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1. Introduction 

 

Complex of transmission or powertrain elements 

is one of the most important parts of any traction and 

transport vehicles. In operation powertrain elements load 

has dynamic character. Both internal and external disturb-

ances form these loads. Fluctuations of tractive resistance 

and engine torque, disturbances from the frame vibrations 

on the suspension, and for tracked vehicle – from caterpil-

lar rewinding irregularities are considered as main among 

external. Kinematic and force disturbances from gears 

meshing, shafts misalignment, universal-joint rotation ir-

regularities, deformations and displacements of case details 

are main among the internal disturbances [1-4]. 

Irregularity of acting of the external loads produc-

es torsional and bending vibrations in the powertrain shaft-

ing. Its role in the fatigue damages accumulation in materi-

al is considerable. Accordingly to data from domestic and 

foreign researchers [1-3, 5-8] more that 50% of damages 

and faults in vehicles powertrains are produced by vibra-

tions exactly. 

It is known [1, 4, 9] that in some systems where 

rotary motions are, vibrations with certain frequency pass 

through whole shafting practically without damping but in 

other systems vibrations are damped at areas next to 

source. 

Professor Mandelshtam L.I. did research of pro-

cess of vibrations spreading in cohesiveness dynamic sys-

tems. It is shown in his work [10] that degree of dynamic 

cohesiveness influences on process of vibrations spreading. 

Process of vibrations spreading was researched on the ex-

ample of motion of two pendulums connected by elastic 

linkage (Fig. 1). Due this research the fact was established 

that if partial frequency of vibrations of one element of this 

system (first pendulum) is equal to partial frequency of 

vibrations of other element (second pendulum), vibrations 

fast and practically without damping transfer from one 

element to other. 

Some points from this works can be used to re-

search  character  of  torsional  vibrations spreading in sys- 

 

Fig. 1 Pendulums with elastic linkage 

tems with rotary motions, particularly in machines power-

trains. Differ from system presented on Fig. 1 shafting of 

this powertrain is n-mass system performing constrained 

torsional vibrations. 

 

Fig. 2 n-mass shafting system 

 

During power shaftings design information about 

how dynamic parameters of its elements influence on char-

acter of torsional vibrations spreading is necessary. In par-

ticular, does dynamic cohesiveness of its elements influ-

ence on this process or not. 

Models are created by researchers should include 

all moving mass of system if it is possible. But influence of 

some masses with very small inertia moments on research 

results is negligible. And this masses are reduced thus 

model can be simplified. In this case researchers need in-

formation of what masses can be reduced, how much mod-

el can be simplified and what parameter should be used as 

criteria for model reduce limits. 

 

2. Determination of degree of system elements dynamic 

cohesiveness 

 

For simplicity we’ll consider two-element rotary 

system with torsional vibrations [8] that include 3 masses 

connected by two elastic linkages (Fig. 3). Let’s define 

element as model area that connects two vibrating masses. 

 

Fig. 3 Two-element model 

 

Differential equations of free vibrations of ele-

ments of this model can be written in next form:  
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where Ii  is inertia moments of masses; Сi is torsional stiff-

ness of its linkages; iii ,,    are angular displacements, 

speeds and accelerations of  masses respectively. 
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New variables are defined below: 
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where qi and 
iq  are relative angular displacements and 

accelerations of elements respectively. 

After some modifications we will get system of 

two equations: 
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where 11, 22 are partial frequencies of elements, and  
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Frequency or characteristic equation of system (3) 

is written as: 
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1,2 is natural vibrations frequencies. 

In accordance with [1], maximal interference in-

fluence of elements vibrations, or in other words maximal 

dynamic cohesiveness, takes place when elements partial 

frequencies are equal, that is when 2211   , and degree 

of system elements dynamic cohesiveness is defined by 

equation: 
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Parameter  is named coefficient of dynamic co-

hesiveness of elements vibrations. It is got from consider-

ing of characteristic Eq. (4) and it shows degree of differ-

ence from zero of absolute term а4. When 
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and coefficient  = 1. The more diffrence from zero value 

of absolute term, the closer to zero value of coefficient  
becomes. 

Let’s consider two extreme cases: 
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Then 1 = 22, 2 = 11, that is system natural 

frequencies are equal to partial. It indicates that dynamic 

cohesiveness of elements is small. 
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What is the physical meaning of this coefficient? 

As mentioned above, when  << 1 dynamic cohesiveness 

of elements is small. It means that during natural vibrations 

each element will oscillates with frequency which is close 

to partial. That is with frequency of system vibrations that 

could be equal to frequency of vibration of system alone. 

Meanwhile influence of other elements on frequency of 

vibration of every isolated element is negligibly small. The 

further value of coefficient  from zero, the more diffrence 

is between natural and partial vibrations frequencies of 

elements and natural frequencies become inherent to whole 

system, but not to its local partial elements. 

To obtain analytical expression defining absolute 

term of frequency equation of high order is very hard. 

Let’s consider it on example of analysis of system of equa-

tions for four-element system. As opposed to system at 

Fig. 3 this system includes 5 masses and 4 linkages. 

Equations of motions of this system are presented 

in form: 
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Characteristic equation for this system is: 
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On introducing of new variables (as it was made 

in two-element system) for decreasing of order of equa-

tions system (6) and on its modification we get matrix of 

coefficients of its equations: 

2

44

2

43

2

34

2

33

2

23

2

23

2

22

2

21

2

12

2

11

00

0

0

00

















.   (8) 



192 

On system expanding we get value of its deter-

miner in analytical form: 
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So coefficient of dynamic cohesiveness for four-

element system is: 
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Thus with increasing of number of system masses 

inconvenience of expression of absolute term (and coeffi-

cient ) becomes more significant. So less labor-intensive 

method of estimation of coefficient  value is proposed by 

autors.  

It is known that determinator of matrix with 

structure mentioned above is equal to product of roots of 

characteristic equation: 

 nnQ   321 . (11) 

Therefore if values of inertia moments of system 

masses and its linkage stiffness are known it is possible to 

estimate its natural frequencies and then to estimate deter-

minator Qn. Knowledge of parameters of masses and linka-

ges also provides estimation of values of partial frequncies 

of every element and then to get its product: 
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Now it is possible to estimate value of coefficient 

 by means of next expression: 
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Expression (13) provides for determination of 

value of coefficient  for random multimass chain system 

with torsional vibrations. It should be noted that values Qn 

and Sn must be estimated with equal degree of precision. 

 

3. Using of -coefficient as criteria for model reducing 

limit 

 

Equality to zero of one of Eq. (4) roots means that 

dynamic cohesiveness of elements is very significant. Thus 

one of elements can be replaced with solid body so number 

of system elements can be reduced by one. Therefore coef-

ficient  of elements dynamic coehesiveness obtained from 

free term of a frequency equation can be used for theoreti-

cal basis of simplification or reducing of multimass model. 

Reduced model must be dynamic equvivalent to initial 

model in range of its mases operation frequencies. Below 

we consider example of using of coefficient  on the stage 

of reducing of tractors T-5 powertrain shafting dynamic 

model from 9 to 5 masses. This tractor was produced by 

Volgorad tractor factory. Values of inertia moments of 

masses, torsional stiffness of linkages, natural and partial 

frequencies of masses vibrations at every stage of reducing 

are given in Table 1. 

 

Table 1 

Reducing model parameters changes 
 

Quantity 

of mas-

ses 

Number of mass or linkage 

Value  1 2 3 4 5 6 7 8 9 

9 

Masses inertia moments, kgm2 

0.9999 

7.1310-2 2.6110-2 1.2710-3 2.4310-4 4.2010-5 1.0010-5 6.3410-3 3.3810-1 6.3410-3 

Linkages torsional stiffness, Nm/rad 

1150 18617 2810 255 714 2240 293 271  

Partial frequencies, Hz 

245 3930 3710 2670 9400 1.5105 215 207  

Natural frequencies, Hz 

5.7 33.1 37.4 44.7 480.8 683.9 736.6 2757  

8 

Masses inertia moments. kgm2 

0.9996 

7.1310-2 2.6110-2 1.2710-3 2.4310-4 4.2010-5 6.3510-3 3.3810-1 6.3410-3  

Linkages torsional stiffness. Nm/rad 

1150 18617 2810 255 542 293 271   

Partial frequencies, Hz 

245 3930 3710 2670 3600 217 209   

7 

Masses inertia moments. kgm2 

0.9995 

7.1310-2 2.7410-2 2.4310-4 4.2010-5 6.3510-3 3.3810-1 6.3410-3   

Linkages torsional stiffness. Nm/rad 

1150 2460 255 542 293 271    

Partial frequencies, Hz 

241 3200 2670 3600 217 209    
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Quantity 

of mas-

ses 

Number of mass or linkage 

Value  1 2 3 4 5 6 7 8 9 

6 

Masses inertia moments. kgm2 

0.9970 

7.1310-2 2.7410-2 2.4310-4 6.3910-3 3.3810-1 6.3410-3    

Linkages torsional stiffness. Nm/rad 

1150 2460 174 292 271     

Partial frequencies, Hz 

241 3200 862 216 209     

5 

Masses inertia moments. kgm2 

0.9327 

7.1310-2 2.7610-2 6.3910-3 3.3810-1 6.3410-3     

Linkages torsional stiffness. Nm/rad 

1150 163 292 271      

Partial frequencies, Hz 

240 177 216 209      

Natural frequencies, Hz 

5.7 33.1 37.4 44.7      

Data from Table 1 show that coefficient  of 9-

mass system is almost equal to one (0.9999), so it is possi-

ble to decrease number of model elements by one. The 

sixth element of model has the greatest partial frequency 

thus its reducing is performed by means of Rivins method. 

For 8-mass model  is 0.9996. Now we have to reduce se-

cond element. For 7-mass model  is 0.9995 and forth ele-

ment is to be reduced. For 6-mass model  is 0.997 so se-

cond element is reduced again. For 5-mass model  is 

0.9327 and it noticeably differs to 1. Now all partial frequ-

encies are lesser than 1000 Hz. Consecuently reducing 

must be stoped now. 

Comparison of natural frequencies values of re-

ducing 9-mass system and reduced 5-mass system shows 

that main (first) model natural frequencies haven’t changed 

during reducing. It means that reduced model is equviva-

lent to reducing model in researched frequency range. 

 

4. Influence of degree of elements dynamic cohesiveness 

on character of torsional vibration spreading 

 

To find out how degree of elements dynamic co-

hesiveness influences on torsional vibrations spreading 

computational research was made [9, 11]. For simplicity, 

3-mass model which includes 4 masses and 3 linkages was 

used. 

Values of inertia moments of masses and coeffi-

cient of dynamic cohesiveness of vibrations  are given in 

Table 2. It is believed that stiffnesses of all system linkages 

are equal and its value is 100000 Nm/rad. 

Table 2 

Influence of inertia moments of masses on degree of dynamic cohesiveness of vibrations of system elements 
 

Mass No Inertia moments of masses, kgm2 Value 

 I1 I2 I3 I4 

1 0.001 1 1 1 0.2630 

2 0.01 1 1 1 0.2650 

3 0.1 1 1 1 0.3075 

4 1 1 1 1 0.5261 

5 10 1 1 1 0.7057 

6 100 1 1 1 0.7454 

7 1000 1 1 1 0.7512 

8 10000 1 1 1 0.7510 

9 0.001 1 0.001 1 0.9980 

10 0.001 1 0.01 1 0.9803 

11 0.001 1 0.1 1 0.8267 

As shown in Table 2, change of inertia moment of 

first mass of the system from 0.001 to 10000 kgm
2
 (vari-

ants 1-8) provokes change of coefficient  only in range 

0.263 - 0.7512, that is due change of inertia moment of one 

mass of system from lowest to highest limit (for automo-

tive powertrains) strong dynamic cohesiveness isn’t 

reached. 

But changing of one more mass inertia moment 

provides for to get values  which are close to one (variants 

9 and 10). 
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During the research of vibrations on first mass 

was generated by unit torque with frequency 1 Hz and pro-

cess of vibration energy spreading from one element to 

another was analyzed. During first second of the process 

average value of potential energy of spin of every area at 

the period of 0.1 second was estimated and compared. 
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Fig. 3 Low dynamic cohesiveness 

Analyze of results shows that when dynamic co-

hesiveness of system elements vibrations is low (variants 

1, 4, 7) there isn’t regularity in process of vibration energy 

spreading from one element to another (Fig. 3), but when 

dynamic cohesiveness is high (Fig. 4, variant 9) values of 

potential energy of second and third elements turn out to 

be equal in every moment of time. By symbols W1, W2 

and W3 values of potential energy of spin of proper ele-

ments are presented. 
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Fig. 4 High dynamic cohesiveness 

 

As can be seen from considering of expression for 

coefficient  definition, its value becomes greater when 

difference between products of natural and partial frequen-

cies of system elements increases. Values of natural and 

partial frequencies of system from Table 2 are presented in 

Table 3. 

Data from Table 2 testify that only one variant 

(number 9) from all considered is characterized by that 

when dynamic cohesiveness is high all elements of system 

have equal partial frequencies. To investigate how this fact 

influences on process of vibration energy transfer, research 

of some variants of model with various combinations of 

elastic-inertial parameters was done. There are equal par-

tial frequencies of vibrations of all elements when these 

combinations are used. Parameters mentioned above are 

presented in Table 4. 

 

Table 3 

Natural and partial frequencies of system variants 
 

Variant  

number 

Natural frequencies, Hz Partial frequencies, Hz 

1 2 3 1 2 3 

1 50 87 1592 10000 447 447 

2 50 87 505 3180 447 447 

3 49 86 167 1050 447 447 

4 38 71 92 447 447 447 

5 25 63 90 332 447 447 

6 22 62 90 318 447 447 

7 22 62 90 316 447 447 

8 22 62 90 316 447 447 

9 50 1592 2251 10000 10000 10000 

10 50 713 1592 10000 3180 3180 

11 50 230 1592 10000 1050 1050 

 

Table 4 

Variants with equal partial frequency 
 

Variant 

number 

Linkage stiffness,  

Nm /rad 
Inertia moments of masses, kgm2 Partial frequencies, Hz Value 

 
1 2 3 1 2 3 4 1 2 3 

1 102 102 102 1 10-3 1 10-3 316 316 316 0.9982 

2 10 10 10 1 10-3 1 10-3 100 100 100 0.9980 

3 103 103 103 1 10-3 1 10-3 104 104 104 0.9980 

4 104 104 104 1 10-3 1 10-3 104 104 104 0.9980 
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For example character of change of potential en-

ergy of areas for variant 4 is shown on Fig. 5. 
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Fig. 5 Character of change for variant 4 

 

For all of four areas considered potential energy 

of spin of first and second areas of system is equal all time, 

that is point that to transfer equal values of vibration ener-

gy from area to area, high dynamic cohesiveness of system 

elements vibrations and equal values of its vibrations are 

necessary, was proved. 

Does frequency of driving signal influence on 

character of process of vibration energy transfer? To get 

answer on this question research for variants of system 

with equal partial frequencies of elements and generation 

of vibrations with frequencies 0,1 Hz, 5 Hz и 10 Hz was 

done. For example result with frequency 0.1 Hz is present-

ed on Fig. 6.  

Analysis of Fig. 6 shows that change of frequency 

of driving signal doesn’t influence on character of vibra-

tion energy transfer between second and third areas of sys-

tem – curves W2 and W3 coincide. If frequency of driving 

signal increases to 10, values of average potential energy 

of areas spin become equal all time.  
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Fig. 6 Vibrations with frequency 0.1 Hz 

 

Analysis of results of whole complex of experi-

ments done provides for range of regularities to be made. 

Character of spreading of torsional vibrations in systems 

with rotary motion submits to range mentioned above. This 

range of regularities is presented in conclusions. 

 

5. Conclusions 

 

1. Coefficient of dynamic cohesiveness of power-

train shafting model elements can be used just as well as 

criteria for model reducing limit.  

2. Character of transfer of torsional vibration en-

ergy from one area to another in systems with rotary mo-

tion is defined by combination of elastic-inertial parame-

ters of its elements and order of its connections. Energy of 

vibrations from area to area transfers without losses if fur-

ther conditions are fulfilled:  

a) dynamic cohesiveness of system elements vibra-

tions is strong; 

b) partial frequencies of all system elements are 

equal; 

c) transfer of energy performs from area which be-

gins with mass with high moment of inertia and ends with 

mass with low moment of inertia, to area begins with mass 

with low moment of inertia and ends with mass with high 

moment of inertia, meanwhile value of greater moment 

must be greater than lesser moment at least on one order. 
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ELEMENTŲ DINAMINIO SUKIBIMO JĖGINĖSE 

TRANSMISIJOSE ĮTAKA SUKAMŲJŲ VIRPESIŲ 

SKLIDIMUI IR REDUKUOJAMO MODELIO 

DINAMINIAM TAPATUMUI  

 

Reziumė  

 

 Šiame straipsnyje pristatyti sukamųjų virpesių 

sklidimo krumpliaratinių pavarų velenuose tyrimai. Ištirta 

sistemos elementų virpesių dinaminio sukibimo įtaka šiam 

sklidimui. Aprašyti virpesių energijos perdavimo be ener-

gijos nuostolių atvejai. 
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INFLUENCE OF ELEMENTS DYNAMIC 

COHESIVENESS IN POWER SHAFTING ON 

TORSIONAL VIBRATIONS SPREADING AND 

DYNAMIC EQUALITY OF REDUCIBLE MODEL 

 

Summary  

 

 This paper presents investigation of torsional vi-

brations spreading in powertrain shafting. Influence of 

dynamic cohesiveness of system elements vibration on this 

spreading was researched. Cases of vibrations energy 

transfer without energy losses was described. 
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