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1. Introduction 

Timber-concrete, concrete-steel and concrete-
concrete bilayer composite structures are widely used for 
the floor strengthening of buildings under renovation. Due 
to the relatively small mass, good oscillations’ damping 
and the possibility to set up sound insulation, timber-
concrete composite structures are used for the new dwell-
ing house floors. Owing to simple technology and decrease 
of labour expenditure, concrete-steel bilayer beams are 
used for setting up the monolithic floor with retained 
formwork. Concrete-concrete layered structure is formed 
when old concrete is repaired with a new concrete layer. 

For the above mentioned structures, the layer slip 
under external action is the main property which deter-
mines the calculation methods used for the design of such 
structures and calculation of stresses and strains. If glued 
layered structures such as wood beams may be calculated 
as a solid bar with axial strains in all layers being equal 
and the plane section hypothesis may be accepted for the 
entire layered cross-section, then due to specific joint the 
layers of timber-concrete, concrete-steel, concrete-concrete 
composite structures slip in regard to each other under ex-
ternal action. For these structures the classical methods of 
material mechanics cannot be applied.  

The majority of calculation methods for stresses 
and strains of the above mentioned structures take into 
account only external loads, such as bending moment or 
shear forces. However it is well known that concrete, 
through hardening and drying, shrinks over time. Coeffi-
cients of wood, concrete and steel thermal and hygral ex-
pansion are different. Changes in layers temperature and 
humidity may generate additional stress. Therefore it is 
very important that stresses, strains and displacements of 
such structures would be simply and accurately calculable. 
In some cases a concrete layer of the layered structures 
may even crack because of strains caused by temperature 
and humidity. This undesired effect may be avoided select-
ing compatible materials or dividing the set-up concrete 
cover into deformation seams. 

In the article a method allowing calculation of 
hygrothermal stress and deflection of bilayer timber-
concrete, concrete-steel, concrete-concrete beams taking 
into account interlayer slip is presented. An algorithm al-
lowing calculation of limiting thermal and hygral strains 
when the layers still do not crack and an algorithm for 
calculation of limiting beam length (when one of the layers 
cracks) are also presented in the article. 

 
2. Main dependences 

The calculation methods of layered structures 
may be divided into two large groups. One of them is 

based on certain hypotheses limiting usage of these meth-
ods. In other methods the layered structures are described 
as three-dimensional solid body subjected to three-
dimensional stress and strain. Application of the following 
theories is not convenient due to the complicated solution 
for engineering calculation. The majority of practical prob-
lems may be solved quite precisely using much more sim-
ple calculation method based on various hypotheses [1-5]. 
One of the simplest methods considering slip of the layers 
is the theory of build-up bars [2]. This method is conven-
ient because in most cases it is possible to write the final 
rigorous solution in the form of explicit function. The 
built-up bars theory is based on these assumptions. 

1. Load-slip relationships for the interlayer con-
nections are linear. 

2. Layers’ stress and elastic displacement relation 
is linear. 

3. Thermal and hygral strains through the depth of 
each layer is uniform, i.e. independent from the X coordi-
nate (Fig. 1, a.). 

4. Thermal and hygral strains along the road are 
uniform, i.e. independent from X coordinate (Fig. 1, a); 

5. Plane section hypothesis is valid for each sepa-
rate layer. 

6. Deflection due to shear strains in individual 
layers is negligible. 

 
                             a                                             b 
 

Fig. 1 The scheme of a layered beam, thermal and hygral 
strain εsh and coordinate locality: a – longitudinal 
section of a beam, b – cross-section of a beam 

2.1. Layers’ stress relationship 

According to the built-up bars theory the total 
shear force and thermal and hygral strains of layers’ joint 
are related by the second-order non-homogeneous differen-
tial equations with a constant coefficient [1]

( ) ( )2 2T x x T x∂ ∂ = +ξΔ ξθ  (1) 

where T(x) is total shear force acting in the joint of the 
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layers, ξ is stiffness of layers joint; Δ is coefficient of lay-
ers compliance 

 
2

1 1 1 1

1 1 w
E A E A D

= + +Δ  (2) 

where Ei, Ai and D are the ith layer elasticity modulus, 
cross-section area and total flexural stiffness of both beams 
respectively; D=E1I1+E2I2 where Ii is the ith layer moment 
of inertia; w is the distance between the centroids of layers 
sections (Fig. 1, a.); θ is the difference of the layers ther-
mal and hygral strains 

 1 2sh , sh ,= −θ ε ε  (3) 

where εsh are the layer thermal and hygral strains 
(Fig. 1, a.); εsh are positive if strains coincide with the di-
rection of X axis (Fig. 1, a); otherwise εsh are negative. The 
solution Eq. (1) is as follows [1]

 ( ) ( ) ( )1 2T x C sinh x C cosh x= + −λ λ θ Δ   (4) 

where =λ ξΔ . The integration constants are obtained 
from a boundary condition stating that the total shear force 
equals to 0 at the beam end and the joint shear force equals 
0 in the middle of the beam. If we assume that the origin of 
the XYZ coordinate’ is in the middle (Fig. 1 a.), then the 
boundary conditions from which the integration constants 
are obtained are the following 

 ( ) 0 0xT x x
=

∂ ∂ =  (5) 

 ( )1 2 0T l =  (6) 

The Eq. (5) derivatives give 
 

( ) ( ) ( )1 20
0 0

x
T x x C sinh C cosh

=
∂ ∂ = + =λ λ 0  

 
integration constant  

  (7) 1 0C =

Inserting Eq. (7) into Eq. (6) we get 

 ( ) ( )21 2 1 2 0T l C cosh l= −λ θ Δ =   

We can obtain C2 integration constant according 
to the expression 

 ( )( )2 1 2C cosh= lθ Δ λ  (8) 

The final expression of total shear in the joint is 

 ( ) ( )
( )

1
1 2

cosh x
T x

cosh l
⎛ ⎞

= ⎜⎜
⎝ ⎠

λθ
Δ λ

− ⎟⎟  (9) 

Axial force Ni and bending moment Mi in each 
layer are the following [1]

 ( ) ( ) 1 2i iN x T x , i ,= =ϑ  (10) 

where 1 21 1,= = −ϑ ϑ  

( ) ( )i i iM x wT x E I= − D  (11) 

and stresses are calculated by the well known formula 

( ) ( ) ( )i i i i i i ix, y N x A y M x I= +σ  (12) 

where yi is the distance between the ith layer centroid of 
the section and a considered point in the XiYiZi coordinate 
(Fig. 1, a). The negative sign shows the material being un-
der compression and positive sign shows the material to be 
under tension. 

2.2. Calculation of stress and load in a joint 

Commonly joint strength in scientific papers and 
design rules [6] are defined as a limiting joint force. For 
shear force calculation in a joint it is possible to use the 
known condition that the shear force in the joint is the de-
rivative of the total shear force T(x) in respect to x [1]

( ) ( ) ( )
( )1 2

T x sinh x
x

x cosh l
∂

= =
∂

λθτ
Δ λ

  (13) 

The maximum shear force forms at the beam ends 

( ) ( )
( )
1 2

1 2
1 2

sinh l
l

cosh l
=

λθτ
Δ λ

  (14) 

The joint strength of layered structures is suffi-
cient if the following condition is satisfied 

( )1 2jf l≥τ  (15)  

where fj is the joint strength. If the shear force τ is known, 
it is possible to calculate the number of connections n for 
one running meter 

( )1 2 jn l=τ f . (16)  

2.3. Algorithm for obtaining extreme values of thermal and 
hygral strains 

As it is known well, concrete shrinks while drying 
and hardening. If the first concrete layer tensile stress ex-
ceeds the strength limit due to shrinkage strain then it 
cracks before the start of the structure exploitation. In most 
cases the occurrence of cracks is undesired because of the 
reduction of stiffness. Therefore to avoid cracking of the 
layers, the materials with compatible properties should be 
selected. Below the method allowing calculation of the 
properties of layer materials not causing the cracks is pro-
vided. 

As it may be seen from Eqs. (9) and (12) equa-
tions T(x) and σ are maximum when x=0. Moreover, 
stresses through the height of each layer change linearly, 
therefore it is sufficient to check the stresses only at the 
joint and the outside of the layers. Therefore further analy-
sis includes the investigation how stresses at middle of the 
beam depend on geometrical dimensions, mechanical 
properties and stiffness of the joint, taking that 



 7

 x=0 (17) 
 

 yi=±hi/2 (18) 

In general compressive and tensile strengths of materials 
are different, therefore in the formulas written above, 
strength must be taken keeping in mind σi. When σi is posi-
tive, the material is under tension and fi must be the tensile 
strength – ft,i, when σi is negative then the material is under 
compression and fi must be the compressive strength– fc,i. 
If we assume that the layers do not crack while the layers’ 
stresses do not exceed the strength of their material, then 
according to the relationship (12) geometrical characteris-
tics and values of material properties with which the layers 
do not crack may be calculated. The non cracking condi-
tion of the layers 

 
( ) ( )
( ) ( )

when 0

when 0
i i t ,i i i

i i c ,i i i

x, y f , x, y

x, y f , x, y

≤ >

≥ − <

σ σ

σ σ
 (19) 

Shortly (19) is written like this  

( ) { }i i i i t ,i c ,ix, y f , f f , f± ≤ ∈σ  (20) Fig. 2 Algorithm for calculation of the maximum θmax and 
minimum θmin values of thermal and hygral strains, 
that (if exceeded) will cause a single layer to crack  where the positive sign + is when σ>0, the negative sign – 

when σ<0 ft,i is taken when the material is under tension, fc,i 
is taken when the materials is under compression.  

As it is shown by Eq. (25), the difference of 
shrinkage strains generating layer cracks is directly propor-
tional to the strength of the materials. The influence of 
other factors on shrinkage strains is more complicated. As 
it may be seen from the Eq. 

(12), (10) and (11) into (20)Inserting Eqs.  we get 
this inequality 

 ( ) i i i
i

i

wy Ef T x
D

⎛
≥ ± −⎜

⎝ ⎠

ϑ
Α

⎞
⎟  (21) 

After putting Eq. (9) into Eq. (21) expression and 
taking Eq.e (17) into account we get this inequality of the 
non-cracking of layers 

 
( )
1 1
1 2

i i i
i

i

wy Ef
cosh l A D

⎛ ⎞⎛ ⎞
≥ ± − −⎜ ⎟⎜⎜ ⎟⎝ ⎠⎝ ⎠

ϑθ
Δ λ ⎟

i <

 (22) 

Then the inequalities allowing calculation of 
thermal and hygral strain which do not induce the cracking 
in the layers, are obtained 

 when 0if , f≥θ Θ Θ  (23) 
 when 0if , fi≤ >θ Θ Θ  (24) 

here Θ is as follows 

 

( )
1 1
1 2

i i i

i

wy E
cosh l A D

=
⎛ ⎞⎛ ⎞

− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

ΔΘ
ϑ

λ

 (25) 

In the Eqs. (23) and (24) fi has these val-
ues { }i t ,i c ,if f , f∈ − . Since it is required that none of the 
layers cracks, then the solution of the system of Eqs. (23) 
and (24) is the difference of the shrinkage strains from the 
interval [θmin≤θ≤θmax]. Here θmin is the maximum negative, 
and θmax is the maximum positive value of Eqs. (23) and 
(24) system. For the sake of clarity, the θmin and θmax algo-
rithm of calculation is given in Fig. 2.  

(25), alteration of θ  and θmax min 
due to l and ξ is similar, the difference is only that l is not 
under the root. 

2.4. Algorithm for the calculation of limiting beam length, 
which, if exceed, will cause a single layer to crack  

As it can be seen from the Eq. (12), stresses de-
pend on the beam length. Thus to avoid undesired cracking 
of the layers, design structures may by divided into move-
ment joints. Changing the inequality (22) into equality and 
solving it in respect to l, we obtain the limiting beam 
length llim, which, if exceeded will cause one of the layers 
to crack 

( )lim 2 il arccosh K= λ  (26) 

where llim is the limiting beam length, which, if exceed, 
will cause one of the layers to crack. The coefficient K 

( )1i i iK R G 1= +  (27) 

where Gi is as follows 

i
i i i

i

G
wy E

D

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

Δ
ϑθ
Α

 (28)  

The Eq. (26) may also be written as 

( )2 1lim i i il ln K K K≥ + + −1 λ  (29) 

As it is well known, the arccosh function has real 
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For the calculation of such layered beams we can apply the 
classical layered beam theory [4,5,7].

value only if the argument values are greater than or equal 
to 1. Therefore . From the inequality  In this theory the 

accepted assumption is that the beam layers do not slip. 
1iK > (26) we obtain, 

that when fi→0 or θ→∞ then Ki→1 and llim→0. Such a 
case is not possible in real structures, therefore l For practical application simpler calculation methods 

based on the classical layered beam theory [3lim>0 at all 
times. When f ,7] are used. 

i→∞ or θ→0 or ξ→0 then according to the 
Eq. Stresses calculated according to the build-up bars 

theory approach the stresses calculated without considering 
interlayer slip when the beam length or joint stiffness ap-
proach infinity i.e. 

(27) at Ki<0 and Eq. (26) does not have a real solution. 
In this case the layer won’t crack even if l=∞. 

For the sake of clarity, the algorithm for the cal-
culation of l  is given in Fig. 3. lim

{ }i s ,ilim , l ,
℘→∞

→ ℘∈σ σ ξ  (30)  

where σ

 

Fig. 3 Algorithm for the calculation of limiting beam 
length, which, if exceed, will cause one of layers to 
crack 

If the beam does not bend or the bending strains 
are restrained, or bending stiffness of one of the layers is 
many times bigger than of the others, then the Eqs. (26) - 
(29) and the algorithm given in Fig. 3 can be used to calcu-
late the distance between cracks. In this case the stress 
through the depth of each layer is even. Therefore the 
cracks through layer height and single layer sections can be 
considered as independent beams according to Eqs. (26) - 
(29). In general, according to Eqs. (26) - (29) and the algo-
rithm in Fig. 3 only approximate calculation of the distance 
between cracks is possible. As maximum stresses are gen-
erated at the layers joint, a layer does not crack all the way 
through its height but cracks only partially. Single layer 
sections interact among each other; therefore the assump-
tions 1-5 are invalid. 

As layers modulus of elasticity also has influence 
on its stress, for practical application it is helpful to have a 
simple expression according to which it would be possible 
to calculate the maximum elasticity modulus of the layers 
not causing cracks. However, it is impossible to express 
elasticity modulus of the layers, moments of inertia and 
cross–sectional areas from inequality (22) by explicit func-
tions. Therefore, for the calculation of these values, the 
inequality (22) converted into equality may be used.  

If a layer of a beam with the absolute stiffness 
joint does not crack, none of the layers will crack when the 
beam with a desired length and joint stiffness is provided. 

i are stresses calculated according to Eq. (12), and 
σs,i are stresses calculated considering that the layers do not 
slip. According to Eqs. (12) and (22) stresses in the middle 
of the beam 

( )
1 1
1 2

i i i
i

i

wy E
cosh l A D

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠

ϑθσ
Δ λ

 ⎟  (31) 

when expression (30) is valid, then λ→∞ and 

( )( ) { }1 1 2 0lim cosh l , ,l
℘→∞

→ ℘∈λ λ  (32) 

In this case the dependence of beam stresses without con-
sidering layers slip is the following 

i i i
s ,i

i

wy E
A D

⎛
= − −⎜

⎝ ⎠

ϑθσ
Δ

⎞
⎟  (33)  

As it is well known the relative error is written as follows 

( )i s ,ie = − iΔ σ σ σ  (34) 

0e <ΔBecause i s ,i<σ σ  then . If Eqs. (33) and (12) put 
into Eq. (34) we get the final relative error expression 

 
( )

1
1 1 2

e
cosh l

=
−

Δ
λ

 (35) 

As we can see from (35), the relative error of stresses de-
pends only on mechanical properties of a beam, i.e. the 
beam length l, joint stiffness ξ, layers moment of inertia, 
compressive stiffness, and the distance between the layers 
centroid of section, but does not depend on the difference 
of the layers thermal and hygral strains Θ. Therefore in the 
Eq. (35), assuming the special stress error, according to the 
properties of the layered beams, we can determine the set 
of beams for designing of which necessarily take into ac-
count layer slip and the set of beams for calculation of 
which does not take into account the layer slip. According 
to the Eq. (35) it has been determined that the relative dif-
ference Δe increases when layers stiffness, i.e. the area of 
cross-section and the moment of inertia, increases and joint 
stiffness and the beam length decrease. 

2.5. Calculation of deflections 

Deflections of composite timer-concrete, con-
crete-steel, concrete-concrete beams depend not only on 
load but also on thermal and hygral strains. A method ena-
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bling to determine a bilayer beam deflections caused by 
thermal and hygral strains is presented hereunder. 

As it is well known curvature is the second de-
rivative of deflection. If a bilayer beam is only under ther-
mal and hygral loads, then total bending moment is the 
following: M(x)=M1(x)+M2(x), here M1(x) and M2(x) are 
give in Eq. (11). We obtain the curvature by dividing the 
total bending moment by total layers stiffness. Then we get 
the function of deflection by solving the following differ-
ential equation 

 ( ) ( )2 2v x x T x w D∂ ∂ =  (36) 

The function of deflection is obtained integrating by quad-
rature rule the differential Eq. (36) 

 ( ) ( ) 1
wv x T x dx C dx C2D

= +∫ ∫ +  (37) 

Inserting Eq. (9) into Eq. (37) and integrating the 
Eq. (37) we obtain the function of deflection 

 ( ) ( )
( )

2

1 221 2 2
cosh xw xv x C x C

D cosh l
⎛ ⎛ ⎞

= −⎜ ⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝

λθ
Δ λ λ

⎞
+ +⎟⎟

⎠
 (38) 

Integration constants are obtained from the 
boundary conditions. The first boundary condition is that 
the deflection at the beam end is equal to 0, i.e. 

 ( )
1 2

0
x l

v x
=−

=  (39) 

if insert Eq. (39) into Eq. (38) we get 

 
( )2 2

2
2 2

8

8

lwC
D

⎛ ⎞−
⎜= − +
⎜
⎝ ⎠

θ λ

Δλ 1C l ⎟
⎟

 (40) 

The second boundary condition states that layers 
rotation in the middle of a beam is equal to 0, i.e. 

 ( ) ( )
0

0
x

x v x x
=

= ∂ ∂ =φ  (41) 

Differentiating Eq. (38) in respect to x and insert-
ing the obtained expression into Eq. (41) we get 

  (42) 1 0C =

Also substituting Eqs. (40) and (42) into Eq. (38) 
we get the final expression of the deflection function 

 
( )

( )
2 2

2 2
1

1 2 2 8
cosh xw xv( x )

D cosh l
⎛ l ⎞

= −⎜ ⎟⎜ − +
⎠⎝

λθ
Δ λ λ λ

 (43) 

The maximum deflection in the middle of a beam 
is the following 

 
( )

2

2 2
1 10

1 2 8
wv( )
D cosh l

⎛ l ⎞
= ⎜ ⎟⎜ − +

⎠⎝

θ
Δ λ λ λ

 (44) 

As in the case of stress calculation, while the 
beam length and joint stiffness increase, the deflections 

calculated according to Eq. (43) or Eq. (44) formulas ap-
proach to the deflections calculated as a solid beam with-
out taking into account layer slip. 

3. Analysis of results 

To represent the obtained relationship, a real bi-
layer concrete-timber beam is taken. Distributions of layer 
stresses and deflections throughout the beam length are 
investigated according to the expressions obtained in this 
paper. Also the influence of joint stiffness, geometrical 
dimensions of the beam and the difference of thermal and 
hygral strain on the layers’ stress is also investigated. The 
cross-section of the beam under investigation is show in 
Fig. 1. The first layer is made of lightweight concrete; the 
second layer is made of timber. The layers joint is made 
without an interlayer. It is made from two wood screws 
156x5.9 mm in size. They are screwed into the timber 100 
mm. Stiffness of one joint ξ1, geometrical dimensions of 
the beam cross-section, concrete compressive and tensile 
strength f  and fc t and modulus of elasticity E are taken from 
[8,9]. In the analysis performed, stiffness of the joint is 
taken to be two, three and ten connections in a metre, then 
joint stiffness equals ξ=54; 81 and 27 MN/m respectively. 
Compressive strength f  and tensile strength fc t and elasticity 
modulus of timber E are taken from [10]. The values of the 
difference of layers thermal and hygral strains is taken ap-
proximate to the shrinkage strains of C20/25 class heavy 
concrete when relative air humidity is 60%, i.e. θ≈-60·10-5. 
The length of the beam is taken to be equal to 3, 6, and 9 
meters respectively. Geometrical characteristics of layers, 
material properties and other values are given in Table. 

The bilayer beam stresses (calculated according to 
Eq. (12)) versus length and joint stiffness are shown in 
Fig. 4. As it may be seen from Fig. 4, the maximum 
stresses generate in the middle of the beam. Increasing the 
beam length or joint stiffness the stresses of layers ap-
proach the stresses of the beam with absolutely rigidly 
connected layers. As 2 and 5 assumptions are valid, 
stresses change linearly through each layer depth. It is 
clearly seen in Fig. 5. 

As we can see from Fig. 5, the maximum stresses 
are generated in the middle of the beam. Analysis shows 
that when θ<0 the first layer is always under tension at the 
joint and the second layer is always under compression at 
the joint, and this effect is independent from the layers 
parameters.  

When θ>0, then vice versa, the first layer is al-
ways under compression at the joint, and the second layer 
is always under tension at the joint. The outside layers may 
be under compression or under tension depending on pa-
rameters of the layers. Distribution of concrete–timber, 
concrete–steel and concrete–concrete bilayer beam stresses 
through the layer height under shear force load is alike as 
in Fig. 5 [8,11,12,13]. The sum of overall stresses of the 
layers at ±1/2hi point due to shear forces and thermal and 
hygral strain action increase. Therefore it is imperative that 
designing bilayer structures thermal and hygral strain for 
the layers’ stress must be taken into account. 

As it is shown in Fig. 6, if joint stiffness ξ and 
beam length l are increasing, θ  and θmax min asymptotically 
tend to particular values at which the beam layers with 
absolutely rigid joints would crack. Therefore, for longer 
and more rigid joint beams, the absolute value of θ  and max
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b 

Fig. 4 Change of the layers’ normal stresses through a 
beam length: a – in the first layer, b – in the second 
layer, j – at the joint of layers, o – on the outside of 
the layers, 1 - l=3 m, ξ=81N/m; 2 - l=6 m, 
ξ=81 MN/m; 3 - l=6 m, ξ=270 MN/m, the parame-
ters of the beam are given in Table 

 
 

Fig. 5 Variation of stresses through each layer height when 
x=0. The parameters of the layers are the same as in 
Fig. 4 

θmin is much less than for short beam. The layer slip and 
the shorter beam length may reduce the risk of cracking.  

As illustrated in Fig. 7 when E1 increases, abso-
lute values of θmax and θmin decrease to a certain limit. 
Therefore in some cases the increase of the elasticity 
modulus raises the risk of cracking. It must be emphasized 
that in most cases for cement materials, the elasticity 
modulus and the strength are closely related. Usually the 
increase of the elasticity modulus of cement based materi-
als increases the material strength. In some cases the in 

 

Table 

 
Fig. 6 Dependence of minimum θmin and maximum θmax 

thermal and hygral strain which does not induce the 
crack in the layers, on joint stiffness ξ when l=3 m – 
1 and the length of beam l – 2, when ξ=54 MN/m, 
the parameters of the beam are given in the Table 

 

 

Fig. 7 Dependence of the minimum θmin and the maximum 
θmax thermal and hygral strain which do not cause 
the layers to crack on elasticity modulus of layers:  
1 - when the elasticity modulus of the first layer var-
ies, 2 - when elasticity modulus of the second layer 
varies, the parameters of the beam are given in the 
Table l=3 m ξ=270 ΜΝ/m 

crease in strength may compensate the increasing stresses-
caused by the raised elasticity modulus. For example, ac-
cording to [14] if the elasticity modulus of 28-day-old 
heavy concrete increases from 27 GPa (С12/15) to 30 GPa 
(С20/25) or relatively 11.11 %, the tensile strength of 0.05 
quantile increases from 1.1 MPa to 1.5 MPa or relatively 
36.4 %. Meanwhile the stresses of the first layer (the beam 
geometrical dimensions are given in the table 
ξ=270 MN/m, l=3 m, θ=60·10-5) increase accordingly from 
σ1(-1/2h1)=4.4 MPa to σ1(-1/2h1)=4.7 MPa, or relatively 
6.82%. Therefore the increase of the elasticity modulus 
does not necessarily cause a large risk for the layers to 
crack. However if with the increase of the elasticity 
modulus the strength does not increase, then the increase 
of the elasticity modulus reduces the limiting value of 
thermal and hygral strain difference (Fig. 7). 

Beam parameters [8,10,11]
b, m h, m E, GPa ξ f f Θ Layer’s substitute 1, MN/m c, MPa t, MPa 

1 concrete layer 0.50 0.10 12.7 29 2.8 
2 wood layer 0.12 0.15 10 

27 -60·10-5

15 7 

σ,
 M

Pa
 

a 

σ,
 M

Pa
 

y/
h 

   
   

   
   

   
  y

/h
 

σ, MPa
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4. Conclusions It must be emphasized that if flexural stiffness of 
the second layer is very large comparing to the first layer 
or the beam cannot bend (for example it is restrained by 
flexural strains) with the increase of E

The conclusions listed hereunder are written for 
the concrete-timber, concrete-steel and concrete-concrete 
bilayered beams under thermal and hygral deformation 
action. 

2 or A2 stresses of the 
first layer always increase at any point. Therefore in gen-
eral, the influence of the elasticity modulus on θ  and θmax min 
cannot be uniquely determined. A layer slip decreases its stresses and beam de-

flections. Therefore for more precise estimates of stresses 
and strains state, in majority of cases it is necessary to take 
into account the layer slip. 

The dependence of limiting beam length on the 
strength of the first layer, the difference of thermal and 
hygral strain θ and joint stiffness are shown in Fig. 8. 

Designing beams it is necessary to consider the 
influence of thermal and hygral strain on the stresses and 
deflections of the layers. Due to these strains, stresses of 
the layers may exceed the strength limit. Deflection of the 
beam under shear force always increases and may be larger 
than the allowable deflection set by structural require-
ments.  

With the increase of joint stiffness and beam 
length the hygrothermal stresses asymptotically approach 
to the stresses of the beam with absolutely rigid joint. 

If flexural strains are not restrained and hy-
grothermal strains are uniformly distributed through the 
height of each layer, the maximum stresses occur at the 
joint of layers in respect to the beam height. The minimum 
stresses occur at the outside of the layers. The maximum 
stresses generate in the middle of the beam in respect to the 
beam length and minimum stresses generate at the end of 
the beam. 

 
Fig. 8 Dependence of the limiting beam length on the 

strength of the first layer f1 – 1, ξ=54 ΜΝ/m, the dif-
ference of thermal and hygral strain θ – 2, ξ=54 Ν/m 
and the stiffness of the joint ξ – 3, θ=-64·10

The length of the beam and the stiffness of the 
joint, owing to which the cracks occur, are principally de-
pendent on the difference of layer thermal and hygral strain 
and the material strength of layers. 

-5, the 
parameters of the beam are given in Table 

The relative error of the stresses calculated con-
sidering layer slip and the stresses determined not taking 
into account layer slip does not depend on the difference of 
thermal and hygral strain.  

As it can be seen, with the increase of the layers 
strength and the decrease of the difference of the absolute 
values of thermal and hygral strains, the length of the limit-
ing beams asymptotically tends to a specific limit. 

 The beam deflections are show in Fig. 9. As we can see 
from the Fig. 9, if joint stiffness increases, the deflection 
also increases. The graph also shows that due to shrinkage 
strains, the real beam deflections may achieve half of the 
limiting deflection v
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D. Zabulionis 

TEMPERATŪRINIŲ IR DRĖGMINIŲ DEFORMACIJŲ 
SĄLYGOJAMO DVISLUOKSNĖS SIJOS ĮTEMPIŲ IR 
DEFORMACIJŲ BŪVIO ANALIZĖ ĮVERTINANT 
SLUOKSNIŲ PRASLYDIMĄ 

R e z i u m ė 

Darbe pateikta dvisluoksnės sijos temperatūrinių 
ir drėgminių deformacijų sąlygojamo įtempių ir deformaci-
jų būvio analizė įvertinant sluoksnių praslydimą. Sudarytos 
priklausomybės remiasi sudėtinių strypų teorija. Pateiktos 
ribinių temperatūrinių ir drėgminių deformacijų bei kritinio 
sijos ilgio, kurį viršijus vienas iš sluoksnių supleišėja, ap-
skaičiavimo metodikos. Pagal gautas priklausomybes atlik-
ta realios dvisluoksnės sijos įtempių, deformacijų ir po-
slinkių analizė. Nustatyta, kad temperatūrinės ir drėgminės 

deformacijos gali sukelti didelius dvisluoksnių sijų įtem-
pius, deformacijas ir įlinkius.  
 
 
D. Zabulionis 

STRESS AND STRAIN ANALYSIS OF A BILAYER 
COMPOSITE BEAM WITH INTERLAYER SLIP 
UNDER HYGROTHERMAL LOADS 

S u m m a r y 

The work includes stress and strain analysis of a 
bilayer composite beam with interlayer slip under hy-
grothermal loads. An algorithm allowing calculation of 
limiting thermal and hygral strains and an algorithm for 
calculation of limiting beam length (if exceeded, it will 
cause one of the layers cracking) are presented in the 
article. According to the proposed relationships the 
analysis of a real bilayer beam stresses, strains and 
deflections has been performed. 

 
 

Д. Забулёнис 

РАСЧЕТ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ 
ДВУХСЛОЙНОЙ БАЛКИ ОТ ДЕЙСТВИЯ 
ТЕМПЕРАТУРНЫХ И ВЛАЖНОСТНЫХ 
ДЕФОРМАЦИЙ С УЧЕТОМ ПОДАТЛИВОСТИ 
СОЕДИНЕНИЯ 

Р е з ю м е 

В статье предложена методика расчета 
напряжений и деформаций двухслойной балки от 
действия температурных и влажностных деформаций с 
учетом податливости соединения. Предложенные 
зависимости получены на основе теорий составных 
стержней. Представлены методики, позволяющие 
рассчитать предельные температурные и влажностные 
деформации в слоях, а также предельную длину, при 
которых в слоях появляются трещины. На основе 
полученных зависимостей сделан анализ напряженно-
деформированного состояния двухслойн

 

ой балки. 
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