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1. Introduction 

 

With advancing the techniques of material pro-

duction, new group of materials which are called function-

ally graded materials (FGMs) are appeared in industrial 

applications. The first idea for producing this group of ma-

terials was their application in high temperature gradient 

environment and their forming ability. For the structures 

that are applicable in the environments such as nuclear 

reactors and chemical laboratories, it is inevitable to use 

FGMs. FGMs are made of a mixture with arbitrary compo-

sition of two different materials, and volume fraction of 

each material changes continuously and gradually at the 

entire volume of the material. Ceramic and metal are the 

examples of these different materials. Ceramics bear high 

gradient temperature and keep the first configuration. If we 

use the pure metal in those environments, in the effect of 

high temperature, creep and large deformation in structure 

was inevitable.      

Ceramics have a high resistance to forming in 

temperature field and in other hand metals have a ductility 

property that diminishes fragility of ceramics. As men-

tioned above, compounding of ceramic and metal can be 

used to create the best property for bearing the entire un-

wanted environment [1].  

One of the most applicable structures in the me-

chanical engineering is the shells. In the general state, they 

can be classified to two classes. First class of them is thin. 

This class is applicable for bearing the membrane and in-

plane forces. Membrane theory can be used to utilize this 

class of shell. Second classes of shells are the thick shells. 

In this class, total deformation of shell includes displace-

ment of middle surface and rotation about middle surface 

of the shell. Thick shells can be applied to undergo bend-

ing and stretching force, simultaneously.  

Lame studied the exact solution of a thick walled 

cylinder under inner and outer pressure. The cylinder is 

supposed to be axisymmetric and isotropic [2]. Naghdi [3] 

considered the effect of lateral shear and consequently, 

constitute the theory of shear deformation. Mirsky and 

Hermann [4] applied the first order shear deformation the-

ory (FSDT) for the analysis of an isotropic cylinder. FGMs 

are created by one Japanese group of material scientist [5]. 

Properties of this group of materials are varying continu-

ously at the entire volume of the material.      

At the first years of decade 1990, researches on 

the thermal and vibration analysis of FGM were started. 

Tutuncu and Ozturk [6] presented the exact solution of a 

FG spherical and cylindrical pressure vessel. Jabbari et al 

[7] analyzed the thermoelastic analysis of a FG cylinder 

under the thermal and mechanical loads. It has been sup-

posed that the material properties are varying as a power 

function in terms of the radial coordinate system. With 

substitution of the derived temperature field in the navier 

equation, the obtained differential equation has been 

solved analytically.      

Wu et al [8] investigated the elastic stability of a 

FG cylinder. They employed the shell Donnell's theory to 

derive the strain-deformation relations. Stress-strain equa-

tion has been obtained by consideration the effect of ther-

mal strain in Hooke's low. Three nonlinear equations of 

equilibrium according to Donnell's theory have been ap-

plied. Imposing the condition of prebuckling and a func-

tion for the radial displacement, the results have been de-

fined by minimization of the critical load with respect to 

defined parameter of the problem. The buckling load of 

cylinder has been evaluated under uniform temperature 

rising. Shao [9] investigated the thermo elastic analysis of 

a thick walled cylinder under the mechanical and thermal 

loads. The cylinder has been divided into many annular 

sub cylinders in the radial direction. Based on this division, 

properties of every sub cylinder may be assumed to be 

uniform. In the following, it is employed the thermal and 

the equilibrium equation for every subcylinder, individual-

ly. After solution of the thermal and the equilibrium equa-

tion in every subcylinder, compatibility equations for the 

thermal and mechanical components within the every two 

layers are imposed. By doing this procedure for the com-

plete cylinder, distribution of temperature and displace-

ment have been obtained.           

Eslami et al [10] studied a general solution for the 

one-dimensional steady-state thermal and mechanical 

stresses in a hollow thick sphere made of functionally 

graded material. The temperature distribution is assumed 

to be a function of radius, with general thermal and me-

chanical boundary conditions on the inside and outside 

surfaces of the sphere. The material properties, except 

Poisson’s ratio, are assumed to vary along the radius ac-

cording to a power law function. The navier equation is 

solved analytically with evaluation of the roots of the char-

acteristic equation.    

The coupled thermoelastic response of a function-

ally graded circular cylindrical shell is presented by Bahtui 

et al [11]. The coupled thermoelastic and the energy equa-

tions are simultaneously solved for a functionally graded 

axisymmetric cylindrical shell. A second-order shear de-

formation shell theory is considered for that analysis. The 

shell is graded through the thickness assuming a volume 

http://dx.doi.org/10.5755/j01.mech.18.1.1273


 6 

fraction of metal and ceramic, using a power law distribu-

tion. Khabbaz et al [12] employed the first and third order 

shear deformation theories to predict the large deflection of 

FG plates. The results indicated that the energy method 

powered by the FSDT and FSDT is capable of predicting 

the behavior of a FG structure such as plate. Jabbari et al 

[13] investigated the thermo elastic behavior of a FG cyl-

inder under the thermal and the mechanical loads. Firstly, 

they employed two-dimensional differential equation of 

heat transfer for the different boundary conditions. By con-

sidering two equations of equilibrium in the cylindrical 

coordinate system and imposing the distribution of temper-

ature, they obtained two navier equations in terms of two 

axisymmetric components of displacement.   

As a main applicable instance of shells, cylindri-

cal shell can be considered in the present paper. Pressure 

vessels, reactors, heat exchanger and other nuclear and 

chemical equipments are the instances of the cylindrical 

shells. Present study would improve the manufacturing of 

chemical and weapon equipments and then increases the 

strength of them by using the FGM. The present study con-

siders the effect of the pressure and temperature on the 

behavior of a FG cylinder with different boundary condi-

tions, simultaneously. The present paper proposes an ana-

lytical method for two dimensional analysis of a FG cylin-

der. This solution considers the end effect of cylinder. The 

previous papers have not been considered the end effect of 

cylinder actually and comprehensively [13].  

 

2. Formulation  

 

In the present study, the first order shear defor-

mation Mirsky-Herman theory is employed to simulate 

deformation of every layer of the cylinder in terms of dis-

placement of midsurface and rotation about outward axis 

of the middle surface [4]. Before demonstration of the pro-

cedure of FSDT, it is necessary to expand Lame's solution 

for a cylindrical pressure vessel. In the Lame's theory, 

symmetrical distribution of the radial displacement, u may 

be obtained as follows [4, 14] 

2
1

c
u c r

r
   (1) 

where r is the radius of every layer of the cylinder. In the 

general state, this distance can be obtained in terms of the 

radius of the midsurface R and distance of every layer with 

respect to midsurface   as follows 

r R    (2) 

By substitution of r into the Lame's solution 

(Eq. (1)) and applying the Taylor expansion, Eq. (1) may 

be obtained as a function of  as follows 

2
1 0 1( ) ... 

c
u c R c c

R
 


      


 (3) 

Eq. (3) has been known as the first order shear de-

formation   theory   (FSDT).  Based   on  this  theory, every 

component  of  the  deformation  states  by two variables in 

 cluding the rotation and displacement. For a symmetric 

cylindrical shell, the radial and axial components of de-

formation may be considered as follows [15-17] 
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where ,zu zw  are the axial and radial components of dis-

placement, respectively. , , ,x zu w    are the  functions of 

axial component of coordinate system (z) only. With con-

sideration of the Eq. (4) and recalling 
r z

 


 
 from 

Eq. (2), the components of strains i  are [15-17] 
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Stress strain relations (Hooke’s low) by consider-

ation of the effect of the thermal strain are 
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where i are stress components and the material properties 

are considered according to reference [7]. By doing a little 

mathematical calculation, the components of stress in 

terms of strain components are 
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Strain energy is equal to the one-half of multiply-

ing of the components of stress tensor in the corresponding 

components of strain tensor. With having the components 

of the stresses and the strains, strain energy per unit vol-

ume  u  may be obtained as follows 
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Eq. (8) includes two different expressions. The 

first class of them is the mechanical strain energy and the 

second class is the thermal strain energy. The total strain 

energy must be evaluated by integration of Eq. (8) on the 

volume of the cylinder. The volume element of the cylin-

der is 2 ( )R d dz   , therefore we’ll have 

0

2 ( )

[ ( ) ( )]

V

l

S T

dV R d dz U udV

U x U x dz

      

 




 

(9)

 

where ( )
S

U   is the mechanical strain energy and ( )
T

U   

is the thermal strain energy. With substitution of the strain 

component in terms of four displacement and rotation 

terms, mechanical and thermal energy (Eq. (9)) can be ob-

tained by Eqs. (10) 
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2.1. Calculation of external works 

 

Energy of internal and external pressure is equal 

to multiplying of pressure in the radial deformation of the 

inner and the other surface of the cylinder, respectively. 

Inner pressure applies in the same direction of the positive 

deformation; conversely, outer pressure applies in the neg-

ative direction of the deformation. Eq. (11) indicates the 

external work W due to internal and external pressure. 

Fig. 1 shows the schematic figure of a cylindrical pressure 

vessel 

 

 

Fig. 1 Tthe schematic figure of a cylinder with fixed edges 
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In the present paper, only internal pressure is con-

sidered. Therefore, we’ll have 
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2.2. Variation of the energy equation 

 

Total energy of the system must be obtained by 

subtraction of Eq. (11) from Eq. (9) as follows 
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As mentioned above, Eq. (12) includes four vari-

ables. Governing differential equation of the system may 

be obtained by minimization of the energy equation with 

respect to four assumed variables. By using Euler equation, 

variation of Eq. (12) can be expressed as follows 
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where functional ( , , , , )z rF u w z   is introduced using the 

Eq. (12). Equilibrium Eq. (13), which are obtained from 

Eq. (12), can be represented in terms of resultant of mo-

ments and forces. This procedure diminishes the long 

mathematical equations. Resultant of moments iM and 

forces iN  in terms of stress components are [17] 
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Therefore, the main governing relations of the 

thermo-elastic behavior of a functionally graded cylinder 

can be expressed as follows [17] 

3

2

1 4

0

1
[ ] ( )

2 2

( )1
0

2

( ) ( )
[ ]

2 2

2 2

z

r i

r z

r rz

i

N

z

h
N RQ B z P R

z

B z
Q RM

R z

B z B z
RN M RM

z

h h
P R









 





   

     
  

   
      

    
           


    

  

 (15) 

where ( )iB z  are the functions of the thermal conditions. 

Eqs. (15) is the second order system of differential equa-

tion with four variables 

   

2

1 2 32
[ ] { } [ ] { } [ ]{ } { }

( )  ( )  ( )  ( )
T

z r

d d
G X G X G X F

dzdz

X u z z w z z 


   


 

 (16) 

Eq. (16) shows the matrix presentation of 

Eqs. (15). With applying the appropriate matrix operations 

to the Eq. (16), 
1 2 3, ,G G G  and force vector ( )F z  may be 

obtained using Eqs. (17). 1 3,G G  are symmetric matrices 

and 2G  is an anti symmetric matrix and can be obtained as 

follows 

1 11 1 1 12 2 1 22 3

1 33 1 34 1 44

2 13 2 31 4 2 14 2 41 6 1

2 23 2 32 1 6

2 24 2 42 2 2 9

3 22 1 3 3

,
1 2 1 2 (1 2 )

1 2 3
2 2 2

) (1 ) , ) (1 ) , ) (1 ) ,

) , ) )

) ) , ) ) ( + ),

1 2
) ) - + ,

2

1 2
) ) - + ( )

2

1 2
)  - , )

2

v v v
A A A

G v A G v A G v A

G G G

G G vA G G v A A

v
G G A vA

v
G G A v A A

v
G A G

  

     

  

     


  


   


 4 7 4

3 44 8 1 6 3 33 5

-(1 )

) -(1 )( ) 2 , ) -(1 )

v A vA

G v A A vA G v A
















  



      

 (17) 
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Eqs. (16) and (17) are the complete governing 

equations of a FG cylinder that are derived yet. In the fol-

lowing section, we must solve the governing differential 

Eq.16 for general boundary conditions.     

 

3. Two dimensional solution of a FG cylinder 

 

The important objective of this study is the inves-

tigation on the end effect of cylinder on the response of the 

cylinder. For attaining to this purpose, it is inevitable to 

obtain the homogenous solution of Eq. (16). Homogenous 

solution of this problem includes eight constants of inte-

gration. These constants can be obtained by consideration 

of the natural boundary condition of two ends of the cylin-

der. Homogenous solution of Eq. (16) in the general form 

is (subscript h shows that this solution is a homogenous 

solution):      

8

1

im zj i

h i j

i

X c v e


  (18) 

Eq. (18) in the extended form is 

1

2

3

4

1

2

1 2 3 4 5 6 7 8
31 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

42 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8

53 3 3 3 3 3 3 3

1 2 3 4 5 6 7 8

4 4 4 4 4 4 4 4

            

          
 

         

         

m z

m z

m z

m z

m
z

r h

c e

c e

c ev v v v v v v vu

c ev v v v v v v vw

c ev v v v v v v v

v v v v v v v v





  
  
     
  
    

5

6

7

8

6

7

8

z

m z

m z

m z

c e

c e

c e

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (19) 

where im  is the eigen value of the problem that is obtained 

from the characteristic Eq. (20) as follows 

2

1 2 3[ ]{ } 0G m G m G v    (20) 

Due to the nonzero vector v, characteristic equa-

tion of this problem can be obtained by determinant of the 

matrix of 2

1 2 3[ ]G m G m G   

2

1 2 3[ ] 0det G m G m G    (21) 

Obtained characteristic Eq. (21) is an eight’s or-

der equation. With solving the characteristic Eq. (21), eight 

roots of Eq. (21) can be obtained. With substitution of eve-

ry root im  in Eq. (20), corresponding eigen vector iv  can 

be obtained. ( 1,2,3,4)i

kv k   constitutes the i th column 

of Eq. (19) for root im . Particular solution of Eq. (16) is: 

1

3 3[ ]{ } { } { } [ ] { }p pG X F X G F    (22) 

Therefore, we’ll have the final solution of the 

problem as follows 

{ } { } { }h pX X X   (23) 

Two dimensional solution of the cylinder can be 

completed with imposing the appropriate boundary condi-

tions on Eq. (23). For a cylinder with clamped-clamped or 

two simply supported ends, the boundary conditions can be 

presented as follows, respectively 

Clamped clamped

0  at 
2

0  at 0
z z z z

Simply supporte

0  at 
2

0  at 0
z z z z

z

z r

z r

z r

Lu w z

u w
z

Lu w z

u w
z

 

 

 

 



    

  

     
    




     


       
    

   (24) 

For other boundary conditions, the presented 

method has capability to solve problem, exactly.  

 

Example: solution of a clamped-clamped cylinder  

 

Two end of cylinder are assumed to be fixed and 

clamped. Therefore, deflections and rotations vanish at the 

two ends of the cylinder.  Due to imposing the similar 

boundary condition on the two ends of cylinder, the slope 

of the deflections and rotations vanishes at the middle of 

the cylinder.  

 

4. Numerical results, comparison and discussion  

 

In the present section, results of thermo-elastic 

analysis can be investigated numerically. It is supposed 

that the modulus of elasticity E is graded in the radial di-

rection only, E(r). Before numerical evaluation, non-

homogenous modulus of elasticity must be defined as a 

power function of the radial coordinate as follows  

( )

( ) ( )  

n

n

i i

i

n

n ni
i i n

i i

r
E E r E

r

ER
E E r E R

r r

r R




 
   

 

 
    

 

 

  

The numerical values are considered as follows 

11 -6

 0

12 10 Pa, = 5 10 ,  0.3,  
C

0.04 m, 0.06 m, = 1.6 m, = 0.05 m

i

i

E v

r r L R

   

 
 

4.1. Studying of the results in the presence of temperature 

only 
 

4.1.1. Axial and radial displacement   
 

In the present section, it is supposed that only 

temperature rising (150C) is applied. Fig. 2 shows the 

axial distribution of the axial displacement along the as-

sumed axial direction as depicted in Fig. 1. The effect of 

four values of nonhomogenous index (n) is investigated in 

the Fig. 2. Fig. 2 shows that the value of displacement 

changes abruptly at the near of the end of the cylinder. 

This changes lead to the major strains and stresses. The 
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effect of this alteration on the local stresses may be studied 

in the following section. As a far from distance of the end 

of the cylinder 2 0.875x
L
 , displacement of the cylinder 

tend to an asymptotic value. This figure shows that the 

absolute value of the axial displacement decreases with 

increasing of the nonhomogenous index n.    

Fig. 3 shows the axial distribution of the radial 

displacement for different values of nonhomogenous index 

n. This figure shows that the value of the radial displace-

ment increases with increasing of the nonhomogenous in-

dex n.      
 

4.1.2. Shear and axial stresses 
 

Figs. 4 and 5 show the axial distribution of the 

shear and axial stresses, respectively. As depicted in the 

Fig. 4, the shear stress is zero at the whole of the cylinder 

except at the end of that. The shear stress at the end of cyl-

inder for n = 1 is about 270 MPa. This large value of stress 

tends to local stress concentration at the end of cylinder. 

Composition of this stress with the other component of 

stress, tend to the local yielding at the end of cylinder. 

Fig. 4 shows that the assumption of zero shear stress is 

valid for the whole of the cylinder except the end of the 

cylinder. Fig. 5 shows the axial distribution of the axial 

stress. As depicted in this figure, the magnitude of the axial 

stress at the end of cylinder is about 2 times of stress at the 

middle of the cylinder (stress concentration factor  = 2). 

   

Fig. 2 The axial distribution of the axial displacement of 

the midsurface of cylinder (z = 0) in the presence of 

temperature only 

 

Fig. 3 The axial distribution of the radial displacement of 

the midsurface of cylinder (z = 0) in the presence of 

temperature only 

 

Fig. 4 The axial distribution of shear stress at the outer 

layer of cylinder (under temperature only) 

 

Fig. 5 The axial distribution of axial stress at the outer lay-

er of cylinder (under temperature only) 

 

4.2. Results for simultaneously presence of the temperature 

and inner pressure 
 

4.2.1. Axial and radial displacement  
 

In this section, it is supposed that an inner pres-

sure 80 MPa applies on the cylinder with a temperature 

rising    150C.      Fig. 6    shows    the axial distribution of  

 

 

Fig. 6 The axial distribution of the axial displacement of 

the midsurface of cylinder (z = 0) in the presence of 

temperature and pressure 
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the axial displacement of the midsurface of the cylinder 

(z = 0) in the simultaneously presence of the temperature 

and inner pressure. This figure indicates that the absolute 

value of the axial displacement increases with decreasing 

of the non-homogenous index n. These results are in ac-

cordance with the literature [7].   

 

 
Fig.7 The axial distribution of the radial displacement of 

the midsurface of cylinder(z = 0) in the presence of 

temperature and pressure 

 

Fig. 7 shows the axial distribution of the radial 

displacement of the midsurface of the cylinder (z = 0). 

This figure shows that the absolute value of the axial dis-

placement increases with decreasing of the non-

homogenous index n.  
 

4.2.2. Shear and axial stresses  
 

Figs. 8 and 9 show the axial distribution of the 

shear and axial stresses, respectively. As depicted in the 

Fig. 8, the shear stress is zero at the whole location of the 

cylinder except at the end of cylinder. Fig. 9 shows the 

axial distribution of the axial stress. As depicted in this 

figure, the magnitude of the axial stress at the end of cylin-

der is about 2 times of stress at the middle of the cylinder. 

 
Fig. 8 The longitudinal distribution of shear stress at the 

outer layer of cylinder (under pressure and tempera-

ture) 

 

4.3. Two dimensional distribution of displacements 
 

Figs. 10 and 11 show the two dimensional distri-

bution of axial and radial displacement of a FG cylinder 

under temperature rising only. 

 

 
Fig. 9 The longitudinal distribution of axial stress at the 

outer layer of cylinder (under temperature and pres-

sure) 

 

 
Fig. 10 The two dimensional distribution of the axial de-

formation under temperature rising only 

 

Fig. 11 The plane distribution of the radial deformation 

under temperature rising only 

 

4.4. Comparison of the present results with finite element 

method 
 

The results of this paper are obtained analytically 

by considering the homogenous and particular solution of 

the Eq. (16) and imposing the appropriate boundary condi-

tion. The obtained results can be compared with the nu-

merical results obtained using the finite element method. 

Shown in Fig. 12 is comparison between the results using 

the first order shear deformation theory and finite element 

method. It is observed that the maximum difference be-

tween the results is about 8%. This insignificant difference 

can justifies the present results, carefully.  
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Fig. 12 Comparing of present results with the numerical 

results (FEM) 

 

5. Conclusions 

 

The extracted conclusions are classified as fol-

lows:  

1. Comprehensive thermoelastic analysis of a 

thick walled FG cylinder with different boundary condi-

tions under inner pressure is investigated in the present 

paper based on the FSDT. In the previous paper, it is not 

recognized the effect of arbitrary end supports and the ef-

fect of the thermal strains on this theory [13-15]. For the 

first time, exact two-dimensional (radial and axial) analysis 

of a FG cylinder is investigated and the obtained results are 

compared with the numerical results (FEM).   

2. In the presence of temperature rising only, 

achieved results show that the absolute value of axial dis-

placement of the cylinder decreases with increasing of the 

nonhomogenous index n. The radial displacement increas-

es with increasing of the nonhomogenous index n. 

3. Because of abrupt changing of displacement at 

the near of two ends of the cylinder, the value of stresses at 

the end of the cylinder are very greater than the stresses at 

the middle of the cylinder. These stresses tend to local 

yielding at the end of cylinder. The present results can be 

applied for calculation of the stress concentration factor 

due to end supports.  

4. Comparison between the present results (two-

dimensional cylinder with the clamped ends) with the nu-

merical results (FEM) indicates that the maximum differ-

ence between them is not significant. Therefore, the pre-

sent method has many advantageous to justify application 

of that in thermo elastic analysis of a thick walled struc-

ture. For example, the thermal and mechanical analysis of 

a functionally graded truncated conical shell can be studied 

using the presented method in this paper. The stress and 

displacement analyses of this problem are not considered 

in the previous studies [18].  
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M. Arefi, G.H. Rahimi 

IŠSAMI SKIRTINGOMIS RIBINĖMIS SĄLYGOMIS 

KOKYBIŠKAI VEIKIANČIO VIDINIU SLĖGIU 

APKRAUTO CILINDRO ŠILUMINĖ TAMPRIOJI 

ANALIZĖ, PAREMTA PIRMOS EILĖS ŠLYTIES 

DEFORMACIJOS TEORIJA 

R e z i u m ė 

Šiame darbe, remiantis pirmos eilės šlyties de-

formacijos teorija, atliekama skirtingomis ribinėmis sąly-

gomis kokybiškai veikiančio vidiniu slėgiu apkrauto ci-

lindro šiluminė tamprioji analizė. Straipsnyje siūlomas 

sprendimas leidžia apskaičiuoti cilindro konstrukciją esant 

nustatytoms ribinėms sąlygoms. Atliekant pradinį tyrimą 

buvo pasiūlyta problemą spręsti esant paprastoms ribinėms 

sąlygoms (kai cilindras elementariai palaikomas). Šiame 

straipsnyje tiriamas ašinių poslinkių ir įtempių pasiskirsty-

mas esant skirtingam nehomogeniškumo laipsniui. Tyri-

mas rodo, kad cilindro įtvirtinimas turi didelę įtaką mecha-

ninių komponentų pasiskirstymui ir jo negalima neįvertinti. 

Kartu nagrinėta temperatūros ir slėgio įtaka cilindro defor-

macijoms ir įtempiams. Įtempių koncentracijos koeficiento 

skaičiavimas, atsižvelgiant į įtvirtinimo efektą, yra kitas šio 

straipsnio rezultatas. Pateikti rezultatai yra patvirtinti lygi-

nant su ankstesniais rezultatais, gautais remiantis plokštu-

mos tamprumo teorija. 

 

 

M. Arefi, G.H. Rahimi 

 

COMPREHENSIVE THERMOELASTIC ANALYSIS OF 

A FUNCTIONALLY GRADED CYLINDER WITH 

DIFFERENT BOUNDARY CONDITIONS UNDER 

INTERNAL PRESSURE USING FIRST ORDER SHEAR 

DEFORMATION THEORY 

 

S u m m a r y  

 

This paper deals with the thermo elastic analysis 

of a FG cylinder with different boundary conditions under 

internal pressure using the first order shear deformation 

theory. This proposed solution has the ability to solve the 

cylinder structure with arbitrary boundary conditions. The 

previous studies have been proposed for the problem with 

simple boundary conditions (simply supported cylinder). 

This paper investigates the axial distribution of the dis-

placement and stress for different values of non-

homogenous index. This investigation indicates that a sup-

port has important influence on the distribution of mechan-

ical components rather than a cylinder with ignoring the 

effect of support.  Simultaneously effect of the temperature 

and pressure are studied on the deformation and stress of 

cylinder. Calculation of the stress concentration factor due 

to end effects is another result of the present paper. The 

presented results are validated by comparison with previ-

ous results that have been evaluated using the plane elastic-

ity theory. 

 

Keywords: comprehensive thermoelastic analysis, first 

order shear deformation theory. 
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