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Nomenclature 

 
W(x, y) - deflection function; x, y - coordinates in the plane 
of plate; v - Poisson’s ratio; ρ - density of the plate mate-
rial, kg/m3; g - plate thickness, m; T(t) - time function;  
D%  - visco-elastic operator; E - Young modulus, N/m2;  
a - length of the rectangular plate, m; b - breadth of the 
rectangular plate, m; η - visco-elastic constant, Ns/m2;  
G - shear modulus, N/m2. 
 
1. Introduction 

 
In modern technology, sufficient temperature is 

produced in most of engineering structures i.e. rockets, 
submarines etc. Also, it is obvious that plates undergo 
some vibration due to non-uniform temperature field. 
Therefore, scientists and engineers are keen interested to 
know that how non-uniform temperature field affects the 
vibrational characteristics of non-homogeneous plates of 
variable thickness due to their utility in constructions of 
bridges, buildings, wings, tails & fins of rockets & missiles 
etc. 

Non-homogeneous visco-elastic tapered plates are 
mainly used for two-fold requirements of safety and econ-
omy due to their high strength, high temperature resistance 
characteristics, low cost and high durability. Due to this, 
vibration of plates had become one of the most interesting 
research area in last few decades. 

Khanna & Kaur [1] worked on thermally induced 
vibrations of non-homogeneous tapered rectangular pate. 
Gupta and Khanna [2] studied the effect of linear thickness 
variations in both directions on vibration of visco-elastic 
rectangular plate having clamped boundary conditions on 
all the four edges. Khanna & Sharma [3] calculated fre-
quencies for first two modes of vibration with parabolic 
thickness variation and bi-parabolic temperature variation. 
Khanna & Kaur [4] obtained first two modes of frequen-
cies with exponential thickness and temperature variation. 
Khanna and Sharma [5] investigated free vibrations of 

non-homogenous square plate with exponential thickness 
variation. The authors had considered bi-parabolic tem-
perature variations along with linear density variation. 
Chakraverty [6] introduced new concepts of boundary 
characteristic orthogonal polynomials on vibration of 
plates along with a discussion of various plate geometries 
and boundary conditions. Leissa [7] provided excellent 
data for vibration of plates of different shapes with differ-
ent boundary conditions in his monograph. Avalos and 
Laura [8] discussed transverse vibrations of a simply sup-
ported plate of generalized anisotropy with an oblique cut-
outs. Bambill et. al. [9] carried out an experiment on trans-
verse vibrations of an orthotropic rectangular plate of line-
arly varying thickness with free edges. Chyanbin et. al. 
[10] gave results on vibration suppression of composite 
sandwich beams. Gutirrez et. al. [11] investigated vibra-
tions of rectangular plates of bi-linearly varying thickness 
with general boundary conditions. R. Lal et. al. [12, 13] 
evaluated transverse vibrations of non-homogeneous rec-
tangular plates with thickness variation. Liessa [14] dis-
cussed vibrations of rectangular plate with general elastic 
boundary supports. 

Before finalizing any mechanical design or struc-
ture, researchers and engineers are always in searching of 
first few modes of vibration so that they would provide 
more authentic and reliable structures. In order to accom-
plish this purpose, authors provide a collection of numeric 
data for first two modes of frequency and deflection at 
various values of plate parameters i.e. taper constant, ther-
mal gradient, aspect ratio and non-homogeneity constant. 
Kelvin type model is taken for consideration and plate is 
assumed clamped on the boundary. 
 
2. Differential equation of motion 

 
Differential equations of motion and time func-

tion for visco-elastic rectangular plate are [1]: 
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here D1 is flexural rigidity of rectangular plate i.e. 
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Deflection w(x, y, t) is expressed as the product of 
deflection function W(x, y) and time function T(t) [2]: 

( ) ( ) ( ), , ,w x y t W x y T t= . (4) 

3. Assumptions 
 

Few assumptions are taken by authors to justify 
practical applications of the present study and to make 
calculations easy and convenient as well.  

Assumption 1: It is assumed that variation in tem-
perature field is bi-linear i.e.: 

( )( )0
1 1

yx
a b

τ τ= − − , 

where τ denotes the temperature excess above the refer-
ence temperature at any point on the plate and τ0 denotes 
the temperature excess above the reference temperature at 

0x y .= =   

The temperature dependence of the modulus of 
elasticity for most of engineering materials can be ex-
pressed as [3]: 

( )0
1E E τ γ= − , (5) 

where E0 is the value of the Young’s modulus at reference 
temperature and γ is the slope of the variation of E with τ . 
After substituting the value of τ in Eq. (5), it becomes: 

( )( )( )0
1 1 1

yx
E E

a b
α= − − − , (6) 

where α = γτ0 (0 ≤ α < 1), is thermal gradient. 
Assumption 2: It is assumed that thickness varies 

linearly in x − direction i.e.: 

0
1

x
g g

a
β

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
, (7) 

where β is taper constant in x − direction and g = g0 at 
x = 0. 

Assumption 3: Also, It is assumed that poisson ra-
tio of plate’s material varies exponentially in x − direction 
as [4]: 

1

0

x

a
v v e

α

= , (8)

where, v0 denotes poisson ratio at reference temperature 
and α1 is non-homogeneity constant. 

Since maximum value of poisson ratio is less than 
equal to 1/2, numeric value of α1 (as it varies exponentially 
in this paper) can not be greater than 0.16 (approximately). 
Hence, variation in poisson ratio is taken from 0.0 to 0.15 
(at most) in calculation. 

After substituting the values of E, g, and v from 
Eqs. (6)-(8) in Eq. (3), one obtains: 
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Assumption 4: Plate is assumed clamped on the 

boundary. Hence boundary conditions are [5]: 

0 0

0 0

W W ,x ,a;, x

W W , y ,b.,y

= = = ⎫⎪
⎬

= = = ⎪⎭

 (10) 

To satisfy Eq. (10), corresponding two-term de-
flection function is taken as [6]: 
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4. Methodology 

 
To obtain frequency equation for vibration of rec-

tangular plate, authors used Rayleigh Ritz method. This 
method is based on principle of conservation of energy i.e. 
maximum strain energy (EP) must be equal to the maxi-
mum kinetic energy (EK). 

 

So it is necessary for the prob-
lem under consideration that [6]: 

( ) 0
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Here, authors introduced two non-dimensional 
variables X and Y i.e.: 

;
x y

X Y
a a

= = . (15) 

After using Eq. (15) in Eq. (13) and Eq. (14), one 

gets: 
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where, 
3
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2
24
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After substituting *

K
E  and *

P
E  from Eq. (16) 

and Eq. (17) in Eq. (12), one obtains: 
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where 
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2

2
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12 p a
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ρ
λ =  is frequency parameter. 

Eq. (18) consists two unknown constants i.e. A1 
and A2 arising due to the substitution of W. These two con-
stants are to be determined as follows: 
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On simplifying Eq.(19), one gets: 
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where 
1 2
,

n n
C C  for 1,2n =  involve plate parameters and 

frequency parameter. 
Eq. (20) is a set of two simultaneous homogene-

ous equations of variables A1 and A2 which has infinite 
numbers of solutions. Choosing

1
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2
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For a non-trivial solution, the determinant of the 
coefficients of Eq. (20) must be zero i.e.: 

11 12

21 22

0
C C

C C
= . (21) 

Equation (21) is a quadratic equation in λ2 from 
which two values of λ2 can be found.  

Time period of the vibration of visco-elastic plate 
is given by: 

2
K

p

π

= . (22) 

5. Formulation of deflection  

 
With the help of the values of A1 and A2, one can 

obtain deflection function W  as: 
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Time function for non-homogeneous rectangular 
plate can be obtained by solving Eq. (2) as [3]: 
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Thus, deflection w can be expressed, by using 
Eqs. (23)-(24) in Eq. (4), as: 
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6. Results and discussion 

 
In calculations, following parameters are used: 

10 2

0
7 08 10 N mE .= × ; 

10 2
2 632 10 N mG .= × ; 

0
0 345.υ = ; 

5 2
14 612 10 Ns m.η = × ; 

10 22 80 10 kg m.ρ = × ; 
0

0 01mg .= . 

In Table 1, frequency for first two modes of vi-

bration is reported at fixed aspect ratio 1 5
a

.
b
=  for differ-

ent values of non-homogeneity constant 
1

α  for the follow-

ing combinations of thermal gradient α and taper constant 
β: α = β = 0.0; α = β = 0.2; α = β = 0.6.  

It is obvious to note that frequency increases for 
both the modes of vibration with increasing α1 as well as 
increasing values of α and β (from 0.0 to 0.6). 

 
Table 1 

Frequency Vs non-homogeneity constant at fixed aspect 

ratio 1 5
a

.
b
=  

 

1
α  

α = β = 0.0 α = β = 0.2 α = β = 0.6
 

Mode 

1 

Mode 

2 

Mode 

1 

Mode 

2 

Mode 

1 

Mode 

2 

0.00 64.77 255.98 69.67 275.29 79.47 313.50 

0.05 64.99 256.84 69.91 276.25 79.75 314.68 

0.10 65.22 257.76 70.17 277.29 80.05 315.93 

0.15 65.47 258.74 70.45 278.39 80.38 317.29 
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Again first two modes of frequency at different 
values of aspect ratio are shown in Table 2 for the follow-
ing combinations of thermal gradient α, taper constant β 
and non-homogeneity constant α1: α = β = α1 and 
α = β = 0.2, α1 = 0.1. 

Authors noticed that both the modes of frequency 
increase with increasing value of aspect ratio for both 
combinations of α, β and α1. Also, a small increment is 
found in both the modes of frequency when combined 
values of α, β and α1 increases. 

 
Table 2 

Frequency Vs Aspect Ratio 
 

a

b
 

α = β = α1 = 0.0 α = β = 0.2, α1 = 0.1

Mode 1 Mode 2 Mode 1 Mode 2 

0.25 24.30 99.00 26.51 108.13 

0.50 26.22 104.86 28.58 114.41 

0.75 30.58 120.33 33.28 131.03 

1.00 38.32 149.97 41.62 162.92 

1.25 49.75 195.35 53.95 211.85 

1.50 64.77 255.98 70.17 277.29 

 

Since deflection function assumed in Eq. (11) is 
symmetrical for X and Y, it shows same values for X = 0.2 
and X = 0.8 as well as X = 0.4 and X = 0.6. Same case is 
valid for Y. Also for X = 0.0 and X = 1.0 orY = 0.0 and 
Y = 1.0, deflection becomes zero. Therefore, in calculation 
of deflection, authors reported the values of deflection only 
at X = 0.2, 0.4 and Y = 0.2, 0.4. 

At different values of time function i.e. T = 0K 
and T = 5K, deflection for both modes of vibration with 
different α1i.e. α1 = 0.0, 0.1 are calculated for different 
values of X and Y for the following cases: 

Table 3: 0 0; 1 5; 0 2, 0 4; 0 2, 0 4
a

. . X . . Y . .
b

α β= = = = = ; 

Table 4: 0 2; 1 5; 0 2, 0 4; 0 2, 0 4
a

. . X . . Y . .
b

α β= = = = = ; 

Table 5: 0 6; 1 5; 0 2, 0 4; 0 2, 0 4
a

. . X . . Y . .
b

α β= = = = = . 

In Tables 3-5, an acute increment is noticed in 
both modes of deflection at each paired value of X and Y 
along with different values of α1 i.e. 0.0 and 0.1 for 
T = 0K. In Table 3, for T = 5K, an acute decrement is no-
ticed in both modes of deflection at each paired value of X 
and Y with α1 = 0.0 and 0.1. At T = 5K, variation in both 
modes of deflection is different in Tables 4 and 5 as com-
pared to Table 3. Here, very small decrement (but not neg-
ligible) is found in first mode of deflection and again very 
sensitive increment is found in second mode of deflection 
at each paired value of X and Y with α1 = 0.0 and 0.1.

 For T = 0K and T = 5K, first two modes of deflec-
tion corresponding to increasing aspect ratio are tabulated 
in Table 6 at fixed α = β = 0.2, α1 = 0.1 at two paired val-
ues of X and Y. 

At X = Y = 0.2 & T = 0K, deflection increases for 
both the modes of vibration as aspect ratio increases from 
0.5 to 1.5. 

First mode of deflection increases continuously 
with increasing aspect ratio but second mode first increases 

and then decreases with increasing aspect ratio for the 
following cases: 

i) X = Y = 0.2 and T = 5K; 
ii) X = 0.4, Y = 0.2 and T = 0K; 
iii) X = 0.4, Y = 0.2 and T = 5K. 

 
Table 3 

Deflection (×10-5) Vs Non-Homogeneity constant at 

0 0; 1 5
a

. .
b

α β= = =  for T = 0K and T = 5K* 

 

1
α  Y X = 0.2 X = 0.4 

 

Mode 1 

 

Mode2 

 

Mode 1 

 

Mode2 

0.0 0.2 114.6210 

{50.4459} 

39.5098 

{1.8086} 

259.8370 

{114.3570} 

6.3376 

{0.2901} 

0.1 114.6360 

{50.1875} 

39.5100 

{1.7987} 

259.8900 

{113.7790} 

6.3383 

{0.2885} 

0.0 0.4 20.8718 

{9.1859} 

14.9592 

{0.6847} 

47.1142 

{20.7335} 

27.1595 

{1.2435} 

0.1 20.8730 

{9.1381} 

14.9593 

{0.6810} 

47.1184 

{20.6283} 

27.1595 

{1.2364} 
 

*Values in bold and {} brackets show deflection for both 
the modes of vibration for T = 5K 

 
Table 4 

Deflection (×10-5) Vs Non-Homogeneity constant at 

0 2; 1 5
a

. .
b

α β= = =  for T = 0K and T = 5K* 

 

1
α  Y X = 0.2 X = 0.4 

 

Mode 1 

 

Mode2 

 

Mode 1 

 

Mode2 

0.0 0.2 114.9010 

{47.5410} 

39.5181 

{1.8370} 

260.7830 

{107.9010} 

6.3654 

{0.2960} 

0.1 114.9440 

{47.2598} 

39.5195 

{1.8614} 

260.9270 

{107.2820} 

6.3702 

{0.3000} 

0.0 0.4 20.8938 

{8.6449} 

14.9599 

{0.6957} 

47.1887 

{19.5247} 

27.1616 

{1.2630} 

0.1 20.8972 

{8.3882} 

14.9600 

{0.7046} 

47.2000 

{18.9589} 

27.1620 

{1.2793} 
 

*Values written in bold and {} brackets show deflection 
for both the modes of vibrations for T = 5K 
 

Table 5 
Deflection (×10-5) Vs Non-Homogeneity constant at 

0 6; 1 5
a

. .
b

α β= = =  for T = 0K and T = 5K*  

 

1
α  Y X = 0.2 X = 0.4 

 

Mode 1 

 

Mode2 

 

Mode 1 

 

Mode2 

0.0 0.2 116.6170 

{42.6163} 

39.5673 

{3.3710} 

266.5740 

{97.4164} 

6.5316 

{0.5564} 

0.1 116.7410 

{42.3458} 

39.5707 

{3.5744} 

266.9930 

{96.8471} 

6.5430 

{0.5910} 

0.0 0.6 21.0289 

{7.6847} 

14.9638 

{1.2748} 

47.6445 

{17.4111} 

27.1747 

{2.3152} 

0.1 21.0387 

{7.6314} 

14.9640 

{1.3517} 

47.6775 

{17.2942} 

27.1756 

{2.4548} 
 

*Values written in bold and {} brackets show deflection 
for both the modes of vibrations for T = 5K 
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Table 6 
Deflection (×10-5) Vs Aspect Ratio at 

1
0 2, 0 1. .α β α= = =  for T = 0K and T = 5K* 

 

a

b
 

  Y X = 0.2 X = 0.4 

 

Mode 1 

 

Mode2 

 

Mode 1 

 

Mode2 

0.5 0.2 21.1747 

{14.7462} 

14.9677 

{3.5092} 

48.1365 

{33.5225} 

27.1881 

{6.3743} 

1.0 65.6752 

{38.7730} 

33.0597 

{4.1768} 

147.9260 

{87.3318} 

37.8484 

{4.7818} 

1.5 114.9440 

{47.2598} 

39.5195 

{1.8614} 

260.9270 

{107.2820} 

6.3702 

{0.3000} 
 

*Values written in bold and {} brackets show deflection 
for both the modes of vibrations for T = 5K. 
 

7. Comparison and Conclusions 

 
A comparison between the results of present pa-

per (frequency) with results available in [4] is reported in 
Table 7 for different values of taper constant and thermal 
gradient at fixed non-homogeneity constant (α1 = 0.0) 
From Table 7, one can easily seen that both modes of fre-
quency in the present paper are lesser than [4] at each 
paired value at α and β except at α = β = 0.0 where fre-
quency is equal to [4] for both modes of vibration. 

On the behalf of above comparison, authors con-
clude the following: 

• frequency can be actively controlled by linear taper-
ing as compared to exponential tapering [4]; 

• bi-linear variation in temperature field provides 
much better results as compared to exponential 
variation in temperature field; 

• results of present study may provide more realistic 
mechanical designs or structures. 

 
Table 7 

Comparison of the frequencies of the present problem with [4]** at α1 = 0.0 
 

         β 

 

α = 0.0 α = 0.2 α = 0.4 α = 0.6 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

0.0 64.77 

{64.77} 

255.98 

{255.98} 

63.13 

{69.06} 

249.50 

{272.86} 

61.45 

{73.10} 

242.84 

{288.75} 

59.71 

{76.92} 

236.00 

{303.82} 

0.2 71.40 

{71.84} 

282.12 

{283.76} 

69.67 

{76.89} 

275.29 

{303.54} 

67.91 

{81.62} 

268.28 

{322.10} 

66.09 

{86.10} 

261.08 

{339.65} 

0.4 78.27 

{80.25} 

309.17 

{316.46} 

76.46 

{86.21} 

301.95 

{339.73} 

74.60 

{91.78} 

294.56 

{361.50} 

72.70 

{97.03} 

286.98 

{382.04} 

0.6 85.34 

{90.21} 

336.90 

{354.87} 

83.43 

{97.27} 

329.28 

{382.35} 

81.47 

{103.85} 

321.49 

{407.99} 

79.47 

{110.02} 

313.50 

{432.10} 
 

**Values written in bold and {} brackets are from [4]. 
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Anupam Khanna, Narinder Kaur 

KŪGINĖS STAČIAKAMPĖS PLOKŠTELĖS VIRPESIŲ, 
VEIKIANT NETOLYGIAI PASISKIRSČIUSIAM  
TEMPERATŪRINIAM LAUKUI, TYRIMAS 

R e z i u m ė 

Straipsnyje tyrinėjami tampriai elastinės nehomo-
geninės kūginės stačiakampės plokštelės virpesiai. Plokšte-
lės kūgiškumas yra orientuotas viena kryptimi. Eksponen-
tinis Puasono koeficiento pokytis yra susijęs su plokštelės 
medžiagos nehomogeniška prigimtimi. Temperatūrinio 
lauko netolygumas yra bi-linearus t.y. tiesinis x- ir y-
kryptimis. Pirmųjų dviejų virpesių modų dažniai ir įlinkiai 
paskaičiuoti ir suvesti lentelėn įvairiems plokštelės para-

metrams. Pateiktas šios studijos rezultatų palyginimas su 
literatūroje duotais. 
 
 
Anupam Khanna, Narinder Kaur 
 
A STUDY ON VIBRATION OF TAPERED  
RECTANGULAR PLATE UNDER NON- UNIFORM 
TEMPERATURE FIELD 
 
S u m m a r y 
 

The present analysis is about to study the vibra-
tion of tapered rectangular plate made up of visco-elastic 
non homogeneous material. Tapering in the plate is con-
sidered in one direction. Exponential variation in poisson 
ratio is assumed for non homogeneous nature of plate’s 
material. Non uniformity in temperature field is considered 
bi-linear i.e. linear in x– direction and linear in y– direc-
tion. Frequency and deflection for first two modes of vi-
bration are calculated and tabulated for various values of 
plate parameters. A comparison of the results of present 
study with those available in literature is given. 
 
Keywords: vibration, frequency, visco-elastic, non-
homogeneous, plate parameters, deflection. 
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