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1. Introduction 

 

Various studies show that more than 40% of acci-

dents are caused by excessive vibration of turbomachinery 

parts. Modern CAD systems, such as Solidworks and 

ANSYS, have proven themselves in solving some of tur-

bomachinery design problems, but in the finished machine 

balancing problems, they can only serve as a tool in the 

hands of researchers. 

Most modern turbomachinery rotors and powerful 

electrical devices are balanced in view of their flexibility 

during use [1], since for them methods of balancing of rigid 

rotors in the two extreme planes of correction in low-speed 

balancing machines are not effective [2, 3]. 

Such rotors are balanced on operating speeds in at 

least three correction planes in an effort to detect and com-

pensate for imbalances that are normally distributed along 

the length of the rotor. It is required that deformation of the 

entire length of the rotor, or in places where they can focus 

largest imbalances should be initially measured [4]. Most 

often, in these places the rotor deflections are measured and 

which it is necessary to calculate eccentricities and the cor-

responding values of the imbalances, and then balancing 

loads [5]. 

Identification of the eccentricities of the measured 

deflection is an inverse problem. Here, by corollary (the 

measured deflections) it is necessary to find the cause of the 

rotor eccentricity. Complexities inherent to inverse problem 

of identifying the eccentricities arise from the incorrect set-

ting of inverse problems [6]. 

Unfortunately, in the literature little attention is 

paid to the methods of overcoming the problems encoun-

tered in identifying the eccentricities of real turbomachinery 

rotors. One of the abovementioned problems is bad condi-

tionality of systems of linear equations. As a result, their so-

lution may be unstable, and the identified values of the pa-

rameters – inaccurate. Without the use of special methods 

for increasing the stability and reducing the scattering yield 

of desired values of eccentricities, identification methods 

can be ineffective. 

In this paper, the authors offer effective methods 

for identification of eccentricities in real machine rotors 

with acceptable accuracy by obtaining stable solutions of 

systems of corresponding equations.  

 

2. Solution of the inverse problem of identification of 

the turbopump rotor eccentricities 
 

The test type turbopump unit TNA-150 (Fig. 1) 

had an increased vibration caused by rotor imbalance and it 

was necessary to understand the causes of increased vibra-

tion, to reduce the vibration, rotor deformation, stress and 

load on its bearings to the level of 300 N (according to the 

engineering specifications). 

Since balancing the entire rotor on low speed ma-

chines in two planes of correction did not lead to the desired 

results, it was decided to balance the rotor to operational 

speed in three planes of correction, where the largest weight 

is loaded, namely in the planes of the two compressor disks 

2 and 3 and the drive turbine 1 (Fig . 2). 

The aim was to identify the results of measurement 

in the three sections of the rotor deflection magnitude and 

location of eccentricities (imbalance) of each of the com-

pensating masses for further installation of balancing loads. 

 

Fig. 1 Turbopump assembly 

 

Fig. 2 Three-mass model of the turbopump assembly 

The integro-differential dependencies resulting 

from the theory of bending allowed to write the equations of 

motion of the rotor, with the result that each of the three ro-

tor sections in the projections on two mutually perpendicu-

lar planes were recorded by equations relating the unknown 

distribution of stiffness EJ, mass m, and projections ey and 
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ex, and eccentricities e with deflections y of the rotor shaft: 
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 - the curvature of the elastic 

line of the rotor, Z - the coordinate of the rotor section, 

measured along the axis of rotation from point O (Fig. 2). 

Coefficients 
0 1 2
, , , ,

x y
e e    are the unknown values. 

To identify the stiffness, mass and inertial charac-

teristics of the rotor, deflections were measured at four dif-

ferent angular frequencies: 
1

14100 rpmn  , 

2
15000 rpmn  , 

3
15600 rpmn  , 

4
16000 rpmn  . Using 

the obtained values of the projections of the rotor shaft de-

flection , 1,4
j

y j   measured at frequencies of rotation 

,  1,4
j

j  , and four first derivatives 

, , , , ,  1,4
IV

j j j j j
y y y y y j    , constituted by two systems of 

linear equations of the type (1) for each of the calculated 

cross sections 1,2,3 which are identified by eccentricities, 

stiffness and mass. 

For the 1st section (OY axis) we have: 
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Similar matrix equations were formulated for dis-

crete linear inverse problems for other cross-sections and 

planes. 

The number of matrix, composed of equation sys-

tems AX Y  appeared very high (Table 1). 
 

Table 1 

Conditionality of the matrix of type (1) linear equation sys-

tem 

Section number axis Value of condition number 

1 
ОY   15

1.4 10cond  A  

ОX   14
5 0 10cond . A  

2 
ОY   14

1.7 10cond  A  

ОX   15
6.4 10cond  A  

3 
ОY   14

2.1 10cond  A  

ОX   3
3.5 10cond  A  

 

Apparently, the resulting solutions of systems of 

equations cannot be considered reliable. However, this con-

ditionality may be called "imaginary". Indeed, for the anal-

ysis of the matrix A, it becomes clear that increased condi-

tionality  is caused not only by the proximity of the system 

to degenerate, but also a huge difference in the order of the 

coefficients, i.e. the difference between the values and 

norms of the matrix period. Applying the scaling of coeffi-

cients, we look for the following unknowns: 

11

0 0
10 

    cm4/s2; 
9

1 1
10 

    cm3/s2; 

8

2 2
10 

    cm2/s2; 2
10

y y
e e    cm аnd 

3
10

  B B . 

Then, for the 1st section (axis OY) we have 

  217cond A . Similarly, by scaling the coefficients of 

the system of units of linear equations, it was possible to 

reduce the conditionality of the matrix composed for section 

1 (Ox axis) from 
14

4.968 10  up to 332, for section 2 (Оу 

axis) from 
14

1.715 10  to 25, for section 2 (Ох axis) from 
15

6.397 10  to 103, for section 3 (Оу axis) from 
14

2.074 10  to 176, for section 3 (Ох axis) from 
15

7.453 10  to 3453. 

These matrices have acceptable conditionality and 

so the corresponding equations were solved using the statis-

tical method with sustainability developed through addi-

tional measurements as well as with the use of linear filter-

ing method of least squares estimator [7]. 

Another method of identifying unknown 

0 1 2
, , , , 

x y
e e    in each of the three sections is also pro-

posed. The analysis of the systems of equations formulated 

for OX and OY axes in section 1 shows that out of 8 equa-

tions only 5 unknown values could be found, because 

0 1 2
, ,     are common unknown values for both systems 

of equations. This fact allows to simplify calculation of ec-

centricities, imbalances and location angles by solving one 

linear system, composed of two linear systems with stand-

ard linear transformations. For example, adding the corre-

sponding matrices of the left and right side of the two linear 

systems for section 1 and forming the 5th equation by add-

ing equations, we obtained a matrix system of equations

  14
3.1 10cond  A . 

After scaling, we have a system of equations with

  724cond A : 

0
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2

-5.3  -9.18 0.36 -2.18 -2.18 -0.7631

-1.0  6.82  0.88 -2.47 -2.47 -0
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-5.9 13.72 1.24 -2.81 -2.81

-8.3 -2.50  0.65 -2.18 -2.81
x

y

e
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.9129

-0.9874

-1.1229

-1.1698
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 
 
 
 

. 

The next step of conditionality reduction was to ap-

ply scaling by searching vector  
1i n

k


K , at which 

 min cond 
K

A is reached, where A - matrix of equivalent 

system of linear equations (SLE), which includes the lines 

   ,: ,: , 1, 
j

j j k j n  A A , i.e. the task is to find 
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      1 2
, , , , 

k
min f f ... f

K

K K K  2k   where 

   f condK A . Equivalent SLE, optimized according 

to the criteria of conditioning minimum, looks the following 

way:  1 2
, , , 

n
diag k k ... k  A X Y . To validate this, we 

used optimization to find vector 

 1 2.94 2.64 1.19 1.19K  and obtained equivalent SLE 

which is as follows: 

0
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2

-5.30 -9.18   0.36  -2.18  -2.18

-2.94  20.07  2.59  -7.26  -7.26

-5.28 27.34   2.89  -7.05  -7.04
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-9.91 -2.98   0.77  -2.61  -3.35
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As a result, the conditionality was reduced to 

  564cond A , i.e. by 28%. Similarly, two SLEs are 

formed from 5 equations for sections 2 and 3 respectively. 

With this approach only 3 out of 6 systems of equations are 

solved. 

Let us estimate the relative error for elements of 

the vector of absolute terms. The elements of the vector are 
2

i i
y  , 1, 4i  . Applying the knowledge of the theory of 

errors, we find that the relative error of the product is 

 2 2
y y      , and  2

2   . Given that the 

measurement error of rotational speed is 

100 rpm = 10.47 rad/s ( 0 0071 .  rad/s), and error of de-

flection measurement is 1 µm ( 0 026y . ), the relative er-

ror of the first element should be 4%. 

It follows that for the solution of this problem with-

out the use of regularization techniques, possible error in de-

termining the unknown could be hundreds of percent. To in-

crease the accuracy of calculations and solutions, to ensure 

the specified accuracy, a statistical method for increasing 

the stability of mathematical models was used [8]. It is pos-

sible to solve the system (1) with an accuracy of 5% (Table 2). 
 

Table 2 

The results of inverse problem solution 
 

Section 

Number 
ex, m ey, m α0, m3/s2 α1, m2/s2 

1 –5 × 10-6 –5.8 × 10-6 185.65 –270.3 

2: –9 × 10-6 1.7 × 10-6 710.65 –247.18 

3: –6.2 × 10-6 30 × 10-6 280.83 –680.00 
 

The identified values α0 and α1 allow to determine 

the values of stiffness more accurately than the static tests. 

For this purpose, each of the 3 sections mentioned found 

values of the mass mi and stiffness EJ, i = 1, 2, 3 rotor shaft 

in accordance with the formulas: 

  1

00

Z

m Z M exp dZ




 
   

 
 ; (2) 

     0
EJ Z m Z Z  , (3) 

where M - rotor mass. 

Further, we used the formulas: 

2 2

i i xi yi
D M e e  ;  2 2

i yi xi
arctg e e  ; i = 1, 2, 3, 

to determine the magnitude of the imbalances of the rotor 

angle and compiled them with the OX axis of the selected 

coordinate system. The results are presented in Table 3. Fi-

nally, using the identified data of eccentricities, we compen-

sate them. 

 

Table 3 

The results of solving the problem of identifying 

ТНА rotor imbalances 
 

Identified values 
Section 

1 2 3 

Stiffness i
EJ , Н m2 414.7 1594 23998 

Reduced 

mass 
mi × 10-3 kg/m 2.2 2.0 8.3 

Imbalance Di, gr cm 23.7 2.48 30.6 

Angle with 

Ох axis 
φi, degrees 95° 170° 102°3´ 

 

According to the identified values of stiffness and 

weight, critical rotor frequency has been calculated, which 

is shown in the adopted dynamic model. For this purpose, 

the values of influence factors are calculated, using the 

known EJ values for the rotor sections and Mohr's integral. 

Then critical frequency of the rotor 1
  = 1732 1/s. and 

ω2 = 2625 1/s, corresponding to n1 = 16500 rpm and 

n2 = 25080 rpm is found. The difference between the first 

critical speed calculated from the identified masses and 

stiffness, and critical rotor speed measured when running 

TNA is 400 rpm, i.e. 2.49% of 16100 rpm.  

For comparison of the critical difference between 

the actual rotor speed and the resulting solutions, a determi-

nant secular equation is composed, based on static factors 

influence of 3400 rpm. That is, 21% of 16100 rpm. Improv-

ing the accuracy of calculations 8.4 times has been made 

possible thanks to the solution of inverse problems with the 

use of sustainable methods of making. 

 

Fig. 3 Dependence of rotor deflection on rotation speed 

After balancing of the rotor by setting a special cor-

rective mass storage, a controlled launch was performed on 

passage from 0 to 18,000 rpm with oscilloscope readings of 
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strain gauges and vibration sensors. The resulting deflec-

tions depending on the rotational speed in a section before 

and after rotor balancing are shown in Fig. 3. 

As a result of balancing, the maximum deflection 

of the rotor shaft in the range 8000-18000 rpm. was reduced 

by about 6 times, the amplitude of vibration supports - by 4 

times the static tension in the material of the shaft - by 3.5 

times, and dynamic - by 3 times (Fig. 3). 

 

3. Solution of the inverse problem of identification of 

aircraft engine compressor rotor eccentricities 

 

The rotor of the disc-drum type compressor of gas 

turbine engine (GTE) AI-20 contains ten individual discs 

bearing rotor blades, tail rotor shaft and seal of front and rear 

bearing assemblies on their crowns (Fig. 4). 

One way to identify eccentricities is solving a ma-

trix equation on the basis of experimental data: 

  2
  Y A Y e , (4) 

where  
1


i n

yY ;  
1


i n

ee ;  
1


n

ik
aA . 

Here the coordinates of the vector Y  have a de-

flection of the rotor shaft in the landing places of the discs, 

vector e - the eccentricities of the discs, and A -elements of 

the matrix are the product of the static coefficient of influ-

ence on the masses of the corresponding discs [9]. 

Assuming that  
1

2 2
1 



 A A A , we arrive at 

the solution of discrete linear inverse problem of the follow-

ing type: 

 Y A e . (5) 

Due to the fact that conditionality  Acond is usu-

ally large and vector elements are measured with errors, the 

task of identifying the type of the eccentricities of the rotor 

(4) cannot be solved in practice, since its solutions will be 

false. Thus, the actual challenge in the way of solving this 

inverse problem is to overcome the instability of its solu-

tions, caused by poor conditioning of the matrix A . The 

problem will be incorrect and its solution will be unstable 

because small errors in Y will be highly increased in the so-

lution X . The research [8] shows that stability of solutions 

can be reached by applying multiple measurements, which 

in fact is using the method of least squares. 

By increasing the number of measurements, the 

measurement error can be reduced. But in practice the way 

of infinite increase of measurement accuracy is not possible, 

because sooner or later the lack of information (for example, 

not knowing the exact value of corrections etc.), rather than 

scattering the arithmetic average, becomes the determining 

factor. Accumulating experimental data thus decreasing the 

standard deviation of the arithmetic average can only make 

sense as long as it is not negligible compared to the standard 

deviation analogue which takes into account the lack of in-

formation. Multiple measurement accuracy, therefore, is 

limited due to systematic error caused by the lack of infor-

mation.  

So, despite the fact that the Least Squares Estima-

tor (LSE) is an unbiased estimator, it is unsustainable, and 

the method of least squares is ineffective for systems of lin-

ear algebraic equations with large numbers of conditional-

ity. The cause of instability is the huge variance of the LSE. 

As mentioned in [7], likelihood function should only be 

used as a preliminary tool while solving the inverse prob-

lem. Instead, it is reasonable to rely on a certain communi-

cative statistics that takes into account the systematic devi-

ations of the compared random sequences. 

To solve the inverse problem of determining the 

eccentricity of the rotor it is proposed to apply to LSEs lin-

ear filtering. The basic idea of filtering as a method of reg-

ularization is to consciously leave some bias in the estimate 

obtained, while significantly reducing its scattering. Conse-

quently, it is necessary to find such an estimate, which is 

still acceptable at offset and the variance - significantly less 

than that of the LSE. With the purpose of filtering it is pro-

posed to apply data compression and produce a truncated 

assessment. For this purpose it is suggested to use multivar-

iate analysis of the data compression method - the method 

of principal component analysis and (PCA), known in sta-

tistics [7, 10].  

Suppose the following equation is solved instead 

of (5): 

 AX Y Y , (6) 

where Y  - true value; Y  - vector of “noise” values, with 

regularly distributed components  0,
i i

y N  .  

Then there is the multivariate normal variable Y  

with zero mean 0 Y  and covariance matrix 

 cov Y  . 

As it is known, one of the most important roles in 

the analysis of the formation of the stability of solutions for 

linear inverse problems belongs to Fisher matrix I , which 

is equal to the inverse of the covariance matrix of the LSE 
1

Ω I . Fisher matrix for the LSE model (6) can be found 

from the formula 
1


T

I A A , where the covariance ma-

trix of the "noise" is obtained through: 

   
T

  Σ Y Y Y Y  

or by the formula: 

    
1

T


  I X X X X , 

where X  is LSE. 

Spectral representation of the Fisher information 

matrix has the form: 

 1 2 1 2
, , , , , 0

T

n n
diag ... ...         I VDV D  (5) 

where  1 2
, , , 

n
...    - eigenvalues of the Fisher matrix, 

V  - orthogonal matrix whose columns define the directions 

of the principal axes of the ellipsoidal region of admissible 

estimates of the problem set incorrectly (5) [7]. At the same 

time, the LSE converts according to the system of eigenvec-

tors of the Fisher matrix: 

X V p , (7) 
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where 
1 2
, , , 

n
p p ... p  - principal LSE components. These are 

the components X  in the coordinate system that is rotated 

relative to the initial system so that the coordinate axes were 

parallel to the main axes of LSE scattering ellipse.  

As it is known, the trace of the covariance LSE ma-

trix is equal to the sum of its eigenvalues: 

   
2 1

1 1

n n

i i i

i i

tr x x 


 

   Ω . 

This shows that the total deviation from the true 

LSE object is defined by the range of matrix I . The largest 

contribution to the total deviation is made by the smallest 

eigenvalues, i.e. the "tail" of the Fisher matrix. So, the es-

sence of filtering is a compromise choice of such a large 

number of principal components n   that provide suffi-

cient accuracy of assessment with an acceptable variance. 

By increasing, v it is possible to reach a more accurate rep-

resentation of X  the average through X , but at the same 

time more and more terms from the "tail" of the Fisher ma-

trix spectrum are taken into account, and it quickly deterio-

rates the quality of assessment. 

Truncated estimate of the LSE is calculated as fol-

lows: 
mintr X V p . Taking into account that: 

T
p V X ,  (8) 

we get: 


min

T

tr X V V X . (9) 

Truncated estimation method was used to solve the 

inverse problem of identifying unknown eccentricities of 

aircraft gas turbine engine AI-20 compressor rotor (Fig. 4). 

A five-mass mathematical model of compressor rotor shown 

in Fig. 5 was set up to search eccentricities. 

2

0.228 0.203 0.195 0.155 0.1299

0.184 0.246 0.284 0.246 0.2457

0.143 0.230 0.303 0.295 0.3472 , 

0.111 0.195 0.290 0.336 0.4440

0.067 0.139 0.234 0.316 0.5200

c


 
 
 
 
 
 
 
 

A . 

 

Fig. 4 Airplane engine АI-20 and compressor of engine 

Critical rotor speed on rigid supports are 14000, 

28900, 65300, 130600 and 419300 rpm. The number of ma-

trix condition ( )cond A  573. This means that the accuracy 

of measurement of the deflections of the rotor 

10-5 m, which corresponds to a relative error of 6-10%, the 

error in determining eccentricities for normal inverse isola-

tion system (3) can reach 5730%, that is, the resulting solu-

tion will be totally unreliable. In this situation using the LSE 

with 50 measurements can slightly improve the accuracy 

(upper estimate will decreases approximately by 7 times), 

which is also unacceptable. 

 

Fig. 5 Five-mass model of compressor rotor  

The following numerical experiment was carried 

out with the help of principal component analysis (PCA) and 

MATLAB program to test the effectiveness of the proposed 

linear filtering method. On the basis of the specified sections 

of the exact values of eccentricities 

  6
77 4, 89 9, 105 0, 79 0, 59 5 10

T
. . . . .


 e  m the exact val-

ues of the rotor deflections Y  were determined by solving 

the direct problem, in which the rotor matrix A  is assumed 

to be given without errors. These values Y  = [76.35, 

100.23, 107.52, 109.53, 98.16]T 10-6 m. have been taken for 

the expectation of deflections in the given sections. Further, 

the standard deviation 3  , where  

  = 10-5 m - measurement accuracy, is set using a com-

puter random number generator to obtain different imple-

mentations of deflections prepared as random variables dis-

tributed by the normal distribution law with the above men-

tioned parameters. In this experiment, 50 deflection realiza-

tions generated in each of the examined sections were pro-

vided for. For each Y  realization the corresponding e  im-

plementation was found and their expectation values e , 

which coincide with the LSE, were calculated. 

By carrying out the spectral decomposition of the 

Fisher matrix according to (7), a diagonal matrix D  with 

the eigenvalues on the main diagonal (sample variance prin-

cipal component analysis) and a matrix of eigenvectors V  

were obtained. Since the total sample variance was 82116 , 

the dispersion of the main component was 78.2% of the total 

variance, and the three main components reached 99.2% of 

the total variance, it was sufficient to choose three eigenvec-

tors of covariance matrix ( 3  ) for filtering of the estima-

tion. 

Filtered LSE, calculated according to formula (9) 

is tr
e = [84.64, 92.14, 97.31, 76.96, 62.88]T×10-6 m. Rela-

tive error of truncated estimates, calculated as: 

 tr
  e e e e , (10) 

reached  e  = 0.18%, while LSE made  

e  = [188.3, 238.3, 419.8, 58.8, 74.6]T×10-6 m.  

The relative error of the LSE was  e  = 182%, 

that is, the accuracy of the solution using a truncated assess-

ment compared with a conventional LSE increased again by 

1167 times. The results demonstrate a sufficiently high ac-

curacy and efficiency of the described method for producing 
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regular statistical solutions of linear inverse problems using 

LSE linear filtering method with the help of PCA method. 

 

Fig. 6 Demonstration of the effectiveness of the filtration 

method of the LSE in solving the problem (5):  

1 - normal inverse interchange; 2 - solutions that are 

compressed by LSE method; 3 - LSE; 4 - truncated 

LSE estimate; 5 - true eccentricities e1, e2 

4. Conclusions 

 

1. The current research presents the results of uti-

lizing the methods for improving stability of linear discrete 

inverse problem solutions to identify the eccentricities ac-

cording to measured deflections for TNA -150 turbopump 

unit. As a result of balancing, maximum rotor shaft deflec-

tions in the range of 2000-18000 rpm decreased approxi-

mately by 6 times; the amplitudes of vibrations in supports 

(bearings) – by 4 times; static stress in the material of the 

shaft –  by 3.5 times; and dynamic stress –  by 3 times. 

2. Application of LSE linear filtering method using 

PCA has been offered to ensure the stability of the solutions 

of inverse problems for identification of eccentricities with 

measured deflections and compliance. The bottom line is 

that filtering should have such effect on the LSE, which 

could substantially reduce the ellipsoid of LSE scattering by 

compressing the information contained in the matrix of scat-

tering, due to "truncating" the "tail" of the Fisher matrix 

spectrum. 

3. The study validates high efficiency of using 

truncated estimates to solve the inverse problem of identify-

ing unknown eccentricities in the rotor of aircraft engine AI-

20 compressor using empirically determined compliance 

values and rotor deflections. 
 

References 
 

1. Srikanthan, M.R., Sekhar, A.S., Deepthikumar, M.B. 
2013. Modal balancing of flexible rotors with bow and 

distributed unbalance, Journal of Sound and Vibration 

332(24): 6216-6233. 

http://dx.doi.org/10.1016/j.jsv.2013.04.043. 

2. Dimarogonas, A.D., Paipetis, S.A., Chondros, T.G. 
2013. Analytical Methods in Rotor Dynamics, Berlin-

Heidelberg-New York, Springer Verlag, 274 p. 

http://dx.doi.org/10.1007/978-94-007-5905-3. 

3. Darlow, M.S. 2012. Balancing of High-Speed Machin-

ery, Springer Science & Business Media, 185 p. 

4. Levit, M.E. et al. 1992 Manual Balancing, Moscow, 

Mashinostroenie, 464p. 

5. Royzman, V.P.; Vayngortin, L.D. 1979. Nekotoryie 

voprosyi teorii balansirovki gibkih rotorov, Uprugie i 

gidrouprugie kolebaniya elementov mashin i kon-

struktsiy, Moscow, Nauka, 55-63 (in Russian). 

6. Tarantola, A. 2005. Inverse Problem Theory and Meth-

ods for Model Parameter Estimation, Siam, 342p.  

http://dx.doi.org/10.1137/1.9780898717921. 

7. Terebizh, V.Yu. 1995. Occamian approach in the image 

restoration and other inverse problems, International 

Journal of Imaging Systems and Technology 6: 358-

369. 

http://dx.doi.org/10.1002/ima.1850060409. 

8. Goroshko, A.V., Roizman, V.P. 2015. Statistical meth-

ods for providing the stability of the solutions of inverse 

problems and their application to decrease rotor vibroac-

tivity, Journal of Machinery Manufacture and Reliability 

44(3): 232-238. 

http://dx.doi.org/10.3103/S1052618815030073. 

9. Zhou, S.; Shi, J. 2001. Active balancing and vibration 

control of rotating machinery: a survey, Shock and Vi-

bration Digest 33(5):361-371. 

http://dx.doi.org/10.1177/058310240103300501. 

10. Pietraszek, J.; Korzekwa, J.; Goroshko, A. 2015. The 

principal component analysis of tribological tests of sur-

face layers modified with IF-WS2 nanoparticles, Ap-

plied Mechanics and Materials, Trans Tech Publica-

tions, Switzerland, 235: 9-15. 

http://dx.doi.org/10.4028/www.scientific.net/SSP.235.9 

 

 

A. Goroshko, V. Royzman, V. Ostaševičius 

BALANCING OF TURBOMACHINE ROTORS BY 

INCREASING THE ECCENTRICITY 

IDENTIFICATION ACCURACY 

S u m m a r y 

 

The article presents the results of research aimed at 

improving the identification of eccentricities by ensuring the 

stability of solutions of linear discrete inverse problems. The 

results of the application of scaling factors of systems with 

a view to reducing their dependence are suggested. Identi-

fied eccentricities imbalances and angles of their location 

allowed to balance the rotor turbopump unit TNA-150 and 

reduce the maximum deflection of the rotor shaft in the 

range of 2000-18000 rpm 6 times, the amplitude of vibra-

tion supports - 4 times, the static tension in the material of 

the shaft - 3.5 times, and dynamic tension- 3 times. The use 

of linear filtering LSEs based on the PCA method, has sig-

nificantly reduced the LSE scattering and accurately iden-

tify the eccentricities of the compressor rotor of aircraft en-

gine AI-20. 

 

Keywords: eccentricity, imbalance, inverse problem, rotor, 

least squares estimator, principal components analysis. 
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