
70 

ISSN 13921207. MECHANIKA. 2015 Volume 21(1): 7077 

Fault detection and diagnosis of belt weigher using improved DBSCAN 

and Bayesian regularized neural network 

ZHU Liang*, HE Fei**, TONG Yifei***, LI Dongbo**** 
*School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China,  

E-mail: 676205493@qq.com 

**School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China,  

E-mail: hefei_njust@163.com 

***School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China,  

E-mail: tyf51129@aliyun.com 

****School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China,  

E-mail: lidongbo11@gmail.com 
 

  http://dx.doi.org/10.5755/j01.mech.21.1.8560 

 

1. Introduction 

 

Continuous bulk materials weighing equipment 

(CBMWE) is measuring equipment for bulk materials 

trade, widely used in ports, docks, power plant, metallurgy, 

building materials, electronics, chemical, food, mining, etc. 

Due to the poor working environment and long time 

high-load operation, the inaccurate measurement and vari-

ous faults occur frequently, which cause a great number of 

economic losses directly. Meanwhile, the fault diagnosis 

and maintenance also have been plagued by users and 

manufacturers, because most of the fault diagnosis & 

maintenance are completed on site by experienced profes-

sionals dispatched by the producer, which leads to high 

costs. Hence, the timely detection, diagnosis and mainte-

nance of the faults are necessary to avoid more economic 

losses [1]. In order to improve the maintenance quality of 

equipment and reduce the cost, online fault detection and 

diagnosis of CBMWE is of great immediate significance. 

Electronic belt weigher (BW), visual weigher, nuclear 

scale, etc are the most used CBMWE, whose data has great 

similarity in that the fault data vary with the flow while the 

weighing principles are different. Among them, BW is the 

most widely used CBMWE and has the best performance, 

so fault detection and diagnosis of CBMWE are studied 

based on BW in this paper. With the increasing of meas-

urement accuracy, BW has developed from single weigh-

ing sensor to multiple ones. Therefore, in this paper, the 

belt weigher is taken as the research object of fault detec-

tion and diagnosis of CBMWE.  

Generally speaking, there is a main approach with 

two steps for online fault detection & diagnosis of BW: the 

first step is to extract the fault data from the weigher sen-

sors, and the second step is to classify the fault pattern 

based on the extracted fault data in the previous step [2]. 

Considering that a belt weigher is the body of real-time 

variable mass [3], which means that the dosing data in-

cluding the normal data and fault data vary with the mate-

rials flows, it is difficult to extract the fault data directly. 

But for the belt weigher with multiple weighing units, the 

dosing data of normal weighing units vary consistently as 

well as the dosing data of the weighing units with the same 

fault. So we prefer to apply the clustering algorithm to 

extracting the dosing data of normal with weighing units as 

the normal data, owing to the fact that the normal weighing 

units are in the majority of all the units, and then the fault 

data can be extract based on the normal data. After that, the 

machine learning methods are adopted to learn from the 

fault samples and find out the dynamic features of different 

faults, so that the dynamic fault data can be classified to 

the specified fault mode while the fault data vary with the 

materials flows. In summary, the fault detection & diagno-

sis can be summarized as an online "clustering & classifi-

cation" problem in essence.  

Clustering is an unsupervised learning algorithm, 

which has strong robustness for random signal and im-

portant application in fault detection and diagnosis. During 

the detection of fault data, the application of clustering 

algorithm can reduce the dimension of fault data and keep 

down the training time of subsequent recognition model. 

Issam applied kernel k-means into the pre-processing of 

fault data [4]. Hesam proposed an online fault detection 

method based on WFCM clustering [5]. However, they 

both need to specify the number of clusters in advance, and 

K-means can only discover spherical clusters. Li Yamin 

introduced affinity propagation clustering algorithm into 

aeroengine fault diagnosis in emergency [6], which did not 

need to specify the number of clusters but can’t handle 

noisy data very well. DBSCAN is a kind of density-based 

clustering algorithm, which can discover clusters of any 

shape [7, 8], but DBSCAN does not operate well when the 

density of data space is not uniform [9, 10].  

As for fault pattern recognition, fault diagnosis is 

cosnsidered as the problem of multi-classification after the 

fault data is detected online. Various approaches developed 

for this purpose can be mainly divided into two categories. 

The first is mathematical model-based, like multinomial 

logistic regression [11] and Bayesian networks [12]. The 

second is related to the artificial intelligence, like fuzzy 

classifier [13], artificial neural networks (ANN) [14], SVM 

[15] and ELM [16]. Recently, more and more attentions 

have been paid to the development of artificial intelligence. 

Most of artificial intelligence approaches are based on 

ANN which have great capabilities in modeling nonlinear 

systems. Bo et al. presented an approach for motor rolling 

bearing fault diagnosis using neural networks and time/ 

frequency-domain bearing vibration analysis [17]. They 

applied the bearing vibration frequency features and 

time-domain characteristics into a neural network to rec-

ognize the fault patterns. Mahdieh and Farhad proposed a 
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hybrid neural network for soft fault diagnosis of the circuit 

under test, which avoided the local optimum by using ge-

netic algorithm and can obtain the accurate optimal solu-

tion quickly owing to the rapid convergence of back prop-

agation algorithm [18]. S.S. Tayarani presented a dynamic 

neural network for fault diagnosis of a dual spool aircraft 

jet engine, which used an IIR (infinite impulse response) 

filter to generate dynamics between the input and output of 

a neuron and consequently of the entire network [19]. 

Xiaoyue et al. introduced probability neural network as the 

classifier of fault diagnosis [20]. However, they are only 

based on empirical risk minimization principle, and the 

experiment data of CBMWE or BW is relatively difficult 

to collect. Therefore, this paper tries to make the classifier 

simple enough with the regularization theory. 

In this paper, we propose an improved DBSCAN, 

and build a fault diagnosis machine of BW by combining 

the improved DBSCAN with ANN. The remainder of this 

paper is organized as follows. In Section 2, a framework of 

the BW’s online fault detection & diagnosis is proposed. In 

Section 3, an improved DBSCAN is proposed and applied 

into the fault detection online. Section 4 introduces the 

Bayesian regularization neural network (BRNN) as a novel 

approach into the fault diagnosis of BW. In Section 5 the 

experiment of BW’s online fault detection and diagnosis 

using the improved DBSCAN and BRNN is conduct to 

validate the effectiveness of the model proposed in this 

paper, and Section 6 summarizes some conclusions. 

 

2. Fault detection and diagnosis of BW based on  

clustering and classification 
 

As mentioned in the introduction, in order to 

achieve the intelligent fault detection and diagnosis of BW, 

a scheme is proposed that extract the normal data and de-

tect the fault data using clustering algorithm at the same 

time, and then identify the fault pattern by the classifica-

tion of the detected fault data, as shown in Fig. 1. 
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Fig. 1 Process of online fault detection & diagnosis 

In the practical situation, the fault data points are 

fewer relative to the normal points, so the following as-

sumption can be made: 

Suppose  1 2

t t t t

mD x ,x ,...x
 

is the sample dataset 

of m weighing sensors containing the normal dataset 
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at time t. And then according to the fact we can assume 

that the number of data points in 0

tD  is larger than any 

one in t

iD , namely     0# #
i

t t

imaxD D . 

As described in Section 1, a belt weigher is the 

body of real-variable mass, so that there are increase and 

discharge of materials on any weighing unit at any time, 

which means tD  varies with the time and 1t

iD  is differ-

ent from 2t

iD  for any I = 0,1,2,...k if 1 2t t [3]. However, 

the difference among  1 2 i

t t t t

i i i imD x ,x ,...x  is infinitesi-

mally small while the Euclidean distance between t t

i ix D  

and t t

j jx D  for any i, j = 0, 1, ... , k is still very large. 

Therefore, the fault detection can be realized by extracting 

the 0

tD  and determining whether    0# #t tD D  with the 

assumption that     0# #
i

t t

imaxD D , as well as the ex-

traction of fault data. After that, the fault diagnosis can be 

completed by classifying the fault pattern with fault data 

with the machine learning methods. 

 

3. Online fault detection based on improved DBSCAN 
 

3.1. DBSCAN 
 

The key idea of DBSCAN is that for each point of 

a cluster the neighborhood of a given radius has to contain 

at least a minimum number of points, i.e. the density in the 

neighborhood has to exceed some threshold. The shape of 

a neighborhood is determined by the distance function for 

two points p and q, denoted by dist(p,q). 

Definition 1. The Eps-neighborhood of a point p, 

denoted by NEps(p), is defined by 

    Eps q D| dist p,q N p Eps   . 

Definition 2. An object p is directly densi-

ty-reachable from an object q wrt. Eps and MinPts in the 

set of objects D if 

(1)  Epsp qN  is the Eps-neighborhood of q), 

(2)  |NEps(q)|≥MinPts. 

Definition 3. A point p is density-reachable from 

a point q wrt. Eps and MinPts if there is a chain of points 

p1,…,pn, p1= q, pn = p such that pi+l is directly densi-

ty-reachable from pi. 

Definition 4. An object p is density-connected to 

an object q wrt. Eps and MinPts in the set of objects D if 

there is an object o D such that both p and q are densi-

ty-reachable from o wrt. Eps and MinPts in D. 

Definition 5 Let D be a database of points. A 

cluster C wrt. Eps and MinPts is a non-empty subset of D 

satisfying the following conditions: 
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(1)  p, q: if pC and q is density-reachable from p wrt. 

Eps and MinPts, then qC. (Maximality). 

(2)  p, qC: p is density-connected to q wrt. Eps and 

MinPts. (Connectivity). 

Definition 6. Let C1,…, Ck be the clusters of the 

database D wrt. parameters Epsi and MinPtsi, i = 1,…,k. 

Then the noise is the set of points in the database D not 

belonging to any cluster Ci, i.e. noise = {pD| i : pCi} 

[7]. 

An object is core object if it satisfies condition (2) 

of Definition 2, and a border object is such an object that is 

not a core object itself but is density-reachable from an-

other core object.  

On the basis of the above definition, steps of 

DBSCAN algorithm are as follows: 

Step1. In the given dataset D={x1, x2,…, xN}, se-

lect an unprocessed data point xt randomly; 

Step 2. If the selected data point xt is a core object, 

and then the data points, which are density-reachable from 

xt, form a cluster; else the selected data point xt is a border 

object, and then jump out of the loop, looking for the next 

point. 

Step 3. Repeat Step1 and 2, until all the points in 

the dataset D are processed. 

 

3.2. Online fault detection of BW based on the improved 

DBSCAN 
 

Based on the above assumption in Section 2, this 

paper proposes to achieve the online fault detection by 

applying the online clustering to separating the normal data 

points 0

tD  from the fault data points  1

t t

kD ,...D . Gener-

ally, there are two ways of the separation by online clus-

tering: one is to extract the normal data points from the 

background; the other one is to cluster the dataset tD  into 

 1 2 kC ,C ,...,C ,
 

by applying clustering algorithm without 

specifying the class number in advance, and then get the 

normal dataset   0 #t t

i
i

argmaxD D . In practice, the 

latter way is picked up as the scheme of fault detection 

owing to its better reliability, which is depicted in Fig. 2. 
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Fig. 2 Process of online fault detection 

In order to detect the fault online, firstly, the 

clustering algorithm is presented to divide the sample data 

of BW into different clusters as soon as the dataset D
t 
is 

sampled, and then the normal dataset is found out 

by   0 #t t

i
i

argmaxD D , and finally whether #(D0
t
)<#(D

t
) 

is judged. 

However, the density of the dataset of weighing 

sensors varies while the BW operates in different flows, 

which can lead to great changes in the distribution of dis-

tance function, so the original DBSCAN doesn’t have a 

good robustness in different flows. In order to improve the 

robustness, the improved DBSCAN is presented by re-

placing the distance function  
2

t tdist x,x x x   with 

the similarity function in the DBSCAN:  
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The similarity function is in essence an adaptive 

normalization, so the improved DBSCAN is able to avoid 

the impact of different flows. 

 

4. Online fault diagnosis based on BRNN 
 

4.1. BRNN 
 

ANN is one of the most widely used methods in 

fault diagnosis, especially the back propagation neural 

network (BPNN). BPNN is a supervised algorithm which 

is typically trained by minimizing the loss function with 

the gradient descent method. Given the samples 

{(x1,y1),…,(xn,yn)}, xi
m , the loss function based on 

ERM is as follows: 

     
1

1

2

n T

p p p p
p

L t y t y ,
n 

  w    (2) 

where tp is the expecting output.  

However, the neural network, which is trained by 

adopting Eq. (2) as the loss function, tends to overfit when 

the train samples are not enough. Therefore, in considera-

tion of that the fault diagnosis data of BW is very difficult 

to sample, BRNN is developed into the fault diagnosis of 

BW and the loss function is:  

 

2 2

1

;

1
;
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D W

n

D p p W
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L E E

E t y E ,
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w

w
   (3) 

where DE is the empirical risk, WE is the regularization 

term, and α, β are objective function parameters [21]. With 

the Bayesian regularization, the potential for overfitting of 

network can be greatly reduced. In BRNN the weights are 

considered as random variables with Gaussian distribution 

and thus their density function can be updated as: 
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where D represents the data set, M is the particular neural 

network model used, and w is the vector of network weights 

[22]. With the assumption that the noise in the training set 

data is Gaussian, the probability density function for the 

weights can be determined. And then the optimal regulari-

zation parameters α and β are obtained at the minimum 

point w
MP

 which can be acquired by minimizing the objec-

tive function L(w) using the Levenberg-Marquardt algo-

rithm: 
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where γ is the effective number of well-measured parame-

ters, and H is the Hessian matrix of L(w) which is com-

puted with the Gauss-Newton approximation: 
2 2 2T

NL( )    H w J J I  (J is the Jacobian matrix 

of L(w), and N is the total number of parameters in the 

network) [23], [21].  
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Fig. 3 The training process of BRNN 

The training process of BRNN shown in Fig. 3 is 

similar to the EM algorithm (Expectation Maximization 

algorithm). After the initialization, the training is conduct-

ed through repeating that solve Eq. (5) after the L-M min-

imization of Eq. (3) until γ, ED and EW of the networks 

keep basically stable or remain unchanged after each 

training. The number of hidden layer neurons Nhl can be 

determined based on γ, ED and EW in the training. A small 

value of Nhl is assigned in the initialization, and then the 

value of Nhl increases until the end of training. 

 

4.2. Fault diagnosis based on BRNN 
 

In this paper, a three layered feedforward BRNN 

including one input layer, one hidden layer, and one output 

layer is developed as a classifier to identify the given bi-

nary fault pattern of BW. The tangent sigmoid function 

tanh(x) is chosen as the activation function of the hidden 

layer, and the linear function is chosen for the output layer 

[24].  
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Fig. 4 Schematic diagram of fault diagnosis 

Fault diagnosis is a classification problem in es-

sence, while the feedforward network is designed for the 

regression problem. Thus, the fault patterns need to be 

encoded as binary data before building the diagnosis model, 

and then the classification will be accomplished by finding 

the nearest fault pattern of the binary output. The detailed 

process of fault diagnosis is shown as follows (Fig. 4): 

Step 1. Encode the fault patterns as binary data, 

and train the feedforward network as Fig. 3 depicts; 

Step 2. Apply the trained network to predicting 

the binary output of the given test data; 

Step 3. Calculate the distance between the pre-

dicted binary output and all fault patterns, and then find out 

the closest fault pattern to the binary output. 

 

5. Case study 
 

In this section, a case study is conducted on the 

test of 3# array belt weigher (ABW) in the BW test center 

of Nanjing Sanai Industrial Automation Co. Ltd. 3# ABW 

can recycle the materials. The real-time data are collected 

by ARM7 and transmitted through RS485 bus to the upper 

PC which receives the data by using MATLAB serial 

communication. In order to yield the best results, both the 

training data and real-time data are normalized within the 

range [0,1] by the “mapminmax” function. The improved 

DBSCAN and BRNN are realized with MATLAB system 

software system. All the programs are implemented by the 

hardware of Core i3-2.35G CPU, memory 6G and hard 

disk 500G.  
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Fig. 5 Schematic diagram of ABW 

As shown in Fig. 5, 3# ABW, which takes 42 

seconds (2.21 m/s) to run a cycle, includes 8 weighing 

units which are far enough away from the loading point to 

avoid the interference caused by the impact of the load, 

especially the sudden large materials [25].  

 

5.1. Fault pattern of ABW 
 

The sampling frequency of each weighing unit is 

10 Hz. The data at each time is composed of the real-time 

data from 8 weighing unit and several parameters of BW. 

Six kinds of common fault, which are listed and coded in 

Table 1, are simulated in 3# ABW and each weighing unit 

has the similar fault patterns. Because there are at most 

three weighing unit areas existing fault at the same time in 

actual operation, each group in the experiment only makes 

at most 4 weighing unit areas simulate fault. Moreover, 

different groups are conducted at the flows of no-load, 

200 t/h, 500 t/h and 800 t/h to validate the effectiveness 

and feasibility of the fault detection & diagnosis model. 

The total amount of materials through the BW at each flow 

is 50 t. The major parameters of 3# ABW are listed in Ta-

ble 2: 

 

Table 1  

Fault patterns of ABW 
 

Fault Pattern  Fault Code 

Normal  [0,0,0] 

Wear on the surface of sensors [0,0,1] 

The stuck weighing frame [0,1,0] 

Looseness on weighing frame [0,1,1] 

Poor sensor connection [1,0,0] 

The stuck idler [1,0,1] 

Looseness on sensors [1,1,0] 
 

Table 2  

Parameters of 3# ABW 
 

Width of 

belt, mm 

Idler spac-

ing, mm 

Thickness 

of belt, 

mm  

Groove 

angle 

of idler 

1000 1200 12 30° 
 

5.2. Experiment of online fault detection based on im-

proved DBSCAN 
 

The experiment of online fault detection is con-

ducted by comparing the accuracy and instantaneity of 

various clustering algorithms. DBSCAN, improved 

DBSCAN and fuzzy hierarchical clustering (FHC) are ap-

plied to the online clustering analysis of the real-time data 

from 8 weighing unit with noise when BW operates at the 

flow of no-load, 200, 500 and 800 t/h respectively. 
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Fig. 6 Clustering effect chart of DBSCAN 
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Fig. 7 The accuracy of clustering algorithms 
 

Fig. 6 illustrates the bad robustness of DBSCAN 

for different flows. In order to realize the fault detection of 

different flows, four optimal models based on the 

DBSCAN can be acquired through learning the data of 

four flows respectively. However, all the optimal four 

models cannot handle the data of all flows well. In other 

words, the fault detection model based on DBSCAN is 

unable to be adjusted with one Eps and one MinPts to han-

dle all the data of different flows well. Thus, it is necessary 

to improve DBSCAN by replacing the distance function 

dist(p,q) with the similarity function r(p,q). 

As shown in Fig. 7, both the accuracy of FHC and 

improved DBSCAN is very high and has no significant 

changes at different flows, namely much better robustness 
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than DBSCAN. That’s because both the FHC and im-

proved DBSCAN calculate the similarity of any two points 

instead of the distance, and as described above the calcula-

tion process of the similarity is in essence an adaptive 

normalization. Moreover, the improved DBSCAN has a bit 

higher accuracy than FHC owing to its good noise pro-

cessing capability [26]. 

 In addition to the accuracy and robustness, Table 

3 details the instantaneity of FHC and improved DBSCAN, 

and it can be easily concluded that the improved DBSCAN 

consumes less time and is more suitable for online fault 

detection than FHC. That’s because the average run time 

complexity of DBSCAN is O(n*log n) [7] while the one of 

FHC is O(n
2
) [27]. All the average accuracy and test time 

is obtained with respect to all the 6 different fault patterns 

listed Table 1. 

 

Table 3  

Comparison of clustering algorithms 
 

Clustering algo-

rithms 

Average 

accuracy, % 

Average time of 

each group/us 

FHC 96.4 5.637 

Improved 

DBSCAN 
99.7 2.113 

 

5.3. Experiment of online fault diagnosis 
 

In order to evaluate the performance of our pro-

posed fault diagnosis scheme, 4 sets of training data are 

generated corresponding to 4 flows of no-load, 200, 500 

and 800 t/h, and each set contains 250 sample data. The 

fault diagnosis model is trained as proposed in Section 3.2 

with the training data. Table 4 summarizes the results for 

training different BRNN of three layers. Notice that γ, EW 

and ED keep basically stable for all models with Nhl ≥ 8, so 

the number of hidden layer neurons is set to 8.  

 

                            Table 4  

Training results of fault diagnosis model 
 

Nhl EW ED γ N 

2 15.9 0.0924 10.8 15 

4 15 0.0888 11.7 27 

6 15.7 0.088 12.7 39 

8 15 0.104 12.3 51 

10 15 0.105 12.3 63 

 

After training the fault diagnosis model, the fault 

diagnosis model is also tested with the real-time data from 

8 weighing unit and several parameters of BW when BW 

operates at the flow of no-load, 200, 500 and 800 t/h re-

spectively. During the test, the fault diagnosis model iden-

tifies the fault pattern as soon as the fault detection of the 

real-time data is completed. Finally, the results of the pro-

posed fault diagnosis model based on BRNN are compared 

with those of BPNN, RBF and GRNN, as shown in Ta-

ble 5. 

The average accuracy is also obtained with re-

spect to all the 6 different fault patterns as well as the av-

erage test time. According to the comparison, the fault di-

agnosis model based on BRNN spends less time owing to 

the less hidden layer neurons while the model based on 

RBF or GRNN contains 56 hidden layer neurons. Also, the 

model based on BRNN has the best performance, because 

BRNN has a much better generalization than the others 

when the training samples of BW are relatively few. Be-

sides, during the experiments of BW, the study finds that 

the accuracy of model based on BPNN or RBF is very sen-

sitive to the normalization, but the accuracy of model 

based on BRNN is not. 

 

                              Table 5  

Comparison of different classifiers 
 

Classifiers 
Average ac-

curacy, % 

Average test time 

of a dataset/us 

BRNN 93.13 29.32 

BPNN 83.05 37.84 

RBF 86.85 34.77 

GRNN 90.28 26.94 

 

6. Conclusions 
 

In this paper, in order to cope with the uneven 

density data caused by different materials flows or the in-

crease and discharge of materials of the same flow on any 

weighing unit at any time, we have proposed an improved 

DBSCAN by replacing the distance function with the sim-

ilarity function, and apply the improved DBSCAN to the 

online fault detection of BW. After that, BRNN is intro-

duced into the online fault diagnosis of BW, which is able 

to classify the fault data detected by the improved 

DBSCAN into different fault patterns. Finally, as a demon-

strated example, the online fault detection and diagnosis 

experiments of ABW using improved DBSCAN and 

Bayesian Regularized Neural Network is conducted. The 

results summarized in Fig. 7 and Table 3 indicate that the 

fault detection model of BW based on improved DBSCAN 

has excellent real-time performance and great robustness 

for handling the uneven density data. The results summa-

rized in Table 4 and 5 show that the fault diagnosis model 

of BW using Bayesian regularized neural network has not 

only a more excellent generalization but also better ability 

to recognize the fault pattern of BW than the other algo-

rithm such as RBF, BPNN, GRNN. Furthermore, the pre-

sented research is a novel approach in the bulk materi-

al trade and should be very useful to the fault detection or 

diagnosis of continuous bulk materials weighing equip-

ment. 
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ZHU Liang, HE Fei, TONG Yifei, LI Dongbo 

FAULT DETECTION AND DIAGNOSIS OF BELT 

WEIGHER USING IMPROVED DBSCAN AND 

BAYESIAN REGULARIZED NEURAL NETWORK 

S u m m a r y 

Various faults occurred in the continuous bulk 

materials weighing equipment (CBMWE) usually lead to 

more economic loss and waste of human resources inevita-

bly. A new approach based on the improved DBSCAN 

(Density-Based Spatial Clustering of Applications with 

Noise) clustering and Bayesian regularization neural net-

work (BRNN) is proposed for online fault detection and 

diagnosis of CBMWE--electronic belt weigher (BW). 

Firstly, in view of the fault data varying with the materials 

flows or the increase and discharge of materials of the 

same flow on any weighing unit at any time, an improved 

DBSCAN clustering algorithm is developed to realize the 

online fault detection by extracting the fault data with the 

clustering analysis of the real-time data. Secondly, BRNN 

is proposed as a classifier to identify the fault pattern with 

the extracted fault data. Both the models of online fault 

detection and diagnosis are realized using MATLAB. Fi-

nally, the test result shows that the proposed online fault 

detection and diagnosis model is able to cope with the 

online fault detection and diagnosis of BW and also yields 

great diagnostic accuracy. In general, this approach for 

online fault detection and diagnosis of BW has a great sig-

nificance to bulk weighing equipment. 

 

Keywords: DBSCAN; Bayesian regularization; neural 

network; belt weigher; online fault detection and diagnosis. 
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