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1. Introduction 

A new type of rock fracture toughness specimen, 

cracked chevron notched Brazilian disc (CCNBD) was pro-

posed by the International Society for Rock Mechanics, 

ISRM, in 1995 [1]. Before the method was proposed, a lot 

of pre-researches had been carried out and the calibration 

result and stress intensity factor of CCNBD were obtained 

[2-3].  Because of the difficulty in processing precision of 

CCNBD, a cracked straight through Brazilian disc (CSTBD) 

was proposed to determine the fracture toughness of rock 

[4-5]. And then, the CSTBD was widely used to study the 

dynamic and static fracture toughness of rock and some use-

ful consequences were gained [6-9]. It was suggested that 

the test of CSTBD was an effective method to determine the 

Mode I fracture toughness of rock. 

There were also many types of research on the split 

experiment of square specimens instead of Brazilian disc. 

And some calculation formulas of tensile strength were 

given according to the engineering experience [10-12]. 

There was still a discussion on the stress distribution and 

failure mechanism of square specimens under splitting load. 

In the pre-research of this paper, the tensile stress distribu-

tion function of the rectangular specimen under splitting 

load was derived based on Fourier Series Solution. The 

maximum tensile stress was showed at a certain point in the 

specimen’s symmetry axis and the damage initiated because 

the maximum tensile stress reaching its tensile strength. The 

splitting tensile strength formula of rock with a rectangular 

specimen was established [13-14]. According to the stress 

distribution of the uncracked square specimen, the stress in-

tensity factor of cracked straight through square specimen 

(CSTSS) will be established and the shape function will be 

calibrated through FEM in this paper. 

2. Theoretical formula 

For a rectangular specimen with a length of a2 , 

the width of b2 , and a thickness of t under a pair of split-

ting loading q (Fig. 1), the load distribution can be de-

scribed according to Fourier Series stress calculation theory 

[13-14]. 

This is an example of an equation: 
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Fig. 1 Schematic diagram of plane force 

The actual load can be supposed as: 
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The load can be expanded into the form of Fourier 

Series: 
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Where qu and ql are upper and lower boundary load, 

q is cushion block load, 2c is the width of the cushion block, 

2b and 2a are the height and length of the specimen, m is an 

arbitrary positive integer. 

When 2c is close to 0, the distributed load is re-

duced to concentrated force: 
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The general form of the solution of the stress by 

Fourier Series method is: 
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where: 
a

m
  .The normal stress of any position within 

the specimen can be calculated through the Eq. (4-7): 
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The normal stress of rectangular specimen under 

splitting load can be determined by Eq. (6) and the normal 

stress on the axis of symmetry can be expressed as [13]: 
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where:  by / is shape factor and 
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For square specimen, a is equal to b and  by /

can be described as: 
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For different positions on the y axis,  by /  can 

be approximation calculated according to Eq. (7). But the 

convergence times of the shape function is increased with 

the increase of y/b. The maximum tolerance is 1E-8 and the 

maximum number of convergence is 30 which have been 

listed in Table 1. The calculated results are also in agree-

ment with the finite simulation results [14]. The expression 

of  by /  can be fitted as: 
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Fig. 2 Schematic diagram of the coordinate system of the 

square specimen under splitting load 

Table 1 

Calculation results of the shape factor 

y/b (y/b) 

0 0.1013 

0.1 0.1031 

0.2 0.1085 

0.3 0.1173 

0.4 0.1297 

0.5 0.1454 

0.6 0.1643 

0.7 0.1865 

 

A specimen of rock-like material produced by 

white cement was introduced to verify the correctness of the 

formula. As shown in Fig. 3, the strain gauge 1 ~ 5  was 

fixed on the vertical symmetry axis of the specimen surface 

to test the tensile stress during the process of splitting load-

ing.  
 

 
 

Fig. 3 Schematic diagram of the strain test 

It can be seen from Fig. 4 that the tensile strain ap-

proximation increases linearly with the increase of the load. 

The maximum tensile stains are the strain gauge 1 and 5 

and the minimum strain occurs at the center position,3, as 

shown in Fig. 4, a. The difference between 1, 5 and 3 

gradually increase with the increase of load. And then the 

stain of 1 reaches its peak value and the crack is initiated 

from 1 and then extend to other strain gauges. The theoret-

ical stress at different locations can be obtained according 

to the Eq. (7). The elastic modulus, E, and Poisson ratio,, 

of this kind of rock-like material were determined by exper-

iments as E=4.68 GPa and =0.22. Based on the stress and 

strain formula, the measured stress value can be obtained 

and the comparison results between the measured value and 
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theoretical value are plotted out in Fig. 4, b. It can be indi-

cated that the theoretical value and the measured value are 

in agreement with the variation of the load. 
 

 

a 

 

b 

Fig. 4 Strain distribution: a - measured value; b - compari-

son of the measured value and theoretical value 

 

3. The stress intensity factor of CSTSS 

The stress intensity factor (SIF) is an important in-

dex of brittle fracture which can consider the singularity of 

the crack tip stress and effectively reflect the strength of the 

elastic stress field of the crack tip [15-16]. There is a lot of 

traditional solution of SIF, such as stress function method, in-

tegral transform method, finite element method, boundary el-

ement method, and boundary collocation method, whose 

computational accuracy is limited by the number of units. 

Similar to the domain integral method for J-Integral evalua-

tion, the interaction integral method for stress-intensity fac-

tors calculation applies area integration for 2-D problems and 

volume integration for 3-D problems. In comparison to the 

traditional displacement extrapolation method, the interaction 

integral method offers better accuracy, fewer mesh require-

ments, and ease of use [17-20]. 

3.1. Calculation of stress intensity factor based on interac-

tion integral method 

An auxiliary field of the crack tip is established to 

separate and obtain the Mode I and the Mode II stress inten-

sity factor in the real field for the interaction integral 

method. Around the crack tip, the auxiliary field must sat-

isfy the equilibrium conditions, the physical equations and 

the geometric relationship of any possible displacement 

field and stress field [21].

 The interaction integral is defined as: 
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where: ki
 , kj

 , ki
u  are the stress, strain and displacement, 

aux

kj , 
aux

iku
, are the stress, strain and displacement of the aux-

iliary field, jiq
,  is the crack-extension vector, The interac-

tion integral is associated with the stress-intensity factors as: 
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where: KI, KII, KIII are Mode I, II, and III stress intensity fac-

tors, aux

I
K , aux

II
K , aux

III
K are auxiliary Mode I, II and III stress 

intensity factors, E*=E for plane stress and E*=E/(1-2) for 

plane strain, E is Young’s modulus, is Poisson’s ratio, G 

is shear modulus. 

For the plane problem, KIII can be ignored. Two 

auxiliary field conditions are 1
aux

I
K , 0
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II
K  and 

0
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I
K , 1
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II
K , respectively. The Mode I and Mode II 

stress intensity factors can be obtained through the two in-

teraction integral calculation by Eq. (14): 
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3.2. Finite element calculation accuracy verification 

A calculation example is introduced to verify the ac-

curacy of the interaction integral method. As shown in Fig. 5, 

the specimen of the cracked rectangular block was taken a 

load of the tensile stress of 2 MPa. The application of bound-

ary conditions and meshing are shown in Fig. 6. The width, b, 

half height, h, thickness, t, and edge crack length, a, are 20mm, 

80mm, 3mm, and 8mm separately. The Young’s modulus and 

Poisson’s ratio are 201 GPa and 0.258 separately. The Mode 

I stress intensity factor can be determined as:  
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Fig. 5 Schematic diagram of a calculation example 

Crack tip  

Fig. 6 Boundary conditions and mesh generation 
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The FEM results are compared with the exact solu-

tion of different crack lengths, which was listed in Table 2. It 

can be seen that the maximum error was about 0.646%. The 

interaction integral method can meet the requirement of engi-

neering well.  

Table 2 

Accuracy validation results of calculation example 

a, mm a/b 
,

FEM

I
K

MPa×m1/2 

[23]
,

I
K

MPa×m1/2 
Error, % 

2 0.1 0.189 0.188 -0.403 

4 0.2 0.307 0.308 0.423 

6 0.3 0.456 0.457 0.339 

8 0.4 0.669 0.670 0.107 

10 0.5 1.001 1.008 0.646 

12 0.6 1.566 1.573 0.451 

3.3. Stress intensity factor calibration of CSTSS 

A cracked straight through square specimen under 

splitting load with a thickness of t , a width of b2 , a crack 

length of a2 , shown in Fig. 7. The tensile stress of the same 

size uncracked specimen can be obtained by Eq. (9):  
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According to the general form of the Mode I stress 

intensity factor, the calculation formula for the Mode I frac-

ture toughness, 
ICK , of CSTSS can be expressed as:
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where: PM is peak load and  baF /  is shape factor which can 

be calibrated by FEM. 
 

x

2b

2
b

y

P

P

a

Crack tip

Crack tip

 
 

Fig. 7 Boundary conditions and mesh generation of CSTSS 

 

The calibrated results of  baF /  through ANSYS inter-

action integral method was listed in Table 3. The shape factor, 

 baF / , decrease with the increase of a/b (Fig. 8). The for-

mula of  baF /  can be obtained by polynomial fitting: 
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Fig. 8 Variation of shape factor 

Table 3  

Calibration result of stress intensity factor 

a a/b (y/b) KI F(a/b) 

5.0 0.143 0.105 43.697 1.457 

7.5 0.214 0.109 55.072 1.437 

10.0 0.286 0.116 66.055 1.411 

12.5 0.357 0.124 77.277 1.380 

15.0 0.429 0.134 89.048 1.344 

17.5 0.500 0.145 101.520 1.306 

20.0 0.571 0.158 114.710 1.266 

22.5 0.643 0.173 128.587 1.224 

4. Test results 

A specimen of rock-like material produced by white 

cement was introduced to test the Mode fracture toughness of 

CSTSS (Fig. 9). The specific specimen size was shown in Ta-

ble 4. Displacement control was adopted in the experiment, 

and the loading rate was limited in 5 mm/min. The peak load 

was obtained after the experiment and substituted into the 

Eq. (13). The calculation results of KIC was listed in Table 4. 

It was indicated that the values of KIC were stabilized in rela-

tive range and the average value of KIC was 0.140MPa×m1/2. 

 

Fig. 9 Loading diagram of CSTSS 

Table 4 

KIC test results of CSTSS 

t, mm PM, kN F, a/b KIC (MPa×m1/2) 

28.71 2.275 1.410154 0.130795 

29.40 3.315 1.410154 0.186104 

25.17 2.115 1.410154 0.138700 

29.40 2.353 1.410154 0.132122 

33.50 2.628 1.410154 0.129465 

27.00 2.044 1.410154 0.124936 
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In order to verify the reliability of Mode I fracture 

toughness test method of the CSTSS, a three-point-bend frac-

ture toughness test experiment of the same rock-like material 

was introduced as a comparison experiment (Fig. 10). The 

length, L, and the span, S, of the specimen are 250 and 

200 mm separately.  

P

S

L

W

B

W
a

 

Fig. 10 Three-point-bend experiment 

The Mode I fracture toughness of the three-point 

bending beam can be expressed as:
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Where are PM, B, W and a are peak load, length, height and 

crack length separately. F is shape factor and: 
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The KIC test results of the three-point-bend experi-

ment were listed in Table 5. The average value of KIC was 

about 0.158 MPa×m1/2 which was slightly larger than that of 

CSTSS. It can be indicated through a comparison of Table 4 

and Table 5 that the test results of KIC by the two methods 

show a good agreement. Both the CSTSS and the three-point 

bend experiments are effective methods to determine the KIC 

of rock. 

Table 5 

KIC results of the three-point-bend experiment 

W, mm B, mm PM, N F KIC, MPa×m1/2 

47 52 222 2.175 0.158237 

46 51 239 2.210 0.184617 

47 55 197 2.175 0.133195 

5. Conclusions 

1. Calculation formula of tensile stress of square 

specimen under splitting load was obtained through Fourier 

Series Solution of plane stress problems. And an experiment 

of testing strain was introduced to verify the correctness of 

the formula. The test results showed that the tensile strain 

approximation increases linearly with the increase of the 

load and the theoretical value and the measured value were 

in agreement with the variation of the load. 

2. Based on the tensile stress distribution of the 

uncracked specimen and the general form of the Mode I 

stress intensity factor, the calculation formula of Mode I 

fracture toughness of cracked straight through the square 

specimen, CSTSS, under splitting load was obtained and the 

shape function was calibrated through finite element inter-

action integral method.  

3. A rock-like material was used to produce 

CSTSS and three-point bend beam specimens. The Mode I 

fracture toughness KIC was tested through CSTSS split ex-

periment and three-point bend experiment. The average 

value of KIC of the two different methods was well agree-

ment. It was suggested that the CSTSS under splitting load 

can be a potential method to determine the Mode I fracture 

toughness of rock. 
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Lijuan ZHANG, Zhi WANG, Long LI 

EXPERIMENTAL STUDY ON MODE I FRACTURE OF 

CRACKED STRAIGHT THROUGH THE SQUARE 

SPECIMEN (CSTSS) 

S u m m a r y 

Analytical solution of tensile stress of square spec-

imen under splitting load was obtained through Fourier Se-

ries Solution of plane stress problems. According to the 

stress distribution of the un-cracked square specimen, the 

calculation formula of Mode I fracture toughness of cracked 

straight through the square specimen, CSTSS, under split-

ting load was obtained, and the shape function was corrected 

by the finite element interaction integration method. In order 

to verify the correctness of the formula, a CSTSS splitting 

test was performed. The test results indicated that the stress 

distribution on the axis of symmetry is consistent with the 

theoretical results, and the minimum tensile stress occurs at 

the center point of the un-cracked specimens. The Mode I 

fracture toughness of CSTSS, KIC, was stabilized in relative 

range and the average value of KIC was 0.140 MPa×m1/2. 

The three-point-bend experiment was introduced as a com-

parative test and the average value of KIC was 

0.158 MPa×m1/2 which was slightly larger than that of 

CSTSS. The test results indicated that both of the two tests 

could be reliable and the CSTSS under splitting load could 

be a potential method to determine the Mode I fracture 

toughness of rock. 

Keywords: cracked straight through the square specimen 

(CSTSS), Model I fracture toughness, splitting load, finite 

element interaction integral method, rock-like materials. 

Received March 16, 2019 

Accepted February 03, 2020

 


