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1. Introduction

Structural damage detection based on changes in
vibration characteristics has received much attention in
recent years. Among all the vibration-based detection
methods, the ones based on the changes in natural
frequencies or frequency response functions are considered
to be the eassiest to implement.

The control of vibrations either in passive or
active ways of damageable structures, systems and
machines is not always done properly. "Their mechanical
and dynamical characteristics are evaluated and known
once a time, habitually in the virgin state of the considered
structures. For nondamageable structure this approach is
exact and legal, but, for the damageable one this may
conduct to desasters. In this study following the state of the
structure is quasi-permanent and its characteristics are
evaluated state by state in its all progressive damage way.

Damage definitions are proposed in the literature,
but, all of them are equivalent about the loss rigidity phe-
nomena. The interested reader will find more details on the
models of damage in the synthesis article of Degrieck &
Peeprgem [1]. The loss rigidity phenomenon is considered
as the main responsible for the increasing of the damage in
the composite beam [2, 3]. Global structural modelling of
this damage is achieved by implementing the local dam-
aged elastic law in a global structural bending formulation.
The prediction of the damage using Kachanov postulate is
adopted.

This paper deals with the evaluation of the resi-
dual modal energy in glass/epoxy unidirectional fibrous
composite beam at a desired state. In this damaged state,
the damaged elementary stiffness matrix is proposed for
the evaluation of the global potential energy. The extrac-
tion of the global stiffness matrix is done as in classical
finite element analysis. Dynamical equation under its ma-
trix form is given and solved to extract the effective modal
characteristics at the given dosage of cyclic solicitations.

The efficiency of this approach for damaged
structures is shown for its possible implementation in FEM
codes to treat more complex structures.

2. Modeling aspect (continuum — discrete media)

The problem to be solved consists of a simply
supported beam meshed into » elementary finite element

beams of /,=L/n length and an elementary bending
strength (EI) , (Fig. 1).
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Fig. 1 Beam elements modelling the whole bending beam
and their respective DOFs

2.1. Principle of damaged finite element

Familiar reader with finite element modelling
knows how stiffness and mass matrices (K° and M°) are
extracted classically respectively from elementary potential
and kinetic energies [4]. In the case of Bernoulli’s beam
(with neglected shearing force), the simplest element beam
in bending is characterized by four degrees of freedom

(Fig. 1).
2.2. Elementary and global damaged stiffness matrices

The identified Sidoroff & Subaggio damage evo-
lution law [5] by taking coefficients 4, b and ¢ from the
experimental tests data is under the following form

dﬁ:o.oossﬁ)g (1)
dN (1-D)

where D is the damage variable, dN is the Number of cy-
cles per increment and 4e incremental strain.

The damage is located at the nodes and intro-
duced into the stiffness matrix and assigned to each degree
of freedom; the rotation & and the translation v.

Evaluating the deformation energy in a given
damage state
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The elementary damaged stiffness matrix is ex-
tracted classically [4] and built in the following form
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where E,6 , ¢ are respectively the effective nodal Young
modulus, effective elastic stress and strain.

The global damaged stiffness matrix depends on
the meshing of this structure; an automatic meshing is per-
formed for this matter and takes the following form

KS =B'KS,B “4)

where K§, is the unassembled global stiffness matrix, B

and B’ are respectively the Boolean matrix (transition from
the local DOF to the global ones) and its transposed one.
The mass matrix M has exactly the usual form in the bend-
ing case with two degrees of freedom at each element node

[4].
3. Modal analysis
3.1. Dynamical characteristics of nondamaged structure

The dynamic analysis of a continuous linear
structure meshed into elements, with M¢ and K° are re-
spectively the global mass and stiffness matrices, can be
reduced to the resolution of a second order system of dif-
ferential equations in x(¢) as

Mei+Kx=0. (5)

3.2. Dynamical characteristics of damaged structure

According to the study of the evolution of the
damage made paragraph 2, the damage takes maximum
values into the external fibres under locally tension on
transversal faces of the beam. These specific values of
damage were introduced systematically into the elementary
matrices of rigidities for each section.

By taking x(t)=X, e" in Eq. (5), the eigenva-
lues problem of the damaged beam becomes

(K, M {X,}={0) (©)

where K5 is global stiffness Matrix at a given state of da-
mage, @, is eigenpulsation at a given state of damage.
Eigenvalues for the system are obtained by solv-
ing the following characteristic equation
det|KS -} M| =0. ©)
3.3. Residual modal energy evaluating:
extraction of loss modal energies factors

In a cyclic loading test of a unidirectional com-
posite material, the dissipation of energy can be characte-
rized by the follow-up of the loss of modal energy. This
loss is due primarily to the three controlling states of the
damage mechanisms of bending fatigue [6], depending on
the stage of damage.

The modal deformation energy of the nondam-
aged beam is given by
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where K¢ is stiffness matrix for nondamaged case and ¢,

is eigenvector matrix for nondamaged case.
The modal deformation energy of the beam at
fixed stage of damage is given by

Uy =0T [K5 ] [0]

where K is stiffness matrix at fixed stage of damage and

©)

@, 1s eigenvector matrix at fixed stage of damage.

The loss of rigidity in the studied beam is consi-
dered here as the main reason of the loss of internal elastic
energy, hence, the residual modal energy in the studied
fibrous composite structure under cyclic loading. So, the
ratio of the dissipated energy AU, in a given step of da-
mage to the internal energy U, can be expressed by:

_ AUn _ Un _UnD
U U
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where U, is modal strain energy for nondamaged case and
U,, 1s modal strain energy for damaged case.

It depends on the focused step needed for the de-
termination of the loss factor for the fixed residual internal
energy allowed.

The well known damping loss factor 7,,,. can be
evaluated by dividing the given value of {,, by the number
of cycles matching with the desired cycle at the desired
damage level. In another term, it represents the energy loss
factor. Eq. (10) furnishes the cumulus of damping until
designed step denoted N. Then, 7,, can be evaluated as
follows

77nD = CnD Nl

where N is the number of cycles of fatigue loading.

(11)

3.4. Damaged and nondamaged responses in time and
frequency

The damaged and nondamaged free responses in
time of the beam at the mid length (x = L/2) are given clas-
sically by

w(x, t):i(An cosw,t+ B, sinw, t)sin%x (12)

n=1

The damaged and nondamaged responses of the
studied forced beam in frequency at a given time can be
expressed as

w(x,t) =Z

n=1
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where j* =-1, w,is eigenpulsation, ® is pulsation of the

harmonic excitation Pcoswt applied at the mid length of

the beam x, =L/2, P is magnitude of excitation force,

&, is the given modal damping factor and p, L, S are re-

spectively density, length, transversal area of the beam.



Table 1

Materials and geometrical properties [5]

Length Width Height Glass initial Glass Density Initial Local Initial Global
Young Modulus Rigidity Rigidity
L=04m b=0.04m h=0.02m E, =72400MPa =2540 kg/m* 3 ?
° L em gy g =g |k, :48E0%
12 L
4. Results and discussions 2’ A
= 04 /,
All results presented here are made with a consid- 8 os P
ered glass/epoxy simply supported beam. Materials and 207 //
geometrical properties are shown in Table 1. % 06
Figs. 2 and 3 show respectively the evolution of E 05 /

local rigidity in the length of studied glass/epoxy beam and
stress evolution in the median section (x = L/2) depending
of the level of considered cycles of solicitations. They
show the decreasing rigidity. Figs. 4 and 5 give the resid-
ual modal energy and its respective loss energy factors
versus the level of loading in cycles for the first mode.
Figs. 6 and 7 give the residual modal energy and its respec-
tive loss energy factors versus the level of loading in cy-
cles for the second mode.
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Fig. 2 Local rigidity evolution in length-number of cycles
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Fig. 3 Stress evolution in the median section

z 4 DOE+1

i “\“\

[=

B 00E

T

E

r_:ufﬂf.nnlsm \\

h=

& 200E1 \
0, 00E+D0

fopcoo 150000
Humber of cyeles

1 S0000

Fig. 4 Residual modal energy-number of cycles, first mode
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Fig. 5 Energy loss factor - number of cycles, first mode
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Fig. 6 Residual modal energy - number of cycles, second
mode
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Fig. 7 Energy loss factor - number of cycles, second mode

It can be remarked that vanishing of eigenfre-
quencies is concluded in the same level of the maximum
damage and hence in the maximum stress state in a given
section.

Responses in time of the beam at the mid length
are plotted in Fig. 8 and show the disparity between the
damaged and nondamaged ones. A shifting is clearly seen
on these curves to demonstrate the influence of damage on
the responses of the studied beam. On Fig. 9, responses in



frequencies show the affectation of the amplitude. Damp-
ing caused by the damage is clearly shown. The shifting
also in frequency as in time appears consequently.

It is clear that decreasing of eigenfrequencies val-
ues affect significantly the handling of any future tests (ex-
perimental and/or numerical tests) to be done on such da-
mageable structures.
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Fig. 8 Reponses in time at mid-length
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Fig. 9 Reponses in frequency at x=L/2, with, &£, =0.054
5. Conclusion

The damping caused qualitatively by the begin-
ning of cracks and quantitatively by the loss of energy in
fibers is then appreciable and should be taken into account
and included in all modeling, optimizing and passive
and/or active control of such type of structures.

This study shows an efficiency to determine the
variation of dynamic characteristics especially the modal
energy remaining; this should have a determinant utility:

e to avoid disaster during tests when performed, in
experimental dynamic cycling loading;
in both active and passive modal control;
in optimizing design, physical constraints should
be updated depending on the current state of the
optimized structure;
in structural health monitoring, the proposed
model is introduced in existent structural package
or finite elements one;
as a nondestructive test (NDT), both to recommend
frequency range to perform dynamic test with
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composite specimen safely and for damage detec-
tion.
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M. N. Amrane, F. Sidoroff

NUOVARGIO PAZEISTU KOMPOZICINIU
KONSTRUKCIIU IVERTINIMAS LIEKAMAJA
FORMOS PASIKEITIMO ENERGIJA

Reziumé

Sis straipsnis skirtas lickamosios formos pasikei-
timo energijos jvertinimui tam tikros biisenos stiklo ir
epoksido tiesaus pluosto kompozito sijoje. Pasitilyta ele-
mentari pazeisto standumo matrica bendrai potencinei
energijai jvertinti. Globali standumo matrica yra sudaryta
taikant klasikini baigtiniy elementy metoda. Pazeidimui
prognozuoti panaudota Kacanovo prielaida. Nustatyta, kad
standumo praradimas yra pagrindiné kompozito sijos pa-
zeidimo padidéjimo prieZastis. Bendras struktiirinis pazei-
dimo modeliavimas yra sukurtas idiegus vietini tamprumo
pazeidima bendroje konstrukcijos lenkimo formuluotéje.
Dinamikos lygtys pateiktos matricy pavidalu ir i§sprestos
vertinant efektyvias formos kitimo energijos charakteristi-
kas pagal tam tikrus ciklinius reikalavimus. Sio pasiilymo
efektyvumas tiriant paZzeistas konstrukcijas rodo, kad ji
galima taikyti ir nagrinéjant sudétingesnes konstrukcijas
baigtiniy elementy metodu.
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RESIDUAL MODAL ENERGY EVALUATING OF
FATIGUE DAMAGED COMPOSITE STRUCTURE

Summary

This paper deals with the evaluation of the resid-
ual modal energy in glass/epoxy unidirectional fibrous
composite beam at a desired state. In this damaged state,
the damaged elementary stiffness matrix is proposed for
the evaluation of the global potential energy. The extrac-
tion of the global stiffness matrix is done as in classical
finite element analysis. The prediction of the damage using
Kachanov postulate is adopted. The loss rigidity phenome-
non is considered as the main reason of increasing of the
damage in the composite beam. Global structural model-
ling of this damage is achieved by implementing the local
damaged elastic law in a global structural bending formu-
lation. Dynamical equation under its matrix form is given
and solved to extract the effective modal characteristics at
the given dosage of cyclic solicitations. The efficiency of
this approach for damaged structures is shown for its pos-
sible implementation in FEM codes to treat more complex
structures.
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OLEHKA YCTAJIOCTHOI'O [TIOBPEX/JIEHUA
KOMITO3UTHBIX KOHCTPYKI[1IA C
HCIIOJIb30BAHUEM OCTATOYHOIM SHEPTUH
OOPMOUN3MEHEHU A

PesmowMme

B mpezcraBieHHON cTaThe pacCMaTpUBACTCS, KaK
OIICHUTH OCTAaTOYHYIO YHEPTUI0 (POpMOM3MEHEHUS OaTKH B
3aJaHHOM COCTOSIHMHU. bailka M3roTOBJ€Ha M3 KOMITO3HTA
NPSMOJIMHENHBIX BOJOKOH CTEKJIO-3MOKCHI. B 3ToM mo-
BPEXXICHHOM COCTOSIHUH, JUTS OIIEHKH TTI00ATbHON TOTEH-
UAFHON SHEPTHH, MPEAoKEeHa MOBPEXKICHHAS 3IIEMEH-
TapHas MaTpHIla KecTKOCTU. [ obanpHas MaTpuIa >KecT-
KOCTH CO3J/laHa TP MCIOJIb30BaHUU KJIACCUYECKOTO METO-
Jla KOHEUHBIX 3JIEMEHTOB. {151 IPOTrHO3UPOBAaHUS I1OBPEXK-
JIeHus ucroib3oBaH noctynar Kauanosa. [loreps xectko-
CTH OIpeJielicHa KaK OCHOBHAS MPWYMHA YBEIUYCHUS I10-
BpexJcHUS B Oanke kommo3uTa. O0Iee CTpyKTypHOE MO-
JICTUPOBAHKE MMOBPEKICHUS CO3JIAaHO MPH BHEIPECHUH ME-
CTHOTO TIOBPEXKIICHUS YIPYTOCTH B OOIIEH KOHCTPYKIIH-
OHHOH TpakTOBKe W3rnba. YpaBHEHHS IWHAMHUKHU TIPE-
CTaBJICHBI B BUJIC MATPHI] U PEIUICHEI C MIPUMEHEHHEM (-
(EKTUBHBIX XapPAKTEPUCTUK JHEPrHuu (POPMOU3MEHEHHUS
YUHUTBIBAas JaHHBIC IUKIAYECKHE YCIOBUA. O(P(PEKTHB-
HOCTB 3TOTO MPEIOKEHUS IS TOBPEXKICHHBIX KOHCTPYK-
I.[I/If/i MOATBCPKAACT BO3MOXKHOCTHL €TI0 HNPUMCHCHHUEM B
MKE B 60Jiee CIIOKHBIX KOHCTPYKIIHSX.
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