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1. Introduction 
 
Convection heat transfer in a saturated porous 

medium is in great attention for many applications in geo-
physics and energy systems. Applications such as geo-
thermal energy utilization, ground water pollution analysis, 
insulation of buildings, paper production and petroleum 
reservoir can be cited. These applications have been widely 
discussed in recent books by Nield and Bejan [1], Ingham 
and Pop [2], Vafai [3], Pop and Ingham [4] and Ingham et 
al. [5]. However, natural convection along inclined plates 
has received less attention than the cases of vertical and 
horizontal plates. Rees and Riley [6], and Ingham et al. [7] 
presented some solution for free convection along a flat 
plate in a porous medium which are only valid at small 
angles to the horizon. Jang and Chang [8] studied free con-
vection on an inclined plate with power function distribu-
tion of wall temperature, while its angle varies between 0 
to close to 90 degrees from horizontal. While Pop and Na 
[9] have solved the free convection of an isothermal in-
clined surface. Their solution included all horizontal to 
vertical cases. Hossain and Pop [10] studied the effect of 
radiation. Conjugate convection from a slightly inclined 
plate was studied analytically and numerically by Vaszi et 
al. [11]. Lesnic et al. [12] studied analytically and numeri-
cally the case of a thermal boundary condition of mixed 
type on a nearly horizontal surface.  

The purpose of this paper is to study natural con-
vection above an inclined flat plate at a variable tempera-
ture range embedded in saturated porous medium. There is 
power-law variation in the wall temperature.  

Coordinate system introduced by Pop and Na [9] 
is used in the solution. Then the system of two equations 
can be solved by finite difference technique proposed by 
Keller [13] for both the cases of positively inclined plate 

( )0 90φ≤ ≤

)
and negatively inclined plate at small angles 

to the horizontal . The effect of inclination pa-

rameter on skin friction coefficient and Nusselt number 
and also the dimensionless velocity and temperature pro-
files have been investigated. However, the free convection 
has been solved on the horizontal and vertical plates earlier 
by Cheng and Chang [14], and Cheng and Minkowycz [15] 
respectively. 

( 0φ ≤

 
2. Governing equations 

 
Consider the steady natural convection from an 

arbitrarily inclined plate embedded in an isothermal porous 
medium at temperature T . Assume that the wall tempera-

ture is kept at a higher value with the power-law variation. 
The inclination angle is either positive (

∞

)0 90φ≤ ≤  or 

slightly negative ( )0φ ≤ . The physical model and coordi-

nate system is given in Fig. 1. Here (x, y) are Cartesian 
coordinates along and normal to the plate, with positive y 
axis pointing toward the porous medium. 

 

 
 

Fig. 1 Physical model and coordinate system: a - positive 
inclination; b - negative inclination 

 
If the following assumptions have been used (i) 

the convective fluid and the porous medium are in thermo-
dynamic equilibrium anywhere, (ii) the temperature of the 
fluid is below boiling point at any point of domain, (iii) the 
fluid and porous medium properties are constant except the 
variation of fluid density with temperature, and (iv) the 
Darcy-Boussinesq approximation is employed, the velocity 
and temperature within the momentum and thermal bound-
ary layers which develop along the inclined plate are gov-
erned by the following equations: 
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where the “+” and “-” signs in Eq. (2) indicate the positive 
and negative inclinations of the plate respectively. Here in 
Eqs. (1)-(5) u, v are the velocity components along (x, y) 
axes; K is the permeability of porous medium; μ , ρ , β  
and α  are the viscosity, density, coefficient of thermal 
expansion and thermal diffusivity, respectively; T, p, g are 
also temperature, pressure and gravity acceleration. The 
subtitle  also refers to conditions in the infinite dis-
tance. Boundary conditions of the problem are as 

" "∞

 
  (6) 0 r

wv , T T T Ax on y∞= = = + = 0

∞
 

  (7) 0u , T T as y∞= = →
  

By deriving Eqs. (2) and (3), respect to y and x re-
spectively and applying Darcy-Boussinesq approximation 
and considering boundary layer approximations, Eqs. (8) 
and (9) are derived and with continuity equation form go-
verning equations of the problem are as below 
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To convert Eqs. (1), (8) and (9) to the equations 

that could describe natural convection flow from an arbi-
trarily inclined plate in a porous medium, the parameter 
which was introduced by Pop and Na [9], is used 
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where ( ) /wRa gK T T xβ αυ∞= −  is the Rayleigh number. 
This parameter describes the relative strength of the longi-
tudinal to the normal components of the buoyancy force 
that simultaneously applies on the boundary layer. Also for 
a fixed inclination angle, it could be used as a longitudinal 
coordinate. In addition, the forward variables are used. 

 

 
1

y,
x

ζξ η λ
ζ

⎛ ⎞= = ⎜ ⎟+ ⎝ ⎠
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where 

 
 ( ) ( )1 21 3 //Ra cos Ra sinλ φ φ= +  (12) 

 
 

Because at a given φ , ξ  is defined as 
( )( )1 61 1 r // cons tan t.xξ − += + , this parameter shows the 

distance from the leading edge for a particular inclination 
angle. In additionξ , changes from 0 to 1 as an inclination 
parameter at a fixed Rayleigh number by changing the an-
gle φ  from 0° to 90°. Now it is possible to define the re-
duced stream function and dimensionless temperature as 
following 
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where ψ  is the stream function and defined as 
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Based on the new variables, new equations are as 

following 
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These equations should satisfy the following 

boundary conditions. 
 

 0 1f , on 0θ η= = =  (17) 
 0 0f ' , asθ η= = →∞  (18) 

 
Primes show differentiation with respect to η . As 

obvious to solve Eqs. (15) and (16), having an initial con-
dition for ξ  is necessary. This condition is obtained by the 

solution of the equations for horizontal plate with 0φ =  

and 0ξ = . Also, at 0ξ =  or , Eqs. (15) and (16) 
declined to the equations of horizontal flat plate embedded 
in porous medium which presented by Cheng and Chang 
[14] 

0φ =

 

 2 0
3
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For the case 1ξ =  or , the equations 
change to the equations expressed by Cheng and Min-
kowycz [15] for a vertical plate 

90φ =

 
 f " 'θ=  (21) 
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2
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Quantities such as skin friction coefficient and 

Nusselt number can now be defined as following and in-
vestigated 
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where ( )1/ 22/cU xαυ=  is characteristic velocity, wτ  is 

skin friction and  is heat flux at the wall which are 
normally given as 

wq

 

 
0 0

w w
y y

u , q k
y y

τ μ
= =

⎛ ⎞ ⎛ ⎞∂
= = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
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where k is thermal conductivity of the porous medium. By 
using Eqs. (11) and (13) 
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3. Results and discussions 
 

The coupled differential equations of Eqs. (15) 
and (16) are solved under boundary condition Eqs. (17) 
and (18) by Keller numerical scheme [13]. Based on ξ  
definition, numerical solution is started in 0ξ =  and it 
continues step by step to 1ξ = . To start numerical solu-
tion, similarity solutions of free convection along horizon-
tal flat plate presented in Eqs. (19) and (20) are used. 

Solution of the equations is implemented for 
 which is available for both vertical and horizon-

tal cases. For validating calculations, vertical solution re-
sults of Cheng and Minkowycz [15] are used. For further 
information on the numerical solution, it could be referred 
to [16]. 

0 r≤ ≤ 1

Positive inclination. Figs. 2 and 3 depict skin fric-
tion coefficient and Nusselt number versus ξ  for different 
values of r. Table presents results of similarity solution of 
Eqs. (21) and (22) and numerical solution at 1ξ =  or 

. There is an excellent agreement between the re-
sults. As it can be seen, in a state of constant temperature, 
absolute value of skin friction coefficient is strictly ascend-
ing with increasing angle. This is due to the increase of 
buoyancy force in tangent direction of the plate. But in 
other cases, wall temperature changes also effect on the 
problem and cause changes to the diagram pattern. More 

90φ =

 

 
Fig. 2 Variation of the skin friction coefficient with ξ  for 

positive inclination 

 
Fig. 3 Variation of the Nusselt number with ξ  for positive 

inclination 
 
over, by increasing r, absolute value of skin friction coeffi-
cient increases in the constant inclination angle. The reason 
is the increment of buoyancy force which induced due to 
temperature difference. Nusselt number increases with 
increasing r. In addition, in all cases by increasing ξ , Nus-
selt number declines at first and at 0.55ξ ≈  where the 
tangential and normal components of buoyancy force are 
comparable, achieve to minimum, then again it moves up-
ward. 

Table 
Comparison between values of ( )0'θ−  from Cheng and 

Minkowycz [11] and present results at 1ξ =  
 

r Cheng and Min-
kowycz [11] 

Present results 

0 0.444 0.444 
0.25 0.630 0.627 

0.5 0.761 0.764 
0.75 0.892 0.892 

1 1.001 1 
 

Dimensionless velocity and temperature profiles 
have been plotted in Figs. 4-9 for different r and ξ . Pro-
files related to the horizontal and vertical plates that have 
good agreement with similarity solution are also given. 
 

 
 

Fig. 4 Dimensionless velocity profiles for r = 0.00 in posi-
tive inclination case 
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Fig. 5 Dimensionless velocity profiles for r = 0.50 in posi-

tive inclination case 
 

 
Fig. 6 Dimensionless velocity profiles for r = 1.00 in posi-

tive inclination case 
 

As it could be seen in Figs. 4-6, for a given ξ , by 
the increment of r, the slope of dimensionless velocity pro-
files increases and causes the increase in skin friction coef-
ficient. Moreover in all cases except 1ξ = , this increment 
causes the increase in dimensionless velocity. This is be-
cause the tangential component of buoyancy force in-
creases.  

Figs. 7-9 depict that the slope of dimensionless 
temperature profiles increases by increasing r for a given 
ξ , which validated the increment of Nusselt number. For 
all ξ , by increasing r the decrease in momentum and 
thermal boundary layer thicknesses is visible. 

Negative inclination. It is expected that for nega-
tive inclinations, the boundary layer separates with the 
increase in distance from leading edge, because the buoy-
ancy force is exerted to the top of surface and causes the 
flow to return. When the plate velocity reaches negative 
values, the fluid starts to move upward and causing bound-
ary layer separation occurs. Thus boundary layer equations 
have been broken before separation point and in general a 
new scaling is necessary in separation region. So that theξ  
in which boundary layer equations are broken is only an 
estimate of the separation point and therefore ( )s approx

ξ  is 

specified. From the solution of equations ( ) 0.67s approx
ξ ≈  

is achieved. The solution does not converge for the values 
higher that. 

 
 

Fig. 7 Dimensionless temperature profiles for r = 0.00 in 
positive inclination case 

 

 
 

Fig. 8 Dimensionless temperature profiles for r = 0.50 in 
positive inclination case 

 

 
 

Fig. 9 Dimensionless temperature profiles for r = 1.00 in 
positive inclination case 

 
Due to the previous description, the variations of 

skin friction coefficient and Nusselt number for negative 
inclination angles are presented in Figs. 10 and 11 respec-
tively. Again in this case at certain ξ  an increase in r in-
creases skin friction coefficient and the Nusselt number. 

At the end, the dimensionless velocity and tem-
perature profiles are depicted for different values of r and 

0, 0.25ξ =  and 0.5 in Figs. 12-17. 
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Fig. 10 Variation of the skin friction coefficient with ξ  for 
negative inclination  

 

Fig. 11 Variation of the Nusselt number with ξ  for nega-
tive inclination 

 
 

 

Fig. 12 Dimensionless velocity profiles for r = 0.00 in 
negative inclination case 
 
As it observed from Figs. 12-14, at a given r for 

smaller values of ξ  dimensionless velocity profiles have 
steeper slope, on the other hand, increasing r at a given ξ  
increases profile slope. The skin friction coefficient varia-
tions  graph also  confirms  these results.  For 0.50ξ =  the  

 

 
 

Fig. 13 Dimensionless velocity profiles for r = 0.50 in 
negative inclination case 

 

 
 

Fig. 14 Dimensionless velocity profiles for r = 1.00 in 
negative inclination case 

 
boundary layer thickness is higher than in the other cases, 
due to the approach of separation point. 

Figs. 15-17 show that with increasing ξ  in a cer-
tain r, the slope of temperature profiles decreases, which 
reflects the Nusselt number reduction. It is also approved 
by Fig. 11. On the other hand the temperature profiles in-
crease with the increase in ξ  at a given r. 

 

 
 

Fig. 15 Dimensionless temperature profiles for r = 0.00 in 
negative inclination case 
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Fig. 16 Dimensionless temperature profiles for r = 0.50 in 

negative inclination case 
 

 
Fig. 17 Dimensionless temperature profiles for r = 1.00 in 

negative inclination case 
 
4. Conclusions 
 

1. The boundary layer solution of natural convec-
tive heat transfer along an inclined arbitrarily flat plate 
embedded in a saturated porous medium was presented. 
The wall temperature is power function of distance from 
the leading edge.  

2. The solution was obtained by using the inclina-
tion parameter defined by Pop and Na [9] and defining a 
new coordinate system for both positive and negative in-
clinations of the plate. The numerical Keller box scheme 
implemented to discrete equations. The skin friction coef-
ficient, Nusselt number, dimensionless velocity and tem-
perature profiles were plotted for various values of r andξ . 

3. As it was observed in both of cases with in-
creasing r at a fixed inclination angle, coefficient of skin 
friction and Nusselt number will increase. On the other 
hand, for positive inclination in 0.55ξ ≈ , where longitu-
dinal and normal components of buoyancy force are com-
parable, Nusselt number has a minimum. For negative in-
clination, the point where separation occurred was deter-
mined approximately. In this case, the Nusselt number 
decreased uniformly at a given r with increasing ξ .  

4. Moreover there is a wonderful match between 
the numerical solution and similarity solutions for 0ξ =  
(horizontal plate) and 1ξ =  (vertical plate), which are 

presented by Cheng and Chang [14] and Cheng and Min-
kowycz [15] respectively. 
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M. H. Kayhani, E. Khaje, M. Sadi 

PORINGOJE APLINKOJE FORMUOJAMŲ PASIENIO 
SLUOKSNIŲ NATŪRALIOJI KONVEKCIJA IŠILGAI 
NEPRALAIDŽIŲ NUOŽULNIŲ PAVIRŠIŲ  

R e z i u m ė 

Tyrinėtas natūralus ribinių sluoksnių konvekcinis 
tekėjimas laisvai pasvirusioje plokštėje prisotintoje porėto-
je aplinkoje, kur sienelės temperatūra yra atstumo nuo 
kreipiamosios briaunos laipsninė funkcija. Keliama-jai 
jėgai nustatyti pritaikyta Dancy-Boussinesko aproksimaci-
ja. Kad visus horizontalių, pasvirusių ir vertikalių plokščių 
atvejus būtų galima išreikšti viena transformuota ribinių 
sluoksnių lygčių sistema, panaudotas pasvirimo parametras 
ξ. Nelinijinės priklausomos parabolinės lygybės buvo iš-
spręstos pagal žinomą baigtinių skirtumų schemą, esant 
teigiamam ir neigiamam plokštės posvyriui. Lygybių pana-
šumas horizontaliųjų ir vertikaliųjų plokščių ribiniams at-
vejams pasiektas atitinkamai laikant, kad ξ = 0 ir ξ = 1. 
Detalūs paviršiaus trinties koeficientai ir Nussett skaičiai 
tiek bedimensiam greičiui, esant tiek temperatūros profi-
liams, yra nustatyti plačiam parametro ξ diapazonui. Gauti 
rezultatai gerai sutapo su kituose straipsniuose paskelbtais 
rezultatais. 
 
 
M. H. Kayhani, E. Khaje, M. Sadi 

NATURAL CONVECTION BOUNDARY LAYER 
ALONG IMPERMEABLE INCLINED SURFACES 
EMBEDDED IN POROUS MEDIUM 

S u m m a r y 

 The natural convection boundary layer flow on an 
arbitrarily inclined plate in a saturated porous medium is 
considered, where wall temperature is power function of 
the distance from the leading edge. Darcy-Boussinesq ap-
proximation is adopted to account for buoyancy force. In-
clination parameter ξ is used such that all cases of the hori-
zontal, Inclined and vertical plates can be described by a 
single set of transformed boundary layer equations. The 
non-linear coupled parabolic equations have been solved 

numerically by using an implicit finite-difference scheme 
for both positive and negative inclinations of the plate. 
Also, the similarity equations for the limiting cases of the 
horizontal and vertical plates are recovered by setting ξ = 0 
and ξ = 1, respectively. Detailed results for skin friction 
coefficient and Nusselt number as well as for dimen-
sionless velocity and temperature profiles are presented for 
a wide range of the parameter ξ. The comparison with 
other validated articles shows excellent agreement. 

 
 

М. Х. Каихани, Е. Кхаие, М. Сади 
 
ЕСТЕСТВЕННАЯ КОНВЕКЦИЯ ПРЕДЕЛЬНЫХ 
СЛОЕВ ЗАКРЕПЛЕННЫХ В ПОРИСТОЙ СРЕДЕ 
ВДОЛЬ НЕПРОНИЦАЕМЫХ НАКЛОННЫХ 
ПОВЕРХНОСТЕЙ 
 
Р е з ю м е 
 
 Исследована естественная конвекция течения 
предельных слоев в свободно наклоненной пластине в 
насыщенной пористой среде, где температура стенки 
является степенной функцией расстояния от направ-
ляющей грани. Для определения несущей силы приме-
нена аппроксимация Данци-Боуссинеска. Использован 
такой параметр наклона ξ, чтобы все случаи горизон-
тальных, наклонных и вертикальных пластин описыва-
лись одной трансформированной системой уравнений 
предельных слоев. Нелинейные зависимые параболи-
ческие уравнения решены используя известную схему 
конечных разностей с положительным и отрицатель-
ным наклоном плоскости. Подобие уравнений в пре-
дельных случаях для горизонтальных и вертикальных 
пластин получено при использовании соответственно 
ξ = 0 и ξ = 1. Детальные значения коэффициентов по-
верхностного трения и Нусетт числа как для безди-
менсной скорости, так и профилей температуры опре-
делены для широкого диапазона параметра ξ. Сопос-
тавление результатов с результатами, опубликованны-
ми в других статьях, показало отличное их совпадение. 
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