Dry turning of X2CrNi18-09 using coated carbide tools: modelling and optimization of multiple performance characteristics

Authors

  • Septi BOUCHERIT Mechanics and Structures Research Laboratory (LMS), Université 8 Mai 1945 Guelma BP 401 Guelma 24000, Algérie,
  • Sofiane BERKANI Mechanics and Structures Research Laboratory (LMS), Université 8 Mai 1945 Guelma BP 401 Guelma 24000, Algérie
  • Mohamed Athmane YALLESE Mechanics and Structures Research Laboratory (LMS), Université 8 Mai 1945 Guelma BP 401 Guelma 24000, Algérie,
  • Abdelkrim HADDAD Laboratory of Applied Mechanics of New Materials (LMANM), Université 8 Mai 1945 Guelma, PO Box 401 Guelma 24000, Algeria.
  • Salim BELHADI Mechanics and Structures Research Laboratory (LMS), Université 8 Mai 1945 Guelma BP 401 Guelma 24000, Algérie

DOI:

https://doi.org/10.5755/j01.mech.25.6.22367

Keywords:

Machinability, austenitic stainless steel, CVD coated carbide tool, ANOVA, RSM, desirability approach.

Abstract

The present paper investigates the cutting parameters pertaining to the turning of X2CrNi18-09 austenitic stainless steel that are studied and optimized using both RSM and desirability approaches. The cutting tool inserts used are the CVD coated carbide. The cutting speed, the feed rate and the depth of cut represent the main machining parameters considered. Their influence on the surface roughness and the cutting force are further investigated using the ANOVA method. The results obtained lead to conclude that the feed rate is the surface roughness highest influencing parameter with a contribution of 89.69%.The depth of cut and the feed rate are further identified as the most important parameters affecting the cutting force with contributions of 46.46% and 39.04% respectively.

The quadratic mathematical models presenting the progression of the surface roughness and the cutting force and based on the machining parameters considered (cutting speed, feed rate and depth of cut) were obtained through the application of the RSM method. They are presented and compared to the experimental results. Good agreement is found between the two sections of the investigation.

Furthermore, the flank wear of the CVD-coated carbide tool (GC2015) is found to increase with both cutting speed and cutting time. A higher tool life represented by t=44min is observed at cutting speed, feed rate and depth of cut of 280m/min,0.08mm/rev and 0.2mm respectively. Moreover and at low cutting speeds, the formation of micro weld is noticed and leads to an alteration of the surface roughness of the work piece.

Finally, optimizing the machining parameters with the objective of achieving an improved surface roughness was accomplished through the application of the Desirability Function approach. This enabled to finding out the optimal parameters for maximal material removal rate and best surface quality for a cutting speed of 350m/min, a feed rate of 0.088 mm/rev and a depth of cut of 0.9mm.

 

Author Biographies

Septi BOUCHERIT, Mechanics and Structures Research Laboratory (LMS), Université 8 Mai 1945 Guelma BP 401 Guelma 24000, Algérie,

Mechanical Engineering

Sofiane BERKANI, Mechanics and Structures Research Laboratory (LMS), Université 8 Mai 1945 Guelma BP 401 Guelma 24000, Algérie

Mechanical Engineering

Mohamed Athmane YALLESE, Mechanics and Structures Research Laboratory (LMS), Université 8 Mai 1945 Guelma BP 401 Guelma 24000, Algérie,

Mechanical Engineering

Abdelkrim HADDAD, Laboratory of Applied Mechanics of New Materials (LMANM), Université 8 Mai 1945 Guelma, PO Box 401 Guelma 24000, Algeria.

Mechanical Engineering

Salim BELHADI, Mechanics and Structures Research Laboratory (LMS), Université 8 Mai 1945 Guelma BP 401 Guelma 24000, Algérie

Mechanical Engineering

Downloads

Published

2019-12-04

Issue

Section

MECHANICAL TECHNOLOGIES