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1. Introduction 

 

Based on serial computers, solving all the coupled 

problem of plasticity, damage, fatigue, and creep is com-

plicated and extremely time consuming [1]. Therefore, it is 

impossible to realize real-time computation. Neural net-

work is a complex nonlinear dynamic system, which pre-

sents high parallel computation capability. According to 

the theorem of the minimum potential energy, the finite 

element problem can be treated as a constrained nonlinear 

optimization problem. Using improved Hopfield network, 

the above problem could be mapped to a dynamic circuit, 

and its solution may be obtained within circuit 

time-constant [2]. Solving by neural networks, we suppose 

that the connecting weight values of networks are known. 

In fact, the above connecting weight matrix corresponds to 

structural total stiffness matrix. Because of elastic-plastic 

problem, crack growth and structural optimization design, 

stiffness matrix is not always constant. One of the keys to 

solve these problems real-timely is to compute the stiffness 

matrix in real-time. 

 

2. BP neural networks and its function mapping  

capability 

 

Neural networks consist of lots of artificial neu-

rons connected each other. It is a large-scale complex sys-

tem that is able to complete various intelligent tasks. In a 

simple fully connected network, each unit in a hidden layer 

is connected to all of the units of the previous layer and the 

next layer. When a network consists of more than one hid-

den layer, the units from these layers may be connected to 

the units of all the previous layers and the units of all the 

next layers [3-5]. 

In layer j, the input values of units are 

j ij inet w o  (1) 

where oi is output of unit i in the last layer, wij is connect-

ing weight between the i-th unit in the last layer and the 

j-th unit in the current layer. 

The output of the j-th unit in the current layer is 

( )j jo f net , where f is an activation function which is 

commonly sigmoid function 
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where   is a neuron threshold. 

Signals flow from the input layer to the output 

layer. Given an import signal, an output one can be ob-

tained. A three-layer network is able to realize the mapping 

of arbitrary continuous function by arbitrary exactness. 

The performance of mapping needs to train networks. The 

training process is shown as below. 

1. Randomly assign initial values to all weights 

and neurons’ thresholds. 

2. Select input x and required output ŷ as training 

samples. 

3. Compute the actual output y. 

4. Modify weight: from the output layer, er-

ror-signals backward propagate. Modify each weight in 

order to let the error, shown as Eq. (3), be minimum 
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Weight modification: 

( 1) ( ) ( )ij ij ij ij pj pjw t w t w w t y      , where   is 

learning factor, p denotes the p-th sample. If j is an output 

unit, ( ) ( )ˆpy pj pj j pjŷ y f net   . If j is a hidden unit, 

( ) ( )pj j pj pk kj

k

f net w   . If an inertia term is added, 

( 1)ijw t  ( )j i ijy w t   . t+1 refers to the (t+1)-th 

iteration.   refers to a rate factor. 

5. If error exactness is satisfied, learning stops; 

otherwise, return to step 2. 

 

3. Analysis of element stiffness matrix 

 

Connecting weights must be given before using 

the improved Hopfield network to perform Finite Element 

Analysis (FEA) of the structure real-timely [6]. These 

weights are elements of corresponding structural total 
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stiffness matrix. The changing of structure element dimen-

sions and structure material properties will result in weight 

changing. Therefore, for the issues such as elastic-plastic 

problem, crack growth and adaptive element discreteness, 

the performance of real-time computation of element stiff-

ness matrices (ESM) is critical. ESM computation is actu-

ally a mapping issue of element dimensions and material 

properties to element stiffness. BP networks can perform 

computation completely. The components of ESM must be 

re-analyzed in order to reduce the input/output parameter 

number of BP networks and decrease the learning time of 

BP networks. Suppose the shape function is 

( ) ( 1 2 )iN x, y, z i , , ...,m , ESM is 1 2[[ ] [ ] ... [ ]]mB B BB . 
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The ESM can be given by 
 

[ ] [ ] [ ][ ]e TK B D B dxdydz    
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For shape function, 
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From the above analysis, we know: (1) ESM is a 

symmetric square matrix; (2) the sum of each row of the 

element in ESM is zero. By assembly process of the total 

stiffness matrix, we have 
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where n is the structure element number. [ ]z

iik along the 

diagonal line are the sum of partitioned matrices of all el-

ements sharing node i. [ ]z

ijk  are the sums of partitioned 

matrices of all elements sharing edge ij, ji  . Appar-

ently, the number of share-nodded elements is much more 

than that of share-edged elements. We take 
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Therefore, we only need to calculate [ ]e

ijk  

(i=1, 2, …, m–1; j=i+1, …, m) other than [ ]e

iik . For ex-

ample, as for triangular elements, the number of 

share-edged elements is no more than 2, but that of 

share-nodded elements may be more. In addition, as seen 

from the physical background of ESM, an ESM is only 

related to the relative coordinates of every element node, 

material properties, and shape function. It is unrelated to 

the absolute coordinates of nodes. 

 

4. Element stiffness matrix computation by BP neural 

networks 

 

For linear elastic problems, the computation of 

ESM is a mapping of the relative coordinates of element 

nodes to the elements of ESM. This mapping can be im-

plemented by BP neural networks, which has two stages, 

learning stage and working stage. Suppose the element 

numbers are i, j, and m, respectively. The total coordinates 

are (xi, yi), (xj, yj), (xm, ym). Now we should set up a local 

coordinate system, whose origin is i. The directions of 

local coordinate axes are the same as those of total coordi-

nate axes, respectively, then 
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According to the above analysis, we only need to 

solve [ ]e

ijk , [ ]e

imk , and [ ]e

jmk  for triangular elements, 

then ESM can be determined. We take ten elements of the 

above three partitioned matrices as outputs. In practice, we 

may bisect the biggest change of the element node’s rela-

tive coordinates, which forms many sets of input samples. 

On the basis of these samples, we can use the computation 

formula of ESM to compute the above ten elements taken 

as the corresponding goal outputs. Repeatedly train the 

network till it converges. 

 

5. An example 

 

Given a triangular element 1-2-3, take node 1 as 

the origin to set up a local coordinate system. The local 

coordinates of nodes 2 and 3 are 2 2 3, , ,x y x   and 3y , 

respectively. Each coordinate variation range is [0, 1]. 

Compute the corresponding elements of the ESM and take 

them as goal outputs. The unit number of the input and 

output layers of BP networks are equal to 4 and 10, respec-

tively. Set up two hidden layers with 16 and 20 units, re-

spectively,   = 0.8. Inertia term is 0.9, e = 
31.0 10 . 

Train network 15000 times till convergence. Table pro-

vides a comparison of the computation results obtained by 

FEA and BP networks, respectively. 

As seen in Table, when BP networks method is 

used to solve ESM, the solution error is less than 2%, and 
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its exactness can be given arbitrarily. In learning stage, BP 

networks take a bit more time to train. Once the network is 

convergent, it works real-timely. 
 

Table  

A comparison of the computation results of  

element stiffness matrix 
 

FEA BP networks 

-0.5 -0.505 
-0.25 -0.247 

-0.25 -0.245 

0.0 0.001 
-0.25 -0.242 

-0.25 -0.249 
-0.5 -0.490 

0.0 -0.005 
0.0 0.015 

0.0 -0.029 

 

6. Conclusions 

 

1. It is practical to use BP networks to compute 

the element stiffness matrix. BP networks provide a possi-

ble method to use the finite element method in solving the 

issues changed structures or changed elements real-timely. 

BP networks’ solution exactness can be given arbitrarily. 

But with more solution exactness, the training is great time 

consuming. Therefore, the set exactness should not be 

greater than the project needs in practice. The learning 

time of BP networks is a bit long, and off-line learning can 

be used for practical engineering structures. The working 

time of trained network is circuit time-constant (ns), 

namely real-time in working stage. 

2. According to the analysis, element stiffness 

matrix is symmetric square matrix. In the matrix the parti-

tioned matrices along diagonal line are the negative alge-

braic sums of all the same row/column partitioned matri-

ces, and amount of computation will be decreased greatly. 

3. As for the same linear elastic materials, chang-

es of element stiffness matrix only depend on the relative 

coordinates of element nodes. Therefore, we only take the 

relative coordinates of nodes as the inputs of networks. 
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REALAUS LAIKO ELEMENTO STANDUMO 

MATRICOS SKAIČIAVIMAI REMIANTIS BP 

NEURONINIAIS TINKLAIS 

R e z i u m ė 

Tampriai plastiniai skaičiavimai yra daugelio 

kompleksinių mechaninių reiškinių, tokių kaip nuovargio, 

pažeidimo ir suirimo, fundamentali analizė. Naudojantis 

serijiniais kompiuteriais, negalima realiu laiku atlikti 

tampriai plastinių skaičiavimų. Šiame straipsnyje anali-

zuojama elemento standumo matrica. Pasiūlytas metodas 

realaus laiko elemento standumo matricai skaičiuoti nau-

dojant BP neuroninius tinklus. Elemento standumo matrica 

skaičiuojama atitinkamai atliekant baigtinių elementų ana-

lizę ir naudojant BP neuroninius tinklus. Palyginti realaus 

laiko skaičiavimų, naudojant BP neuroninius tinklus, ir 

baigtinių elementų analizės rezultatai. 

J.-Q. Xiong, H.-Z. Huang, H.-Q. Li, Z.-L. Wang, H.W. Xu 

REAL-TIME COMPUTATION OF ELEMENT 

STIFFNESS MATRIX BASED ON BP NEURAL 

NETWORKS 

S u m m a r y 

Elastoplasticity computation is the analysis foun-

dation of many complex mechanical behaviours such as 

fatigue, damage, and fracture. It is impossible to realize 

real-time computation of elastoplasticity based on serial 

computer. The form of the element stiffness matrix is ana-

lyzed. A method that may realize the real-time computa-

tion of element stiffness matrix based on BP neural net-

works is proposed. The element stiffness matrix is com-

puted using finite element analysis and BP neural net-

works, respectively. 
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