lower and upper bounds 
of residual and elastic displacements. 

2. The biparametric optimization principle of the 
admissible fields Ω of geometric characteristics of the dis-
crete assortment profiles (the optimized leading geometry 
Π0 and the controlled driven geometry Π1) allows the de-
sign of the elements depending on the dispersion of geo-
metric characteristics of the profile sets in assortments. 
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V. Jankovski, J. Atkočiūnas 

BIPARAMETRIS PLIENINIŲ KONSTRUKCIJŲ 
PROJEKTAVIMAS PRISITAIKOMUMO SĄLYGOMIS 

R e z i u m ė  

 Sudarytas prisitaikančiųjų strypinių plieninių 
konstrukcijų minimalaus tūrio nustatymo biparametrio 
optimizavimo uždavinio matematinis modelis. Atsižvel-
giama ne tik į prisitaikomumo ir stabilumo (santvarinė 
dalis) ribojimo sąlygas, bet ir į  konstrukcijos standumo 
reikalavimus (ribojant įlinkius arba poslinkius). Straipsnyje 
konstrukcijų tūrio optimizavimo uždavinys sudaromas re-
miantis deformuojamo kūno mechanikos ekstreminiais 
energiniais principais, tampriųjų plastinių konstrukcijų 
prisitaikomumo ir matematinio programavimo teorijomis. 
Diskretizacijai naudojami pusiausvirieji strypiniai baigti-
niai elementai su įrąžų interpoliacijos funkcijomis. Re-
miantis optimizuojamų biparametrų principu, elementai 
projektuojami iš sortimentinių plieninių profiliuočių HE, 
IPE, RHS, atsižvelgiant į profiliuočių geometrinių charak-
teristikų sklaidą sortimentuose. Biparametris plieninių 
konstrukcijų projektavimas realizuojamas autorių 
MATLAB aplinkoje sukurtąja įrankių sistema JWM 
SAOSYS Toolbox v0.47. Straipsnyje pristatomas naujas 
EPSOptim-SD skaičiavimo modulis. Sistemos SAOSYS 
galimybės atskleidžiamos pramoninio rėmo su stiprumo, 
stabilumo ir standumo norminiais apribojimais projektavi-
mo pavyzdžiu. Netiesiniai optimizacijos uždaviniai spren-
džiami atsižvelgiant tik į mažų poslinkių prielaidas. 
 

V. Jankovski, J. Atkočiūnas 

BIPARAMETRIC SHAKEDOWN DESIGN OF STEEL 
FRAME STRUCTURES 

S u m m a r y  

The paper presents a mathematical model created 
for solving the biparametric optimization problem of 
minimal volume design steel frame structures at shake-
down. The shakedown and stability (for a part of the truss) 
constraints-conditions as well as the structure’s stiffness 
requirements (i.e. the restriction of displacements and de-
flections) are evaluated. Extreme energy principles of the 
deformable body mechanics, as well as shakedown and 

mathematical programming theories of elastic-plastic 
structures are used in the work for creating the structure’s 
volume optimization problem. Discretization is based on 
equilibrium finite elements with interpolation functions of 
internal forces. The elements are designed using HE, IPE, 
RHS steel profile assortments and considering dispersion 
of geometrical characteristics of profile assortment sets by 
principle of design biparameters. Biparametric design of 
steel structures is realized by using the tool system JWM 
SAOSYS Toolbox v0.47 created by the authors in 
MATLAB environment. A new analysis module EPSOp-
tim-SD is also presented. The possibilities of the system 
SAOSYS are demonstrated by a numerical example of 
industrial building frame design with standard strength, 
stability and stiffness constraints. The assumption of small 
displacements is adopted in optimization of nonlinear 
problems. 

В. Янковски, Ю. Аткочюнас 

БИПАРАМЕТРИЧЕСКОЕ ПРОЕКТИРОВАНИЕ 
СТАЛЬНЫХ КОНСТРУКЦИЙ В УСЛОВИЯХ 
ПРИСПОСОБЛЯЕМОСТИ 

Р е з ю м е  

Построена математическая модель задачи би-
параметрической оптимизации минимального объема 
стальных стержневых конструкций в условиях приспо-
собляемости. Учитывается не только условия ограни-
чения приспособляемости, но и условия жесткости 
(ограничения на перемещения или прогибы). Приве-
денная задача рассматривается на основе экстремаль-
ных энергетических принципов механики твердого 
тела и основных положений теории приспособляемо-
сти упругопластических конструкций с привлечением 
математического программирования. Дискретизация 
конструкций проводится стержневыми равновесными 
конечными элементами с функциями интерполяции 
внутренних сил. Используя принцип оптимизируемых 
бипараметров, элементы проектируются из стальных 
профилей HE, IPE, RHS с учетом разброса дискретных 
характеристик в ассортиментах. Бипараметрическое 
проектирование стальных конструкций реализовано в  
среде MATLAB, при помощи созданной авторами при-
кладноинструментальной системой JWM SAOSYS 
Toolbox v0.47. Представляется новый модуль EPSOp-
tim-SD для решения такого типа задач. Возможности 
системы SAOSYS раскрываются на примере проекти-
рования однопролетной рамы производственного зда-
ния с ограничениями приспособляемости и жесткости. 
Исследования проведены с учетом предположения о 
малых перемещениях. 
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