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1. Introduction 

 

Nonlinear phenomena in the presence of certain 

discontinuity represent the area of interest of numerous 

researchers from all over the world. Theoretical knowledge 

of vibro-impact systems (see references [1-3]) are of par-

ticular importance to engineering practice because of the 

wide application of vibro-impact effects, used for the reali-

zation of the technological process. The analysis of mathe-

matical pendulum with and without “turbulent” attenuation 

and papers published by Katica (Stevanovic) Hedrih [4, 5] 

related to the heavy mass particle motion along the rough 

curvilinear routes are the basis of this work. Based on the 

original works from the area of non-linear mechanics, or 

vibro-impact systems by the authors: František Peterka  

[6-8], Katica (Stevanovic) Hedrih [9], and the others, and 

the previous works of the authors of this paper [10-15] in 

which the authors analyzed several variants of vibro-

impact system with one degree of freedom, based on the 

oscillator moving along a rough circle, sliding Coulomb-

type friction and limited elongation, in this paper the vibro-

impact system with two degrees of freedom, based on 

forced oscillations of two heavy mass particles, mass m1 

and m2 moving along rough circle in vertical plane, sliding 

Coulomb-type friction and limited elongation is studied 

(Fig. 1). 

The elongation limiter is set on the right. The li-

miter position is determined by the angle δ1, measured 

from the equilibrium position of the mass particles, i.e. 

from the vertical line crossing the centre of the circular 

line. The system consists of two mass particles, m1 and m2, 

exposed to the effect of gravity. These mass particles are 

moving along rough circle in vertical plane on which the 

two sided impact limiters of elongation (constraints) were 

placed. The limiter position is determined by the angle δ, 

measured from the equilibrium position of the mass par-

ticles, i.e. from the vertical line crossing the centre of the 

circular line. The limiter set on the right side from the 

equilibrium position, defined by the angle δ1 is stable. The 

first mass particle is affected by the external periodic force 

 
11 10 1F t F F cos t   , where F10 is the corresponding 

force amplitude, and Ω1 is the frequency of external force. 

The angular elongations of the first and second mass parti-

cles in an arbitrary moment t were marked by φ1, φ2 re-

spectively, and measured from the equilibrium position. At 

the initial moment of time the material points were on the 

distances φ10, φ20 from the equilibrium position 0-0, and 

were given the initial angular velocities, 10 , 20 . 

 

 

 

 

 a b 

Fig. 1 System with two elongation limiters, based on oscillator with two pellets a – initial position mass particles, b – force 

diagram 
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The task is to consider the properties of forced os-

cillation of the first and second mass particles in a circular 

rough line with limited elongations, so the system becomes 

vibro-impact with one sided limited angular elongation. 

The differential equations of motion of the mass particles 

are requested for each interval of motion from impact to 

impact, from collision to collision, and the interval of mo-

tion when the friction force direction alternation appears 

associated with the direction alternation of angular velocity 

of motion of a mass particle, and also velocity alternation 

as a consequence of the mass particle impact into the angu-

lar elongation limiter and mutual impact of the mass parti-

cles. 

Differential equations are matched to the initial 

motion conditions, system elongation limitation conditions, 

the mass particles impact conditions, and alternation condi-

tions of friction force direction. Also, it was necessary to 

determine the impact conditions of both mass particles 

separately, the phase trajectory equations in phase planes 

and the mass particles collision conditions in ideally elastic 

impacts. Determine after how many impacts the system 

will stop behaving as vibro-impact system? 

 

2. Differential equation of oscillations of a mass  

particle moving along rough circle 

 

The observed vibro-impact system has two de-

grees of freedom, so the corresponding governing non-

linear differential equations of motion presented as 
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for 0 tg is sliding Coulomb-type friction coefficient, 

φ1, φ2 are generalized coordinates for monitoring motion of 

the first and second mass particles. 

This system of double differential non-linear 

equations is coupled by initial motion conditions: 

a) the first mass particle (pellet 1), in further text 

is marked with subscript 1 

  101 0
   and    101 0

  ; (3) 

b) the second mass particle (pellet 2), in further 

text is marked with subscript 2 

  202 0
  and    202 0

  . (4) 

At the initial moment of motion, the mass parti-

cles were given the positive initial angular velocity 

 1 20, 0   . 

For the complete description of the observed vi-

bro-impact system are needed to be set, and also matching 

of limitation conditions angular elongations and impacts to 

the elongations limiters. 
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 (5) 

where k is coefficient of collision (impact), within the in-

terval from k = 0 for ideal plastic collision to k = 1 for ideal 

elastic collision (impact), and n is the number of impacts 

until the system is returned into the equilibrium position. 

The differential equation of motion of the second 

pellet (2) can be solved in analytical form, so its first inte-

ger is phase trajectory equation in form of 
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, 

where C is integration constant depending on the initial 

motion conditions. 

For graphic presentations of the phase trajectories 

in the individual motion intervals of the second mass parti-

cle we use software package MathCad 14. 

The differential equation of motion of the first 

heavy mass particle (1) cannot be solved explicitly (in a 

closed form). For its approximate solution the software 

package WOLFRAM Mathematica 7 is used. The results 

are checked by using software package MATLAB R2008a. 

 

3. Motion analysis of the vibro-impact system 
 

The operational system of the mobile angular 

elongation limiter, which is positioned on the right side 

from the equilibrium position is based on the fact that the 

system is pulled by the impact of the pellet, and returned to 

the initial position by the impact of the pellet into the elon-

gation limiter set on the left side from the equilibrium posi-

tion. This system creates the motion of: 

The first mass particle, mass m1, within the inter-

val from the impact to the second mass particle , mass m2, 

to the impact into elongation limiter set on the right side 

(δ1), or to the impact into angular elongation limiter set on 

the left side (2π – δ2), or, to the first mass particle motion 

alternation (when it happens). There is a possibility for the 

first pellet to have an impact into elongation limiter to the 

left (2π – δ2), then itreaches the alternation point and hits 

again into the same elongation limiter. 

Motion the second mass particle, mass m2 is in the 

interval from the impact with the first mass particle , mass 

m1, to the impact into angular elongation limiter set on the 

left (δ2), or to the impact into angular elongation limiter set 

on the right (δ1), i.e. to the second mass particle motion 

direction alternation (when it happens). There is a possibil-

ity that the second mass particle has an impact into elonga-

tion limiter to the left (δ2) reaches the alternation point, and 

hits again into the same elongation limiter. 

For the determination of phase portrait branches 

of the first and second heavy mass particle individually, 

the motion of the heavy mass particles along rough circle 

line is divided into corresponding motion intervals and 

subintervals. 

The first pellet – the first motion interval repre-

sents the interval from the initial time until the first impact 
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of the pellet 1 into the angular elongation limiter on the 

right side. 

The first motion interval of the first mass particle 

corresponds to the differential Eq. (1) of motion for 

1 0  . 

The impact conditions are  
1ult t  ,  

11 1ult   , 

 
1 11 1ul ult   . 

 

 

 a b 

Fig. 2 Phase trajectory curve for the first mass particle in the first motion interval: a - in time t = 0.02 s, b - in time t = 12 s 

 

Phase trajectory  11 1f   in the first motion 

interval (that will be used for the determination of the ve-

locity of the mass particle impact into the angular elonga-

tion limiter) defined by using the software package Wolf-

ram Mathematica 7 (also used for all other graphic presen-

tations) is presented in Fig. 2. 

The parameter values are:  1 rad ,
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The angular velocity of the first mass particle into 

elongation limiter  
11ul is read from the phase trajectory, 

presented in Fig. 2, a. The time interval of the first heavy 

mass particle impact into elongation limiter  
11ult  is de-

termined by using software package MATLAB R2008a. 

Both values (
11ul  and 

11ult ) are taken for the angle where 

the elongation limiter is positioned. 

The second pellet – the first motion interval rep-

resents the interval from the initial moment until the first 

collision of the pellet 2 to the pellet 1. 

The first motion interval of the second mass parti-

cle corresponds to the differential Eq. (2) of motion for 

02  , matching the initial conditions (2). 

The phase trajectory  21 2f   in the first mo-

tion interval is presented in Fig. 3. 

The parameter values are:  20 rad ,
12


    
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6 ,

s

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  0 5 m ,R .  0 0 05,.    2 0 2 kg ,m .  

2

m
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s
g .

 
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 
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The second pellet's phase trajectory, shown in 

Fig. 3, b, points on the periodic motion of the second pel-

let. 

For the further study it was necessary to define 

the position of the pellet 2 when the pellet 1 reaches the 

elongation limiter. The position of the second pellet 

 
12 1ult  in time 

11ult  is determined by using MATLAB-u 

R2008a. 

After the definition of the position  
12 1ult  angu-

lar velocity of pellet 2 at the moment when from pellet 1 

reaches the elongation limiter can be read from graphic 

presentation of the phase trajectory  21 2f   (presen-

ted in Fig. 3, a).  

The mass particles have an impact in the second 

motion interval of the first mass particle and in the first 

motion interval of the second mass particle. 

The first mass particle – the second motion inter-

val  is an interval from the first impact into elongation lim-

iter to the first heavy mass particles collision. 
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The second motion interval of the first mass parti-

cle corresponds to the differential equation of motion in 

form of (1) for 1 0  , matched to the initial conditions of 

motion 



111 ul

tt ,  
11 1 1ult   ,  

1 1 11 1 1 1ul odl ult      . 

 

 

 

 a b 

Fig. 3 Phase trajectory curve of the second mass particle in the first motion interval: a - in time t = 0.1 s, b - in time t = 10 s 

 

Phase trajectory  12 1f   in the second mo-

tion interval is presented in Fig. 4. 

Further analysis is based to the definition of time 

interval in which the first collision occurs. After the defini-

tion of the moment of the first impact 
1sudt  the angle 

1sud  

is determined as a basis for further motion analysis of the 

pellets. 

 

 

 
 a b 

Fig. 4 Phase trajectory curve of the first pellet in the second motion interval: a - in time t = 0.03 s, b - in time t = 6 s 
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The initial data for the determination of the time 

interval 
1sudt  are: 

a) for the first pellet  
11 1 1ult  , 

 
1 1 11 1 1 1ul odl ult     , 12 1T ,a R ; 

b) for the second pellet  
12 1ult ,   12 2 1ult  , 

21 2T ,a R . 

NOTE: In the previous expressions the indexes ij 

present: i - pellets number; j - motion interval number. 

The condition for the time 
1sudt definition is 
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Time 
1sudt  is determined from the relation 
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The accelerations 12  and 21 were approximate-

ly determined (with sufficient accuracy) as the median 

value of the average accelerations in the sub-intervals of 

the observed interval. In this case the interval 

  11 2 1ult   is divided into six equal sub-intervals. 

For the obtained value of 
1sudt  with the corre-

sponding program files from MATLAB R2008a for the 

second motion interval of the first pellet and the first mo-

tion interval of the second pellet (values must match) the 

angle of the first impact 
1sud is determined. 

Values for the angle 
1sud  can be used for the de-

termination of angular velocities of the pellets 1 and 2 im-

mediately before the first impact from the phase trajecto-

ries for the second motion interval of the first pellet 

(Fig. 4, a) and the first motion interval of the second pellet 

(Fig. 3, a) i.e. ulsud ,1 1
  and ulsud ,2 1

 . 

The mass centres of particles are positioned on 

the rough circle line, i.e. the impact centres are positioned 

on the same axes. This is about central impact. 

The expressions for explicit definition of the an-

gular velocities immediately after the impacts with using 

Law of momentum and Newton’s hypothesis about the 

relation of relative angular velocities of the mass particles 

are 
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 (8) 

The generalized coordinate 
1sud where the first 

impact appears and velocities of the pellets immediately 

after the collision odl,sudodl,sud ,
11 21    are the initial condi-

tions of motion of the pellets in the following motion in-

tervals. 

The motion analysis of the observed vibro-impact 

system is conducted up to the twelfth impact of pellets 1 

and 2. It should be mentioned that until the fourth impact 

of the pellets, the pellets are moving in zone from δ1 to δ2. 

From the fourth to the twelfth impact, the pellets are mov-

ing in zone from δ1 to 2  . After the twelfth impact of 

the pellets, the motion zone is divided, so the first pellet is 

moving in zone  1  -  2  , and the other pellet is 

moving within the zone  1  -  2 .  The first pellet influ-

enced by the external single frequency force after the 

eighth impact into elongation limiter at the coordinate 

 2   does not have a strength to cross the limit π, i.e. 

the alternation point is positioned on the distance 


ialtt ,1 , that points out that the pellet will be still after 

several impacts at the coordinate 22   . After the alter-

nation point in zone  1  -  2 , the second pellet has only 

two impacts into mobile elongation limiter set at the coor-

dinate δ1 which is not pulled inside at those moments. Af-

ter the second impact, the second pellet continues to move 

without impacts and in several motion intervals returns 

into equilibrium position 02  . The second pellet com-

pleted thirteen impacts into elongation limiter, three of 

them into stable, and ten of them into mobile elongation 

limiter. 

The graphic visualization of the motion analysis, 

performed for the observed vibro-impact system based on 

oscillator moving along rough circle line, composed of two 

ideally smooth pellets is shown in Fig. 5 and Fig. 6. The 

phase portrait of the pellet 1 is shown in Fig. 5, and phase 

portrait of the pellet 2 is shown in Fig. 6. 

 

4. Conclusions 

 

Non-linearity of the observed vibro-impact sys-

tem is due to the discontinuity of angular velocities of the 

mass particles moving along rough circle line. The discon-

tinuities of angular velocities occur at the moment of im-

pact of mass particle 1 into angular elongation limiters at 

the coordinate δ1 and  22   , at the moment of direc-

tion alternation of motion of the mass particles 1 and 2 

(when it happens), causing the alternation of angular veloc-

ity direction and friction force alternation, and at the mo-

ment of impact (collision) of mass particles. This non-

linearity is described for both mass particles by the system 

of regular non-linear differential equations, particularly by 

the second member, representing angular velocity square 

of the generalized coordinate 2 2

1 2,  . That corresponds to 

the case of turbulent attenuation. It should be mentioned 

that in the observed vibro-impact system with two degrees 

of freedom we have trigger constrained singularities, i.e. 

we have bifurcation phenomena of the equilibrium posi-

tions due to the influence of the sliding Coulomb’s friction 

force and the alternations of angular velocities direction of 

the mass particles. 

For the individual motion intervals of the mass 

particles the differential equations of motion with matched 
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Fig. 5 Phase portrait of the pellet 1 ( as a part of an oscillator) moving along rough circle line, with sliding friction force 

0 tg , with limited elongations in plane  1 1,   under the influence of external single frequency force 
1F  
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Fig. 6 Phase portrait of the pellet 2 ( as a part of an oscillator) moving along rough circle line, with sliding friction force 

0 tg , with limited elongations in plane  2 2,   
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initial motion conditions are written in this paper, related 

to the positions of the mass particles at the moment of im-

pact into elongation limiters, at the moment of motion di-

rection alternation and at the moment of collision of the 

mass particles. 

It should be noted, that with mobile elongation 

limiter set in positions “on” and “off”, in the coordinate δ1, 

after the twelfth impact of the pellets their zones of motion 

are separated. The first mass particle is calmed down at the 

position defined by the coordinate  22   , and the sec-

ond mass particle is back into the equilibrium position 

 2 0  . 

It should be noticed the methodology of the de-

termination of time and position of the mass particles in 

the moment of collision. The outgoing velocities of the 

mass particles after the impacts are determined analytically 

and time of the impact, the position of the mass particles at 

the moment of collision, and the ingoing velocities are 

determined numerically. By the numerical solutions of the 

differential equations of motion (MATLAB R20008a and 

Wolfram Mathematica 7) by using the initial motion condi-

tions, the graphic visualization of oscillations of the mass 

particles in the observed vibro-impact system with two 

degrees of freedom is given. 

The phase portraits of mass particle 1 and mass 

particle 2 are obtained by the combination of analytical and 

numerical results in the procedure of producing of graphic 

interpretations of phase trajectories in the individual mo-

tion intervals of the mass particles, with the application of 

software programs MATLAB R20008a and Corel 

Draw 12. In these phase portraits there the phenomena of 

non-linearity of vibro-impact system with two degrees of 

freedom are clearly visible. 
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DVIEJŲ KONCENTRUOTŲ MASIŲ VIBROSMŪGINIO 

JUDĖJIMO APSKRITIMINE NELYGIA  

TRAJEKTORIJA FAZINIS PORTRETAS 

 

R e z i u m ė 

 

Straipsnyje analizuojama, kaip juda vibrosmūginė 

sistema, susidedanti iš dviejų laisvės laipsnių švytuoklės, 

apskritimine nelygia trajektorija vertikalioje plokštumoje 

veikiant išorinei pastovaus dažnio jėgai. Ryšių netolygumą 

sukelia Kulono slydimo trinties koeficientas μ = tg α0. Švy-

tuoklė susideda iš dviejų masių – rutuliukų, kurių laisvas 

judėjimas apribotas dviem kampinio posūkio atramomis. 

Nesmūginis masių judesys, veikiant išorinei pastovaus 

dažnio jėgai, suskaidytas į atitinkamus intervalus, aprašo-

mas dviem judesio diferencialinėmis lygtimis, kurios pri-

skiriamos netiesinių homogeninių antros eilės diferenciali-

nių lygčių grupei. Tiriamos vibrosmūginės sistemos jude-

sio diferencialinės lygtys išspręstos naudojant programi-

nius paketus. Tirtų vibrosmūginių sistemų analitiniai ir 

skaitmeniniai rezultatai yra judesio grafinio vizualizavimo, 

kuris ir yra šių analitinių tyrimų tikslas, pagrindas. Sukurta 

smūgio, vykstančio tam tikroje padėtyje apibrėžtame laiko 

intervale, įvertinimo metodologija. 

 

 

S. Jovic, V. Raicevic 

 

THE PHASE PORTRAIT OF THE VIBRO-IMPACT 

DYNAMICS OF TWO MASS PARTICLE MOTIONS 

ALONG ROUGH CIRCLE 

 

S u m m a r y 

 

The paper is based on the analysis motion of vi-

bro-impact system based on oscillator with two degrees of 

freedom moving along the circular rough line in vertical 

plane under the influence of external single frequency 

force. Non-ideality of the bonds originates of the sliding 

Coulomb’s type friction coefficient μ = tg α0. The oscillator 

is composed of two mass particles-pellets, whose free mo-

tion is limited by two angular elongation limiter. Non-

impact motion of the mass particles under the action of 

external single frequency force, divided into appropriate 

intervals, is described by two differential equations of mo-

tion which belong to a group of ordinary non-linear homo-

geneous second order differential equations. The differen-

tial equations of motion of the observed vibro-impact sys-

tem are solved by using software packages. The combina-

tion of analytical and numerical results for the specific 

kinetic parameters of the observed vibro-impact systems is 

the basis for graphic visualization of motion which was the 

subject of this analytical research. The original contribu-

tion of this paper is in the form of established methodology 

of the process of determining time interval and position at 

the moment of collision. 

 

 Keywords: Two mass particles, rough circle, two impact 

limiters, pellet, vibro-impact, phase trajectory branches, 

graphical presentation, single frequency force. 
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