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substituting Eq. (4) in the Eq (5), after simplification the 
vibration amplitude can be calculated: 

( )

( )( )
0

2 2 2

0

M x L
A

I sin kx k c

δ

ρ ω

−

=

−

. (7) 

Taking into account obtained amplitude (7) 
Eq. (4) can be written down as: 

( )
( ) ( )

( )
0

2 2 2

0

,

M x L cos t
x t

I k c

δ ω
ϕ

ρ ω

−

=

−

. (8) 

The dynamic flexibility YG can be calculated in 
agreement with definition: 

( ) ( ),
G

x t Y M tϕ =  (9) 

and written down as: 

( )

( )2 2 2

0

G

x L
Y

I k c

δ

ρ ω

−

=

−

, (10) 

where: 

( )
( )

0 2 2

1
x L Lim

x L
ε

ε
δ

π ε
→

⎛ ⎞
⎜ ⎟− =
⎜ ⎟− +⎝ ⎠

. (11) 

In order to analyse mechanical subsystem it is 
possible to use the exact method. In case of mechatronic 
systems it is impossible, this is why the approximate 
method is used. It is important to verify accuracy of the 
approximate method by juxtaposed results of the mechani-
cal subsystem analysis using both methods. The process of 
the dynamical flexibility calculation using the exact 
method of separation of variables is well known and not 
presented in this work. 

A value of the coefficient ε was selected to draw 
the dynamic flexibility. The characteristic was calculated 
using different values and obtained results were juxtaposed 
on charts with results obtained using the exact method. The 
value of coefficient ε was selected to obtain the most simi-
lar results. Results obtained using obtained using exact and 
approximate methods - the dynamic flexibility of the me-
chanical subsystem is presented in Fig. 1. The optimal 
value of the coefficient ε was assumed in this case. One 
can see that obtained results are very similar for both 
methods. In Fig. 2 and Fig. 3 results obtained for different 
values of coefficient ε and geometric coefficient x are pre-
sented. They are also juxtaposed with results obtained us-
ing the exact method. In order to more precise results pres-
entation an absolute value of the system’s dynamic flexi-
bility is presented. In presented figures results obtained for 
the mechanical subsystem using the exact method are pre-
sented by using a continuous line, while for the approxi-
mate method a dotted line is used. 

It was proved that the approximate Galerkin method 
is very precise and can be successfully used to analyse 
mechatronic systems. It should be mentioned that inexact-
ness of the Galerkin method depends of the analysed sys-
tem’s form of vibration and the method of fixing the sys-
tem [2, 3]. 

 

Fig. 1 Juxtaposed results obtained using exact and ap-
proximate methods, when x = 0.1L, ε = 0.05 

 

Fig. 2 Juxtaposed results obtained using exact and ap-
proximate methods, when x = 0.25L, ε = 0.04 

 

 
Fig. 3 Juxtaposed results obtained using exact and ap-

proximate methods, when x = L, ε = 0.03 
 

4. Characteristic of the mechatronic system 
 

The analysed system was created by development 
of the mechanical subsystem. The sectional, cylindrical 
piezoelectric transducer is glued on the shaft surface. Ob-
tained system is a one-dimensional, discrete – continuous 
torsional vibrating mechatronic system. It was assumed 
that the transducer is perfectly bonded to the shaft surface 
– influence of a glue layer was neglected. Deformation of 
the transducer is equal to the shaft surface’s deformation. 
The considered system with bonded cylindrical piezoelec-
tric transducer is presented in Fig. 4.  
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Fig. 4 Scheme of the considered mechatronic system – 
place of the transducer application 
 

Equation of motion was written down taking into 
consideration arrangement of torques acting in the system: 

( ) ( ) ( )
( )

2 2

2

2 2

,, ,
p

M x tx t x t
c M t

xt x

∂∂ ϕ ∂ ϕ
α

∂∂ ∂
= − + , (12) 

where: 

( )

0

x L

I

δ
α

ρ

−

= . (13) 

Mp(x, t) denotes torque generated by the trans-
ducer and M(x, t) externally applied torque. The Heavis-
ide’s function was introduced into Eq. (14) to carb the 
working space of the piezoelectric transducer to partition 
from x1 to x2: 

( ) ( )

( ) ( ) ( )

2 2

2

2 2

, ,

,
p

x t x t
c

t x

M x t H x M t
x

∂ ϕ ∂ ϕ

∂ ∂

∂
α

∂

= −

⎡ ⎤− +⎣ ⎦ , (14) 

where: 

( ) ( ) ( )1 2
H x H x x H x x= − − − . (15) 

In this work it was assumed that the transducer is 
used as actuator this is why the externally applied M(x, t) 
torque was eliminated. The system is excited by the torque 
generated by the transducer so Eq. (14) can be simplified 
and written down as: 

( ) ( ) ( ) ( )2 2

2

2 2

,
, , p

M x t H xx t x t
c

xt x

∂∂ ϕ ∂ ϕ

∂∂ ∂

⎡ ⎤⎣ ⎦= − . (16) 

In this case characteristic Yp that describe rela-
tions between externally applied electric voltage and angle 
of rotation of the mechanical subsystem. This relation can 
be described by the equation: 

( ) ( ),
p

x t Y V tϕ = . (17) 

The angular displacement of the piezoelectric 
transducer was written as [1]: 

15

p

Z

L
d E

R
β = , (18) 

where Lp denotes length of the transducer, E the electric 
field intensity, d15 is the piezoelectric constant and RZ de-
notes the outer radius of the cylindrical transducer. The 
process of power supply of the transducer and its deforma-
tion is presented in Fig. 5 [1]. 

   

           a                                             b 

Fig. 5 Construction and interactions in the cylindrical pie-
zoelectric transducer [1] 

 
In Fig. 5 are presented respectively: 
a) an electric field vector E is perpendicular to the 

vector of the residual polarization Pr what causes stress S5 

described as:  

5 15
S d E= ; (19) 

b) The piezoelectric element in the form of a 
segmented ring in which segments are supplied alternately. 
The polarization inside the ring is represented by arrows. 
Depending on the set electric voltage the upper side will 
turn clockwise or counter-clockwise relative to the bottom 
by an angle β [1]. 

By rearranging Eq. (16) taking into account 
Eq. (4), after similar transformations as in case of me-
chanical subsystem analysis it can be written down: 

( ) ( ) ( ) ( )

( )
( ) ( )

( )

2 2 2

0

,1
,

p

p

A sin k x cos t c Ak sin k x cos t

M x t H x
H x M x t .

I x x

ω ω ω

∂ ∂

ρ ∂ ∂

− = − −

⎡ ⎤
− +⎢ ⎥

⎢ ⎥⎣ ⎦
 (20) 

Using the properties of the Heaviside’s function: 

( )
( )

H x
x

x

∂
δ

∂
= , (21) 

where δ(x) is the Dirac delta function and assuming that 
characteristic will be calculated when x = L it can be writ-
ten down: 
 

( ) ( ) ( ) ( )

( ) ( )

2 2 2

0

1
, .

p

A sin k x cos t c Ak sin k x cos t

M x t x
I

ω ω ω

δ
ρ

− = − −

−  (22) 

The torque generated by the piezoelectric trans-
ducer can be described by formula [1]: 

( )
( )

( )
( )

15

44

,
2

p Z W Z W

p E

n R R R R
M x t d V t

s

− −

= , (23) 

where RZ 	and RW denote outer and inner radius of the cy-
lindrical transducer, np is the number of transducer’s seg-

ments,
44

E
s  is the elastic constant determined at zero/cons-

tant electric field. It was assumed that externally applied 
voltage is: 

( ) ( )0
V t V cos tω= . (24) 
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Vibration amplitude can be calculated similarly as 
in the previous case: 

( ) ( )

( )( )
15 0

2 2 2

0 44

p Z W a

E

n R R d V R x
A

sin k x k c I s

δ

ω ρ

−

=

−

, (25) 

where Ra denotes the average value of the radius of the 
transducer. In accordance with the Eq. (4) angle of rotation 
can be written down as: 

( )
( ) ( )

( )
( )

15

2 2 2

0 44

,

p Z W a

E

n R R d R x
x t cos t

k c I s

δ
ϕ ω

ω ρ

−

=

−

, (26) 

and characteristic of the considered mechatronic system 
can be described by the equation: 

( ) ( )

( )
15

2 2 2

0 44

p Z W a

P E

n R R d R x
Y

k c I s

δ

ω ρ

−

=

−

. (27) 

Obtained results – characteristic of the considered 
mechatronic system excited by cylindrical piezoelectric 
transducer is presented in Fig. 6. In presented case the 
characteristic was calculated when length of the transducer 

3
p

L L= . This characteristic describes relation between 

value and frequency of electric voltage that supplies the 
piezoelectric actuator and an angle of rotation of the shaft, 
measured in rad/V. Results are juxtaposed with the dy-
namic flexibility of mechanical subsystem, measured in 
rad/Nm, obtained using the exact method. One can observe 
that the biggest values of the angle of rotation can be ob-
tained in resonance zones. 

It should be mentioned that in this work very sim-
ply mathematical model was used. There was no influence 
of the glue layer between the transducer and surface of the 
mechanical subsystem on the obtained characteristic. In the 
future work more precise model will be used. Obtained 
results should be also verify and juxtaposed with results of 
the experimental tests. It will be presented in future works. 
 

 

Fig. 6 Comparison of characteristic of mechatronic system 
excited by piezoelectric transducer (approximate 
method – the dotted line) with dynamic flexibility of 
the mechanical subsystem (exact method – the  
continuous line) 

 
 

5. Conclusions 

 
Due to the growing interest in the use of piezo-

electric materials in modern technical devices, as well as 
works to develop new non-classical piezoelectric transduc-
ers the process of modelling and testing of such systems 
also becomes very essential issue. This paper is a proposal 
to use approximate Galerkin method for the determination 
of characteristics of vibrating systems containing non-
classical, composite transducers. Using the proposed 
mathematical algorithm it is possible to determine the de-
sired characteristics as well as analyse the effects of the 
parameters of the individual elements of the system on 
those characteristics including both the geometric and ma-
terial parameters. It should be noted that in the assumed 
mathematical model of the considered torsional vibrating 
system significant simplifications were assumed. This is 
why in the future works more precise models will be pro-
posed. Designing of technical systems containing piezo-
electric transducers is a complex process, due to the phe-
nomena occurring in them. A correct description of the 
given device in the form of a mathematical model, already 
in its design phase, is a fundamental condition for its 
proper functioning. It is very important to develop mathe-
matical models of vibrating systems with piezoelectric 
transducers that can be used as actuators or vibration 
dampers, to allow an accurate description of the phenom-
ena occurring in them with the maximum simplification of 
the calculations. It will significantly contribute to the de-
velopment of this field of technology and facilitate the im-
plementation of technical devices with piezoelectric trans-
ducers. 
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A. Buchacz, M. Płaczek , A. Wróbel 

CILINDRINIŲ PIEZOELEKTRINIŲ DAVIKLIŲ 
SISTEMŲ MODELIAVIMAS IR TYRIMAS 

R e z i u m ė 

Straipsnyje aprašomas virpančios mechatroninės 
sistemos tyrimo ir modeliavimo matematinis algoritmas. 
Velenas yra tiriamos sistemos mechaninė posistemė. Žiedo 
formos piezoelektrinis daviklis pritvirtintas prie veleno. 
Projektuojant sistemą, reikia žinoti jo dinamines charakte-
ristikas. 

Dėl to autoriai pristatė metodą, kuris naudingas 
analizuojant tokio tipo sistemas. Norint apskaičiuoti me-

chatroninės sistemos charakteristikas, pirmiausia buvo 
tiriamas mechaninis posistemis. Mechaninio posistemio 
dinaminis lankstumas apskaičiuotas naudojant tikslų ir 
apytikslį metodus. Kadangi mechatroninės sistemos anali-
zei tikslų metodą taikyti neįmanoma, buvo naudotas apy-
tikslis Galerkino metodas taikomas sistemos su piezoelekt-
rine pavara analizei. Darbe pateikiama besisukanti vibruo-
janti mechatroninė sistema su piezoelektriniu davikliu. 
Tiriama sekcijinė piezoelektrinė pavara, kurios cilindrinis 
daviklis maitinamas išorine harmoniškai kintančia įtampa. 
Gautų mechaninių posistemių ir mechatroninių sistemų 
charakteristikų palyginamas atvaizduotas diagramoje.  
 
 
A. Buchacz, M. Płaczek, A. Wróbel 
 
MODELLING AND ANALYSIS OF SYSTEMS WITH 
CYLINDRICAL PIEZOELECTRIC TRANSDUCERS 

S u m m a r y 

Paper presents a proposal of mathematical algo-
rithm used in order to modelling and testing of vibrating 
mechatronic systems. A shaft is the mechanical subsystem 
of the considered system. A ring piezoelectric transducer is 
bonded on the shaft’s surface. Knowledge of the dynamic 
characteristics of the designed systems is essential for the 
proper operation and should be taken into consideration 
during the design phase as well as verified during opera-
tion of the system. This is why authors decided to present a 
method that can be very useful for analysis of such kind of 
systems. In order to calculate the characteristic of mecha-
tronic system a mechanical subsystem was analysed in the 
first step. The dynamic flexibility of mechanical subsystem 
was calculated using the exact and approximate methods. It 
is impossible to use the exact method in order to analyse 
mechatronic systems this is why the approximate Galerkin 
method was used to analyse the system with piezoelectric 
actuator. An exactness of the approximate method was 
verified. In the presented work a torsional vibrating mecha-
tronic system with piezoelectric transducer used as the 
vibration actuator is presented. The considered piezoelec-
tric actuator is the sectional, cylindrical transducer sup-
plied by the external harmonic electric voltage. Obtained 
results – characteristics of mechanical subsystem and 
mechatronic system are juxtaposed on charts. 
 
Keywords: modelling, analysis, vibrating mechatronic 
systems, piezoelectric transducer. 
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