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1. Introduction 

 

The necessity to have a gear mesh model covering 

all aspects of gear teeth shape imperfections, gear wheel 

deformations and shaft misalignments is obvious when 

estimating vibrations especially at higher frequencies. It is 

also useful for the prediction of the transmission error of a 

gearbox.  

Quasi-static simulation is presented in [1] for a 

gear pair. The tooth deformation is calculated using finite 

element method and using approximate interpolation 

functions it can react to any external load and resulting 

contact pressure is evaluated based on the Hertz’ theory. 

The method needs FE analysis of tooth with wheel and tooth 

flank deformation approximation for teeth pair. The paper 

presents only steady state case. These are significant 

drawbacks of the presented method, even if it can be fast 

and accurate enough. In the work [2] is presented 2D 

approach with necessity of having FE model for teeth 

compliancy evaluation. The contact zones are analytically 

calculated reflecting real teeth creation process. The method 

is presented only using quasi-static simulation and requires 

finite element model evaluation. Slightly different approach 

is used in [3]. It presents lumped-parameter gear mesh 

model with stiffness distribution along the tooth, which is 

covered in the mesh stiffness matrix. The static simulation 

of developed model is compared with the FE model. The 

stiffness matrix is obtained from computational contact 

algorithm, it needs pre-calculation and only static 

simulation is shown. The application of the simple spring-

mass model of gear meshing is demonstrated in [4]. Pre-

calculated 3D contact stiffness is the basis for the gear joint 

element proposed in [5]. The gear joint element covers 

many details of gear meshing process and stores this 

information in pre-calculated lookup table. The FE model of 

gear pair creation and simulation is presented in [6].  The 

contact surfaces have normal interface springs between all 

penetrating nodes and high amount of contact details could 

be covered. Model is automatically and parametrically 

created, but the simulation time is questionable. Tooth 

design by tool shaping using simulation is shown in [7] with 

stress analysis reflecting tool shape modifications. The work 

shows FE model stress calculation comparison with 

analytical solution. The pair of gear teeth is represented by 

multiple springs in [8], gear meshing details are neglected. 

Gear mesh simulated as a spring with backlash is used in [9] 

for a helical planetary gear set. The model consists of many 

gear connections and is computationally efficient, but the 

gear meshing process events (multiple teeth in contact, teeth 

modifications and corrections etc.) are not covered. The FE 

model method is reduced and transferred into the frequency 

domain in [10] with contact treated semi-analytically. The 

details in teeth contact are not evaluated. The gear mesh 

model can be simplified as a transmission error scalar 

equation and for quasi-static evaluation is presented in [11]. 

There are some model variants, but in general the 

gear mesh models can be sorted into three groups. The first 

one is the spring-damper representation, the second is the 

FE model of gear modeling with contact between teeth and 

the third is the analytical formula of contact. There are some 

modifications but generally it could be stated, that from the 

aspect of computation time, the simple spring model is the 

fastest one, the FE model is the slowest but more precise one 

and the analytical solution is somewhere between them. 

This paper shows the simple dynamic gear mesh 

model extended with an advanced 3D tooth contact 

kinematic model. Such a hybrid model gives much more 

information about the tooth contact behaviour, with a 

computational speed higher than that in the related FE based 

model. Also measured teeth flank modifications are applied. 

The contact kinematic model uses an ideal tooth shape with 

modifications for introducing multiple teeth contact, teeth 

engagement, and generally teeth whine effects. 

The gear contact is in fact an example of the 

flexible joint as a gear wheel being deformed is a compliant 

body fulfilling the function of movable connection of other 

bodies. The gearbox with deformed gear wheels is a 

compliant mechanism. This paper presents another way of 

description of compliant mechanism. 

 

2. Model overview 

 

The model of a gearbox is in Fig. 1. The parameters 

of the mating gears are: normal module mn, pinion and 

wheel number of teeth zp and zw, normal pressure angle n, 

pitch helical angle p, center distance d, pinion and wheel 

moments of inertia Ip and Iw, pinion and wheel loads Mp and 

Mw, teeth contact stiffness K and damping D. The interaction 

force between the teeth is represented by the force Fc. This 

interaction could be denoted as the gear mesh force, which 

is calculated from the teeth penetration and the teeth contact 

stiffness. 

The way how to calculate teeth penetration is the 

main contribution of this paper. The contact force Fc is 

evaluated applying the spring-damper model in Fig. 1 using 

Eq. (3), where 𝛥𝑝 and 𝛥�̇� are the penetration and penetration 
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Fig. 1 Gearbox model 

time derivative respectively. The penetration 𝛥𝑝 is analyzed 

out on backlash presence. Eqs. (1) and (2) are equations of 

gear motion. Angles p and w are measured from the gear 

centers connection line, Ip and Iw are inertia moments of the 

pinion and wheel respectively and Mp and Mw are the gear 

external loads: 

 

 
PCPPP rFMI  , (1) 

 
WCWWW rFMI  , (2) 

 pDpKFC
  . (3) 

 

The calculation of the tangential values of module 

m, pressure angle , helical angle  on the base circle, 

pinion rbp and wheel rbw base radii are evaluated in equations 

(4), (5), (6), (7) and (8) respectively: 
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3. Penetration model based on simplified gear geometry 

 

The first approach which calculates gear pair 

penetration uses the gear angular position and base radius of 

the pinion and wheel, Fig. 2. The penetration is evaluated as 

the difference between the arcs of rotation of both gears in 

Eq. (9), characterized by gear angles p and w and base 

gear radii. Base radii rbp (pinion) and rbw (wheel) are 

calculated using Eqs. (7) and (8) respectively. The backlash 

is involved modifying Eq. (9) with the penetration 

magnitude comparison to the half size of teeth gap. 

According to the comparison result, the penetration value is 

the half size of teeth gap lowered or zero, see Eq. (10). The 

penetration derivative 𝛥�̇� is the time derivative of 𝛥𝑝. The 

anglesp (pinion) and w (wheel) are obtained by solving 

dynamic Eqs. (1) and (2): 
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Fig. 2 Simple penetration calculation model 

 

4. Penetration model based on 3D gear geometry 

 

The second approach to penetration calculation 

uses the full 3D geometry of gears with teeth. Penetration is 

calculated along the intersection lines between all mating 

teeth, and such theoretical intersection lines between teeth 

are placed in the plane of action, which is a tangent to the 

base cylinders of both mating gears (Fig. 3). 

 

 
Fig. 3 Intersection lines of mating teeth 

4.1. Gear parameterization 

 

Primarily it is necessary to describe the theoretical 

gear flank shape. General flank parameterization is made for 

the contact evaluation. The angle of the tooth flank from the 

gear centers connection line consists of the gear rotation  

and the angle h due to the inclination of the helical gear 

shape (Fig. 4). The angle h using Eq. (12) could be derived 

from the axial contact width of the gear b, helical angle  

and base radius rb. The axial width of the gear is 

parameterized by the parameter t1, which ranges from one 

side with a zero value to the opposite one with value one 

(Fig. 4). 
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The base radius is evaluated using Eqs. (7) and (8). 

The theoretical shape of the tooth flank could also be 

parameterized. The parameterization is based on the angle  

from Fig. 5. The flank starts at the base circle ( = 0) or at 

some general point ( = start), where the parameter t2 equals 

zero. The final point of the flank is shown in Fig. 5 anchored 

by angle end. This point is situated on the head circle of the 

gear and t2 equals one. The flank parameterization is 

expressed by the angle see Eq. (13): 

 

  
startendstart t   2

. (13) 

 

 
Fig. 4 Gear axial parameters 

 
Fig. 5 Gear radial parameters 

In Eq. (13) the angle start is obtained using the 

radius of the active flank beginning rstart, see Eq. (14) and 

end is calculated from the head circle radius ra according to 

Eq. (15): 
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Finally, the flank point position in the plane cut is 

defined by its angle flank (Eq. (16)) and the distance from 

the gear center Rflank, see Eq. (17): 

 

   atan
flank

 , (16) 

 2
1 

bflank
rR . (17) 

Flank parameterization in variables t1 and t2 is 

shown in Fig. 6. 

 

 
Fig. 6 Gear flank parameterization 

4.2. Contact position 

 

The contact of two theoretical rigid gears is 

situated on the plane of action (Fig. 3). This plane is deduced 

from the involute tooth shape. The involute designs the 

flank in such a way that the normal vectors of all flank points 

are tangent to the base circle (base cylinder). This is why the 

theoretical contact points must be located tangentially to 

both base cylinders of the mating gears. 

Fig. 7  shows two gears in the plane. All theoretical 

contact points are located on the line of action. Location of 

the contact points in space is on the plane of action, which 

is a tangent to both base cylinders, as it is shown in Fig. 3. 

 

 
Fig. 7 Contact point location on the plane cut – line of action 

4.3. Contact lines 

 

Because all theoretical contact points are situated 

only on the plane (line) of action, it is necessary to find the 

intersecting lines between the tooth flanks and the plane of 

action. Because the intersecting lines are straight lines, it is 

sufficient to find just their corner points. The corner points 

of the intersecting lines are obtained as intersections 

between plane of action and the border lines of flanks. In 

order to detect which flank border lines intersect with the 

plane of action, the corner point directions from the plane of  

 

 
Fig. 8 Intersection between the tooth flank and the plane of 

action 
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action are evaluated. If two adjacent corner points are in the 

opposite half-space split by the plane of action, the involved 

flank border line has an intersection with the plane of action. 

The situation is shown in Fig. 8, where the penetration line 

between the tooth flank and the plane of action is the bold 

line. 

From Fig. 8 it is obvious that the starting point of 

penetration corresponds with 𝑡1 = 0 and the terminal point 

corresponds with 𝑡2 = 1, and for such values the 

corresponding parameterization is calculated, see equations 

(18) and (19): 
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4.4. Penetration calculation 

 

Knowing which flanks are in the neighbourhood 

(based on the number of teeth (Fig. 7), the pinion and gear 

contact line intersection gives final contact lines between 

the gears. The penetration is calculated from the distance 

between the penetration lines of corresponding teeth. The 

penetration of ith mating teeth pair 𝛥𝑝𝑖  is derived in Eq. (20) 

according to Fig. 9 in the face cut, where 𝜌𝑝 and 𝜌𝑤 are the 

distances between the tooth flank contact points of the 

pinion and wheel respectively and the beginning of the line 

(plane) of action on the pinion or wheel base circle 

respectively and dist is the length of the line of action 

calculated from the center distance d and base radii rbp and 

rbw. The gear parameters start, end andt2 have a subscript p 

for the pinion gear flank and w for the wheel gear flank and 

the parameter t2 is evaluated for the contact point in Eqs. 

(18) and (19): 
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Penetration in Eq. (20) must be nonnegative 

(otherwise zero) which inherently covers the backlash 

phenomenon. 
 

 
Fig. 9 Penetration calculation - 3D gear mesh model face cut 

The penetration calculation presented in Eq. (20) is 

performed along the axial axis with parameter t1 for all n 

mating teeth pairs and the final penetration is in Eq. (24): 
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The final penetration p of two mating gears 

consists of each particular teeth pair penetration, because the 

contact force between every two teeth is evaluated using 

contact stiffness of two mating teeth (which is same for all 

pairs) with their penetration and then adding contact forces 

together to obtain resulting contact force. 

 

4.5. Tooth flank modifications 

 

Tooth flank modifications are used in the 3D gear 

mesh model. The knowledge of the real or testing teeth flank 

profile behaviour is necessary for applying modifications to 

the model. Tooth flank modifications are differences 

between the ideal tooth shape and the real tooth shape in the 

direction normal to the ideal tooth flank. The tooth flank is 

divided into points, where the modification value is known. 

The rest of the tooth flank point modification values are 

interpolated. Fig. 10 shows the ideal flank shape and the 

modified flank shape with magnified modification values in 

the face cut. 
 

 
Fig. 10 Tooth flank modifications 

The incorporation of tooth flank modifications into 

the penetration calculation in Eq. (20) is expressed in 

Eqs. (21) and (22). The distance  is modified by contact 

point modification mod according to Eq. (25) for both the 

pinion and wheel contact points. Then the total penetration 

is evaluated using Eq. (24):  

 

  
modbstartendstart rt   2

. (25) 

 

5. Results 

 

The workflow of calculation is shown in Fig. 11. 

The dynamic calculation is executed with the penetration of 

the teeth in contact as an input. The states are obtained and 

used in the penetration calculation by evaluating the contact 

force and by integrating dynamic equations. Penetration is 

obtained either using the simplified gear geometry model or 

by using the 3D gear geometry model. The contact force is 

then calculated from the penetration and its derivative. 



429 

 

The comparison of simulation for both models is 

executed using the scheme in Fig. 11. The pinion gear has a 

prescribed acceleration and the wheel gear is loaded with 

white noise with a mean value 20 Nm and amplitude 10 Nm. 

The Initial conditions are situated in the static equilibrium 

of the system with a nonzero angular velocity. The basic 

parameters of the gearbox are in Table 1. 

 

Table 1 

Basic gear parameters of simulated gearbox 
 

 Pinion gear Wheel gear 

Number of teeth z [-] 45 41 

Normal module mn [mm] 1.65 

Normal pressure angle 

n [deg] 
16 

Helix angle p [deg] 33 

Center distance d [mm] 85 

 

 
Fig. 11 Simulation workflow 

The contact forces from the simplified model and 

3D model are compared in graphs in the frequency domain 

for different pinion angular velocities. The simulation 

ranges from pinion angular velocity 100 rpm to 10000 rpm. 

The simulated data are displayed in Fig. 12, Fig. 13 

and Fig. 14. The frequency range of interested frequencies 

present in the simulated signal is on the x-axis.  The pinion 

angular velocity in on the y-axis.  The common logarithm of 

the contact force magnitude is on the z-axis. 

Some important lines are shown - the dashed line 

marked ‘0’ denotes the system´s eigenfrequency, line ‘1’ 

denotes the 45th order of the pinion angular velocity (which 

is the first tooth frequency, calculated from equation

60

pin p
z

k


, where k is a natural number equal to 1), line ‘2’ 

denotes the 90th order of the pinion angular velocity (second 

tooth frequency),  lines ‘3’, ‘4’, ‘5’, ‘6’ represent the 135th, 

180th, 270th, 360th order of the pinion angular velocity (3rd, 

4th, 6th and 8th tooth frequency) respectively. 

Evaluation of the simple gear mesh model in Fig. 

12 shows only the system´s eigenfrequency in the signal. 

Any other gear meshing behaviour is not covered. 

The evaluation of the model based on 3D gear 

geometry includes to a great extent the system´s 

eigenfrequency and first four tooth frequencies - see Fig. 13. 

The tooth frequencies are present in 3D gear geometry 

simulation, because the model involves teeth contact 

engagement and more teeth pairs in the contact 

simultaneously. The frequencies present in this model are 

easily predicable, but when a model involved in a more 

comprehensive multibody model is used, some new 

frequencies will appear (as sidebands) implied from other 

dominant frequencies in the multibody model, whose are 

related to the other elements such as bearings, clutches, 

another gearboxes etc. Investigated model consists only 

from two rotating gears and 3D gear mesh model, one gear 

body has kinematic constrain and the second one is loaded. 

That’s the reason the sidebands are not present in the 

simulation. 

 
Fig. 12 Simulation using the simple gear mesh model 

 
Fig. 13 Simulation with the 3D gear mesh model 

The diagram in Fig. 14 shows a model based on 3D 

gear geometry with real profile modifications applied to the 

pinion and wheel gears. The model is significantly 

influenced by the modifications, the meshing frequencies 

are no longer sharply pronounced compared with the model 

without modifications. The model shows a much broader 

response up to 2000 Hz and there are many sidebands (lines 
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marked with ‘a’, ’b’ and ‘c’) which were created by the 

modulation of the tooth and eigenfrequency with tooth and 

pitch errors covered in the modifications. 

 

 
Fig. 14 Simulation with the 3D gear mesh model with tooth 

flank modifications 

In Fig. 15 the modification values of all flanks are 

divided by 5. There is an apparent drop of amplitudes along 

the lines marked with ‘a’, ’b’ and ‘c’ and for higher 

frequencies. This is due to the smaller influence of tooth 

flank deviations from the ideal tooth profile. Fig. 16 shows 

the simulation with modifications applied to the tip and 

middle part of the tooth - the foot part of the involute flank 

has an ideal shape. There is even a more apparent drop of 

the amplitude of sideband frequencies; the amplitudes along 

lines ‘a’ and ‘c’ almost disappeared. 

A future challenge is whether this model could be 

efficiently parametrized similarly as flexible bodies by the 

approach described in [12]. 

 
Fig. 15 Simulation with the 3D gear mesh model with 

reduced tooth flank modifications 

 
Fig. 16 Simulation with the 3D gear mesh model with partly 

applied tooth flank modifications 

6. Conclusions 

 

The 3D gear geometry model was presented and 

compared with the simple plane model. The testing 

modifications were applied to the 3D gear geometry model. 

The gear mesh model in 3D covers all kinematic-based 

events existing in the meshing process, the applied 

modifications show the necessity of their use for estimating 

broad frequency excitations. The significance of the 3D gear 

mesh model without modifications is in that it maintains the 

meshing eigenfrequencies in the contact force and 

propagates them further into the structure and driveline. The 

dynamic behaviour changes quite significantly by 

incorporating modifications. With such model it is possible 

to model gearbox noise emissions like gear rattle, 

hammering and gear whine and to predict transmission 

errors more precisely. The model shows relatively good 

agreement with the measurement presented in [13]. This 

model can be used for the design of tooth flank 

modifications and helps in detecting problematic 

frequencies in already produced gears. Reliable 

modifications can be suggested using this model. 
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Z. Neusser, T. Vampola, M. Valášek 

 

ANALYTICAL GEAR MESH MODEL USING 3D 

GEAR GEOMETRY 

 

S u m m a r y 

 

This paper presents a model of the interaction of 

mating gears. The approach uses 3D gear geometry for the 

calculation of teeth penetration. The contact force is 

evaluated using the penetration between all mating teeth and 

the known contact stiffness. Gear meshing is evaluated 

using an analytical solution based on gear flank 

parameterization. The advantage of such an approach is to 

involve real gear geometry in the calculation of the contact 

force. The model involves the effects of the backlash 

between teeth (gear rattling, hammering), engagement and 

disengagement of the teeth pair in contact and the variation 

of the number of teeth pairs in contact (gear whine). The 

ideal tooth flank geometry is modified using the measured 

flank modifications. The dynamic behaviour of the 

interaction between two gears is modelled and compared 

with the 2D spring-damper model. 

 

Keywords: gear mesh model, 3D gear geometry, gear 

contact forces, tooth flank modification. 
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