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1. Introduction 

Uncertainties in material properties, geometric 
dimensions, loads and other parameters are always un-
avoidable in engineering structural problems [1-4]. They 
have played a more and more important role in the struc-
tural reliability analysis. In order to obtain the objective of 
reliable design, the effects of the various uncertain parame-
ters should be rationally considered and treated. The pro-
babilistic models are widely used to describe the uncertain-
ties and they have been proved very effective in the struc-
tural reliability problems [5-7]. However, it is difficult to 
estimate precise values of parameters to accurately define 
the probability distributions because of inaccurate and in-
sufficient information. Once the assumption about the 
probability distributions is not satisfied, the structural reli-
ability analysis seems doubtful and meaningless. More-
over, some researches [8-11] have also indicated that even 
small deviations from the real probability distributions may 
cause large errors in the reliability analysis.  

The fuzzy set theory provides a useful comple-
ment of classic reliability theory, in which the probabilities 
of the system elements can be not certain. Cai [12] pre-
sented different forms of "fuzzy reliability theories". In 
some recent research, a general fuzzy multistate system 
model and corresponding reliability evaluation technique -
fuzzy universal generating function were proposed in [13] 
and [14], respectively, for dealing with the fuzziness of 
engineering systems. Similar with the probabilistic models, 
the membership functions of the uncertain parameters need 
to be established before carrying out structural reliability 
analysis with the fuzzy set theory. The nonprobabilistic 
reliability method and set model can be another direction 
for coping with the uncertain parameters. Although obtain-
ing the precise probability distributions or membership 
functions of the uncertain parameters seems very difficult 
in many cases, the ranges or bounds of the uncertain pa-
rameters can be established relatively easily. Nowadays, 
there is not a precise method to find the precise intervals or 
the precise bounds of the uncertain parameters. However, 
one of the most feasible methods to find the approximate 
precise intervals or bounds of the uncertain parameters is 

“expert scoring method”. For example, for a system uncer-
tain variable x , several experts can given difference inter-
vals or bounds for the variable. Sometimes, these intervals 
or bounds are not all the same, the method to handle these 
intervals or bounds are “average arithmetic”. For example, 
there are n  intervals scoring by n  experts for an uncer-
tainty variable x  such as 1 2 3, , ,I I I I

nx x x x . The result inter-
val of uncertainty variable x  expressed as 

( )1 2 3
1I I I I I

nx x x x x
n

= + + + + . 

Some researcher such as Ben-Haim [10, 11] pro-
posed that it was more rational to describe the uncertain 
parameters with the set models instead of the probability 
models when the statistic information about the uncertain 
parameters is insufficient. Based on this idea, the concept 
of nonprobabilistic reliability based on the convex model 
theory was proposed clearly by Ben-Haim in 1994 [11]. In 
recent years, the nonprobabilistic reliability theory devel-
ops rapidly. Elishakoff [15] discussed the concept of non-
probabilistic reliability and pointed out that the reliability 
of structures should belong to an interval rather than a cer-
tain value. Through interval analysis [16], a nonprobabilis-
tic model of structural reliability was proposed by Guo et 
al [17] which the reliability was measured as the minimum 
distance from the coordinate origin to the failure surface. 
Based on the interval interference model of stress and 
strength, Wang and Qiu [18] defined the nonprobabilistic 
reliability index as the ratio of the volume of safe region to 
the total volume of the region constructed by the basic in-
terval variables. In addition, the nonprobabilistic ap-
proaches have already been effectively applied to many 
practical structure problems in presence of various uncer-
tainties. For example, they were used in the analysis of 
shells with imperfections in [19, 20], stress concentration 
at a nearly circular hole with uncertain irregularities in [21] 
and sandwich plates subject to uncertain loads and initial 
deflections in [22]. 

In this paper a new nonprobabilistic set model for 
reliability assessment of structural system is proposed. 
Interval variables are used to represent the parameter un-
certainty. The nonprobabilistic reliability of structure is 
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defined as the satisfaction degree between the stress-
interval and the strength-interval. The interval analysis 
based on the first-order Taylor series is used to calculate 
the corresponding reliability. The illustrative example is 
presented to demonstrate the technique. 

 
2. Interval variable and its operations 
 

Before further discussion on the nonprobabilistic 
set model of structural reliability, a brief view of the defi-
nitions of the interval variable and its operations is pro-
vided. Assume that x  denotes an uncertain parameter in 
the structural reliability problem, and it varies within a 
closed interval [ ],Ix x x= , then 

[ ],Ix x x x∈ =       (1) 

is defined as an interval variable; x  and x  is the lower 
bound and upper bound of the interval Ix , respectively. 
Similar with the random variable, interval variable has its 
own center cx  and radius rx , which can be defined as 
follows 

2
c x xx +
= , 

2
r x xx −
=          (2) 

According to Eq. (2), interval Ix  and interval 
variable x  can be denoted in the following standardized 
form 

I c r Ix x x= + Δ c r, x x x δ= +   (3) 

where [ ]1,1IΔ = −  is the standardized interval, Iδ ∈Δ  is 
the standardized interval variable. 

Let [ ],Ix x x x∈ =  and ,Iy y y y⎡∈ = ⎣ ⎤⎦  be two 
interval variables, then the operations for 

I Ix y+ , I Ix y− , I Ix y⋅  and /I Ix y  are obtained as [23] 

[ , ] [ , ] [ , ]I Ix y x x y y x y x y+ = + = + +   (4)  

[ , ] [ , ] [ , ]I Ix y x x y y x y x y− = − = − −     (5) 

{ } { }
[ , ][ , ]

         , , , , , , ,

I Ix y x x y y

min xy xy xy xy max xy xy xy xy

= =

⎡ ⎤= ⎣ ⎦
 
(6)

 

/ [ , ] / [ , ] [ , ] [1/ ,1/I I ]x y x x y y x x y y= = ⋅   (7) 

Supposed that ( )I R  denotes the sets of all closed 

real intervals. ( )I
ix I R∈ , (1, 2, , )I

i ix x∈ n  are arbitrary 
interval variables which are independent with each other. 
The linear combination of these interval variables can be 
formed as follows 

1

n

i i
i

y a x
=

= ∑ ,      (8) 1,2, ,i n=

where  are arbitrary real numbers. Because is the 

linear combination of interval 

ia R∈ y

ix ,  is also an interval 
variable. If the center and radius of interval variables 

y

ix  
are denoted with c

ix  and r
ix , then the center and radius of 

interval variable y are 

1

n
c c

i i
i

y a x
=

= ∑ ,
1

n
r r

i i
i

y a
=

= ∑ 1,2, ,i n=x , . (9) 

3. Satisfaction degree of the relation I Ix y≤  
 

Different with the size relation of two real num-
bers, the size relation of two intervals is a kind of partial-
order relation [24] which is usually denoted with the satis-
faction degree of the two intervals. Here the concept of 
satisfaction degree of the relation I Ix y≤  is actually a 
fuzzy set definition which represents the possibility that 
one interval is larger or smaller than the other. It is often 
used to compare intervals. Assumed that there are two in-
tervals [ , ]Ix x x=  and [ , ]Iy y y= , consider the related 

rectangle in the ( ),x y - plane having the sides given by the 

two intervals. There are five case between I Ix y≤  which 
is expressed in Fig. 1. The area value of the set 
( ){ }, : ,x y x x x y y y≤ ≤ ≤ ≤  can be computed as 

( ) ( )I Ix yω ω• . The area value of shadow part can express 
as 

( )area • =

( ) ( )
( ) ( )

( ) ( )

1

2

1 3
2

4

0 5

I I

x xI I

y y

I I

y y

x x

x y case

x y dx dy case

x y c

dx dy case

case

ω ω

ω ω

ω ω

⎧ •
⎪
⎪ • −⎪
⎪⎪ •⎨
⎪
⎪
⎪
⎪
⎪⎩

∫ ∫

∫ ∫

ase   (10) 

where ( )area •  denotes the area value of shadow part. 

The satisfaction degree of the relation I Ix y≤  or 
reliability can be defined as 

( ) ( )
( ) ( )

I I
I I

area
P x y

x yω ω
•

≤ =
•

    (11)  

Then 

( )
( ) ( )

( ) ( )

1  1

1  2

1 3
2

4

0 5

x x

y y

I I

I I

y y

x x
I I

case

dx dy
case

x y

P x y case

dx dy
case

x y

case

ω ω

ω ω

⎧
⎪
⎪
⎪ −
⎪ •
⎪
⎪≤ = ⎨
⎪
⎪
⎪
⎪ •⎪
⎪
⎩

∫ ∫

∫ ∫

 (12) 
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where “ P ” means possibility, ( )Ixω  and ( )Iyω  denotes 

the width of interval Ix  and Iy , respectively. That is [25] 

( )Ix x xω = − , ( )Iy yω = − y   (13) 

It  can  be  found  according to Eq. (12) and Fig. 1  

that ( )I IP x y≤  is equal to 1 for case 1 as interval Ix  is  

always smaller than interval Iy . For case 5, ( )I IP x y≤  is 

equal to 0 as interval Ix  is always larger than interval Iy . 

For case 2 to 4, the value of ( )I IP x y≤  is between [0  
as interval 

,1]
Ix  interferes with interval Iy . 

0 0

0 0 0

x x

x x x

y y

y y y

a b

c d e

y x= y x=

y x= y x= y x=

x x

x x x

x x

x x x

y
y

y y y

y y

y y

y

 
Fig. 1 Five cases for the relation  : a - case 1; b - case 2; c - case 3; d - case 4; e - case 5I Ix y≤

 
To sum up, the satisfaction degree of interval 

( )I IP x y≤  has the following properties 

(1)   ( )0 1I IP x y≤ ≤ ≤

(2)   ( ) ( ) 1I I I IP x y P x y≤ + ≥ =

(3)   if ( ) ( )I I IP x y P x y≤ = ≥ I , then 

, and ( ) ( ) 0.5I I I IP x y P x y≤ = ≥ = I Ix y=  

(4)  if I Ix y≤ , then ( ) 1I IP x y≤ =  

(5)  if I Ix y≥ , then ( ) 0I IP x y≤ = . 
 

4. Nonprobabilistic set model of structural reliability 
 

As described in the introduction, structural reli-
ability is subjected to many uncertain parameters. There-
fore, the stress S  and strength  of the structure can be 
denoted as the functions of these uncertain parameters 

R

( ) ( 1 2, , ,S S SS S X S x x x= = )Sl

)

    (14)  

( ) ( 1 2, , ,R R R RmR R X R x x x= =        (15) 

where { }( )1,2, ,S SiX x i l= =  is the parameter set im-

pacting on the stress S , such as concentration forces, dis-
tribution forces, bending moments and so on. 

{ }( )1,2, ,X R Rix i m= =  is the parameter set impacting 
on the strength R , such as material properties, geometric 
dimensions, surface cracks and so on. According to the 
basic idea of nonprobabilistic reliability presented by Ben-
Haim, all the uncertain parameters are described with in-
terval variables in this paper, which are 

[ , ]I
Si Si Si Six x x x∈ = , ( )1, 2, ,i l=    (16) 

[ , ]I
Ri Ri Ri Rix x x x∈ = , ( )1,2, ,i m=    (17) 

Based on Eqs. (2) and (3), the interval variables 
Six  and Rix  can be transformed into their standardized 

forms. That is 

c r
Si Si Six x x δ= + , ( )1, 2, ,i l=    (18) 

c r
Ri Ri Rix x x δ= + , ( )1,2, ,i m=       (19) 

where c
Six  and r

Six  are the center and radius of the interval 
variables I

Six ; c
Rix  and r

Rix  are the center and radius of the 
interval variables Rix ;  are the standardized 
interval variables. 

[ 1,1]I
iδ ∈Δ = −
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Because the stress S  and strength  are func-
tions of these interval variables respectively, they will vary 
within some closed intervals 

R

IS  and IR . In order to obtain 
the upper bounds and the lower bounds of the intervals IS  
and IR , Eqs. (14) and (15) can be respectively expanded 
at the center c

Six  and c
Rix  of the uncertain interval variables 

Six  and Rix  by using the first-order Taylor series 

( ) ( )

( ) ( )

( ) ( )

1 2

1 2 1 1
1

2 2
2

, , ,

  , , ,

S S S Sl

c c c c
S S Sl S S

S

c c
S S Sl Sl

S Sl

S S X S x x x
SS x x x x x

x
S Sx x x

x x

= = ≈

∂
≈ +

∂

∂ ∂
+ − + + −
∂ ∂

x

− +  

(20)

  

( ) ( )

( ) ( )

( ) (

1 2

1 2 1 1
1

2 2
2

, , ,

, , ,

R R R Rm

c c c c
R R Rm R R

R

c c )R R Rm
R Rm

R R X R x x x
RR x x x x x

x
R R

Rmx x x
x x

= = ≈

∂
≈ +

∂
∂ ∂

+ − + + −
∂ ∂

x

− +  

(21)

 

where 
Sl

S
x
∂
∂

, (  is the first-order partial deriva-

tive of the stress  at the center 

)l1, 2, ,i =

S c
Six ; 

Rm

R
x
∂
∂

, ( )  

is the first-order partial derivative of the strength  at the 
center 

1,2, ,i m=

R
c
Rix . Substituting Eqs. (18) and (19) into Eqs. (20) 

and (21) respectively, Eqs. (20) and Eq. (21) can be rewrit-
ten as follows 

( ) ( )

( )
1 2

1 2
1

, , ,

  , , ,

S S S Sl

l
c c c r
S S Sl Si

i Si

S S X S x x x

SS x x x x
x

δ
=

= =

∂
≈ +

∂∑

≈
 

(22)
 

( ) ( )

( )
1 2

1 2
1

, , ,

  , , ,

R R R Rm

m
c c c r
R R Rm R

i Ri

R R X R x x x

RR x x x x
x iδ

=

= =

∂
≈ +

∂∑

≈
 

(23)
 

According to Eqs. (8), (9) and (22), the center  
and radius  of the interval 

cS
rS IS  can be determined as 

follows 

( )1 2, , ,c c c c
S S SlS S x x x= , 

1

l
r r

Si
i Si

SS x
x=

∂
=

∂∑  (24) 

Therefore, stress-interval IS  the of structure is 

,I c r c rS S S S S⎡ ⎤≈ − +⎣ ⎦   (25)  

According to Eqs. (8), (9) and (23), the center  
and radius  of the interval 

cR
rR IR  can be determined as 

follows 

( )1 2, , ,c c c c
R R RmR R x x x= , 

1

m
r r

Ri
i Ri

RR
x=

∂
=

∂∑

Therefore, strength-interval IR  of the structure is 

,I c r c rR R R R R⎡ ⎤≈ − +⎣ ⎦    (27) 

According to the stress-strength interference 
model, the reliability criterion of structure design is that 
the stress of the structure is less than or equal to the 
strength of the structure. Therefore, based on the principle 
of satisfaction degree of interval, a nonprobabilistic reli-
ability of the structure can be defined as the satisfaction 
degree between the stress-interval IS  and the strength-
interval IR . For the definition of the satisfaction degree of 
the relation I Ix y≤  in Eq. (11), there are also five cases 
between I IS R≤  as same as the I Ix y≤  which shown in 
Fig. 2. The satisfaction degree of the relation I IS R≤  or 
reliability becomes 

( )
( ) ( )

( ) ( )

1 1

1 2

1 3
2

4

0 5

S S

R R
I I

I I

R R

S S
I I

case

dS dR
case

S R

P S R case

dS dR
case

S R

case

ω ω

ω ω

⎧
⎪
⎪
⎪ −
⎪ ⋅
⎪
⎪≤ = ⎨
⎪
⎪
⎪
⎪ ⋅⎪
⎪
⎩

∫ ∫

∫ ∫

 (28) 

By the definition of the satisfaction degree of the 
relation I IS R≤ , the value of ( )P •  varies from 0 to 1. 

When ( )P •  is equal to 1, it means that the stress-interval 
IS  is absolutely smaller than the strength-interval IR  and 

the structure is in the state of safety which is denoted by 
case 1 in Fig. 2. When ( )P •  is equal to 0, it means that the 

stress-interval IS  is absolutely larger than the strength-
interval IR  and the structure is in the state of failure which 
is denoted by case 3 in Fig. 2. When ( )P •  is equal to 
some value between 0 and 1, it means that the stress-
interval IS interfered with the strength-interval IR  and the 
structure may be safety or may be failure. 
 
5. Illustrative example 

 
Gears are widely used in many practical engineer-

ing systems. The gear transmission system plays an impor-
tant role in modern industry. However, in the process of 
gear meshing, contact stress will be produced which causes 
pitting. Systems including gears meshing shocks with the 
increase of the pitting, which will lead to the decrease of 
the transmission efficiency and accuracy. Therefore, con-
tact fatigue analysis is necessary and important for increas-
ing the reliability of gear transmission. In this section, the 
nonprobabilistic reliability of the contact fatigue of a pair 
of spur gear meshing of a reducer is calculated. Main pa-
rameters of the gear pairs used in the example are de-
scribed as: modulus 4 mmm = ; tooth number of two gear 
are 1 14,z =  2 47;z =  torques are 1 353 Nm,T =  

x  (26) 
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2 1180 Nm;T =  rotation speed are  
 pitch diameters are  
 respectively; width of the tooth 

1 76.5 r/min,n =

2 22.8 r/min;n = 1 56.57 mm,d =

2 189.89 mmd =

46 mm;b =  material of the pinion:  20MnTiB,
HRC = 56~62; material of the gear: 40 , Cr HRC = 50~56; 
life of the reducer: 1000 h. 

0 0

0 0 0

S S

S S S

R R

R R R

a b

c d e

R S= R S=

R S= R S= R S=

S S

S S S

S S

S S S

R
R

R R R

R R

R R

R

 
Fig. 2 Five cases for the relation  :  a - case 1; b - case 2; c - case 3; d - case 4; e - case 5I IS R≤

According to reference [26], the calculated con-
tact stress Hσ  is denoted by the formula   

1

H R
H E t O V S

I

K Z
Z F K K K

bd Z
σ =   (29) 

where EZ  is an elastic coefficient; tF  is the transmitted 
tangential load; OK  is the overload factor; VK  is the dy-
namic factor;  is the size factor; SK HK  is the load-
distribution factor; b  is the width of the tooth;  is the 
pitch diameter of the pinion; 

1d

RZ  is the surface condition 
factor; IZ  is the geometry factor.  

According to the nonprobabilistic reliability 
model presented in this paper, all the parameters in 
Eq. (29) are described with interval variables.  

By means of Eq. (23), the center and radius of the 
calculated contact stress Hσ  are 

1350.04 MPa, 118.05 MPa c r
H Hσ σ= =   (30) 

According to reference [26], the contact fatigue 
strength HSσ  is denoted by the formula 

N WHP
HS

H

Z Z
S Yθ

σ
σ =   (31) 

where HPσ  is the surface fatigue strength; HS  is the 
AGMA factor of safety; NZ  is the stress cycle life factor; 

WZ  is the hardness ratio factor; Yθ  is the temperature fac-
tor. Similarly, all the parameters in Eq. (31) are described 
with interval variables.  

The center and radius of interval variables in Eqs. 
(29) and (31) are expressed in Table  [27]. 

By means of Eq. (26), the center and radius of the 
contact fatigue strength HSσ  are   

1661.33 MPa, 207.67 MPac r
HS HSσ σ= =  (32)  

Thus, from the relation I I
H HSσ σ≤  shown in 

Fig. 3, the satisfaction degree of the relation I I
H HSσ σ≤  or 

the reliability of the contact fatigue is 

( ) ( ) ( )
1 0

H H

HS HS
H HS

I I
H HS I I

H HS

d d
P

σ σ

σ σ
σ σ

σ σ
ω σ ω σ

≤ = − =
•

∫ ∫
.9989  (33) 
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            Table 

Center and Radius of uncertain parameters 

Uncertain parameters Center Radius 

EZ ( )MPa  189.8 17.1 

tF (N) 12480 1248 

OK  1 0.01 

VK  1.04 0.04 

SK  1.00 0.01 

HK  1.496 0.40 
b (mm) 46 0.01 

1d (mm) 56.57 0.01 

RZ  1.02 0.02 

IZ  1.07 0.01 

HPσ ( )MPa  1495.2 164.9 

HS  1.35 0.03 

NZ  1.5 0.04 

WZ  1.00 0.02 
Yθ  1.00 0.01 

 

Hσ

HSσ

HS Hσ σ=

1232.0 1468.1

1453.7

1468.1

 

Fig. 3 The relation of I I
H HSσ σ≤  

From Eq. (33), the satisfaction degree of the rela-
tion I I

H HSσ σ≤  or the reliability is very close to 1. It indi-
cates that the gear transmission of the reducer is very reli-
able. If all the parameters in the example are of uniform 
distribution, for example, HPσ  follows the uniform distri-
bution [ ]1330.3, 1660.1 , from the Monte Carlo simulation, 
the reliability R , Obviously, the nonprobabilistic reli-
ability is a little smaller than the probabilistic reliability 
and it means that if the calculated result by nonprobabilis-
tic approach is thought to be reliable, the calculated result 
by probabilistic approach is absolutely reliable. From the 
result there is a conclusion that the method proposed in the 
paper is not as same as the probabilistic reliability method 
which assumes that all the variables are of uniform distri-

bution. The nonprobabilistic method is more conservative 
than probabilistic method because there is no human as-
sumption for system parameters distribution. 

1≈

 
6. Conclusions 
 

1. For the structural reliability analysis, the stress 
and strength are the function of several interval variables. 

The approximations ( )1 2
1

, , ,
l

c c c r
S S Sl Si

i Si

SS S x x x x
x

δ
=

∂
≈ +

∂∑  

and ( )1 2
1

, , ,
m

c c c r
R R Rm R

i Ri

RR R x x x x
x iδ

=

∂
≈ +

∂∑  for the stress 

and strength are implemented with the first order Taylor 
series to guarantee the computational efficiency and accu-
racy of the reliability analysis. 

2. Comparison of results between the proposed 
nonprobabilistic method and the probabilistic method has 
shown that the reliability by using the proposed nonprob-
abilistic method ( 0.9989R = ) is a little smaller than using 
the probabilistic method (R ). Hence it is reliable with 
the proposed nonprobabilistic method.    

1≈
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KONSTRUKCINIS NETIKIMYBINIS AIBĖS 
PATIKIMUMO MODELIS PAGRĮSTAS PATIKIMU 
INTERVALO DYDŽIU 

R e z i u m ė 

Inžinerinėse konstrukcijose daugiausia susiduria-
ma su dviejų tipų neapibrėžtumu. Pažintinis neapibrėžtu-
mas atsiranda dėl informacijos neišsamumo arba jos igno-
ravimo, o rizikingas neapibrėžtumas – dėl paveldėto nepa-
stovumo. Priklausomai nuo daugelio neapibrėžtumų ir ne-
aiškumų įtakos gautai informacijai, visos atsitiktinių dy-
džių tikimybės arba tikimybių pasiskirstymas yra arba tiks-
liai žinomi, arba tiksliai jų nustatyti negalima. Sprendžiant 
daugelį konstrukcinio patikimumo problemų, trūksta in-
formacijos apie neapibrėžtus parametrus. Intervalo kinta-
mojo parinkimas yra patogus ir efektyvus būdas apibūdi-
nant neapibrėžtumą. Remiantis šiuo metodu, straipsnyje 
siūlomas naujas netikimybinis konstrukcinio patikimumo 
aibės modelis, paremtas patikimu intervalu ir jo analize. 
Konstrukcijos netikimybinis patikimumas yra nustatytas 
kaip leistinas dydis tarp įtempių ir jėgos intervalų. Šiame 
darbe aprašytas netikimybinio patikimumo modelis yra 
panaudotas praktinei inžinerinei krumpliaratinės pavaros 
kontaktinio nuovargio patikimumo analizei. Gauti patikimi 
ir svarbūs rezultatai. 
 
 
H.-Z. Huang, Z. L. Wang, Y. F. Li, B. Huang, N. C. Xiao, 
L. P. He 
 
A NONPROBABILISTIC SET MODEL OF 
STRUCTURAL RELIABILITY BASED ON 
SATISFACTION DEGREE OF INTERVAL 

S u m m a r y 

In engineering structural systems, two types of 
uncertainty exist in systems widely. Epistemic uncertainty 
comes from incomplete information or ignorance while 
aleatory uncertainty derives from inherent variations. Due 
to the influence of many uncertainties and vagueness in the 
available information, all probabilities or probability dis-
tributions of random variables are precise known or perfect 
determination is impossible. For many structural reliability 
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problems lacking information of the uncertain parameters, 
interval variable is a convenient and effective selection for 
the uncertainty description. According to this method, this 
paper suggests a new nonprobabilistic set model of struc-
tural reliability based on interval analysis and the satisfac-
tion degree of the interval. The nonprobabilistic reliability 
of a structure is defined as the satisfaction degree between 
the stress-interval and the strength-interval. With the non-
probabilistic reliability model presented in this paper, a 
practical engineering example of the contact fatigue reli-
ability analysis for the gear transmission is calculated and 
the result is reasonable and reliable. 

Х.-З. Хуанг, З.Л. Ванг, И.Ф. Ли, Б. Хуанг, Н.Ц. Хиао, 
Л.П. Хе 

КОНСТРУКЦИОННАЯ НЕВЕРОЯТНОСТНАЯ 
МОДЕЛЬ НАДЕЖНОСТИ МНОЖЕСТВА, 
ОСНОВАННАЯ НА НАДЕЖНОЙ ВЕЛИЧИНЕ 
ИНТЕРВАЛА 

Р е з ю м е 

В инженерных конструкциях в основном 
встречаются два типа неопределенности. Различитель-

ная неопределенность познания появляется из-за не-
полной информации или ее игнорирования, а риско-
ванная неопределенность – из-за наследственного не-
постоянства. В зависимости от влияния многих неоп-
ределенностей и неясностей на полученную информа-
цию все вероятности случайных величин или распре-
деления вероятностей являются точно известными или 
точное их определение невозможно. Для многих про-
блем конструкционной надежности неполная инфор-
мация из-за неопределенности параметров. Подбор 
переменной интервала является подходящим и эффек-
тивным выбором для описания неопределенности. 
Применяя этот метод, авторы предлагают новую неве-
роятностную модель конструктивной надежности 
множества, основанную на анализе и надежности ин-
тервала. Невероятностная надежность конструкции 
определяется как допустимая величина между интер-
валами напряжения и силы. Модель невероятностной 
надежности, предложенная в данной работе, применя-
лась для практического инженерного анализа контакт-
ной усталости зубчатой передачи. Получены достовер-
ные результаты. 
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