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1. Introduction 

Fibered or reinforced as well as layered structures 
and their elements are widely used at present. Specific 
creep and creep characteristic which characterize viscoe-
lastic properties of composite materials can be determined 
by modelling a composite element as a layered material 
loaded by axial force. However, it is possible to model like 
this not only the above-mentioned composites, but also 
concrete [1] and other composites [2, 3]. The limiting val-
ues of composite mechanical properties can be obtained by 
modelling the composite as a layered element loaded in a 
longitudinal and perpendicular direction to the joints of the 
layers. These limits are known as the Reus-Voight estimate 
[2, 3]. However, by modelling a composite as a layered 
element loaded in longitudinal direction to the joints of the 
layers it is also possible to determine the upper limits of 
creep characteristics and a specific creep of the composite.  

A lot of methods have been developed that allow 
to forecast the elastic properties of composites according to 
the properties of the components, i.e. shape and joining of 
the layers: elasticity and shear modulus, coefficients of 
thermal and hygral expansion [2-7]. There are much fewer 
methods allowing to forecast the viscoelastic properties of 
materials. Many investigators model the composite viscoe-
lastic properties by using operational methods of calculus 
[3, 8-14]. These methods are based on the equality of con-
volution of two functions to the product of mapping of 
these functions according to Laplace or two-side Laplace 
transformation. By application of this rule for integral 
equation we get operational equations with operators. In 
these equations instead of stress, deformation and specific 
creep or creep characteristic functions we have maps of 
these functions. Upon putting these operators into the 
known equations whose purpose is to calculate the elastic 
mechanical properties of composites we get analytical ex-
pressions of the function map of viscoelastic mechanical 
properties of composite materials. After finding the origi-
nals of these function we get an analytical expression of 
viscoelastic mechanical properties of the composites. 
When expressions of maps are complex, it is very difficult 
to obtain the originals of these maps. It may happen that 
the originals of these maps in explicit function forms do 
not exist [3,15]. In this case viscoelastic properties of com-
posites can be obtained numerically by maps of functions. 
A number of methods have been developed for this pur-
pose [3,15]. In practice we can obtain the originals of maps 
in explicit function forms when the expressions of the 
maps are simple. This is possible only if creep functions of 
the components of the composite are very simple. 

Other authors model the viscoelastic deformations 
of layered composites by using the age-adjusted effective 
modulus method [16]. Equations obtained by using this 

method are with integral terms. Solution of these equations 
is complicated because integral terms include stress mem-
bers which depend on time. Therefore, application of this 
method for engineering calculation may be complicated. 

The finite element method is a universal method 
for modelling mechanical properties of composites [17,18]. 
It is also used to determine the precision of calculation of 
analytical methods which are used in modelling the me-
chanical properties of composites [9, 11, 19, 20]. However, 
due to its complexity, the method of labour expenditure of 
modelling and analysis of results of the finite elements 
may be inconvenient for engineering applications. In prac-
tice, it is important to have simple calculation methods 
allowing to make precisely calculations of viscoelastic 
properties of composites. 

Therefore, we offer a relatively simple and practi-
cal calculation method which allows to model the viscoe-
lastic properties of composites when the loading is applied 
by parallel to the joint of the layers. 

2. Main dependences 

A multilayered composite (Fig. 1) loaded with ax-
ial force N was studied. The directions of layers are paral-
lel to the direction of loading. 

 
Fig. 1 The design scheme of a layered composite element – 

a and layered element cross-section – b 

The linear creep deformation of composite can be 
described by the creep function which is widely used in the 
creep theory 
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where ( )0cE t , ( )0cC t,t  and ( )0c t ,tφ  are elastic modulus, 
specific creep and creep coefficient of the layered compos-
ite at time moment t0 respectively. The creep coefficient 
and specific creep are related to the well-known relation-
ship: ( )0c t ,tφ = ( ) ( )0E t C t,t0 . According to Eq. (1), if we 
know two different functions which characterize creep 
function, i.e. ( )0cE t  and ( )0cC t,t , or ( )0cE t  and ( )0c t ,tφ , 
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or ( )0cC t,t  and ( )0c t ,tφ , it is very easy to obtain the third 
unknown member. 

If the stresses remain unchanged over time, then 
the composite deformation and stresses are related by the 
following equation 

 ( ) ( ) ( ) ( ) ( )0
0 0 0c c c c

c

N tt,t t t ,t t ,t
A

ε σ δ δ= = 0  (2) 

where ( )0c tσ  is the stress of composite, ( )0N t  is the axial 
loading force applied to the composite element at time t0, 
Ac is the area of the composite cross-section (Fig. 1). It is 
not difficult to find the creep function and relationships of 
specific creep from Eq. (2) 
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Therefore, if we know the composite deforma-
tions εc(t,t0) in a given time period, we can find the specific 
creep Cc(t,t0) of the composite. The purpose of the follow-
ing investigation is development of a method for calculat-
ing the deformations of axial compressed layered compos-
ite in (t,t0) time interval. 

The proposed calculation method is based on the 
following assumptions: 

1. the joints of the layers are absolutely rigid and all la-
yers deform together; 

2. the uniaxial stress state of the composite and the lay-
ers is assumed; 

3. the layered composite does not bend and deformation 
arises only on axial strain; 

4. the linear creep deformations of each separate layer 
of the composite and of the whole composite are as-
sumed;  

5. the creep functions of the layers under tension and 
compression are even. 

If the stresses do not exceed a certain limit, the 
fourth assumption can be applied to many materials such 
as concrete, mortar, masonry, many plastics, wood, gyp-
sum and etc. 

When a composite is under uniaxial stress state, 
the axial deformation ( )i tε  of the layers at the moment t of 
time can be described by the following integral equation 
[3,14,21]
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where n is the number of layers, ( )i tσ  and ( )i t ,δ τ  are 
stress and creep functions of the ith layer. After integration 
of the Eq. (5) into parts we get 
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where ( )iE t  is the elastic modulus function of ith layer. 
Since the layers of the composite deform together, the de-
formation of each layer is equal to the axial deformation of 
the whole composite 

 ( ) ( )i ct tε ε=  (7) 

where ( )c tε  is axial deformation of the composite at t 
moment. The sum of forces of all layers is equal to the 
external axial loading. Generally, this loading varies with 
time 
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where Ai is the area of the ith layer. Taking into account 
relationships (5)-(8) the system of equations interconnect-
ing the deformation and stresses of the composite is de-
signed 
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This system has n+1 unknowns and is made up of 
n+1 equations, that is why it can be solved by well-known 
integral equation solution methods. It can be solved by 
taking out the mean of the stress function before the inte-
gral [22 - 25]. The n first equations of the Eqs. system (9) 
can be written as follows 
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By using the mean-value theorem for two func-
tions [22 - 25], the Eq. (10) can be rewritten as follows 
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where σi,ξ(tj,tj-1) is the mean value of the the stress function 
of the ith layer in time interval (tj,tj-1). However, in this 
case, beside the others, there is an additional requirement 
for stress functions, i.e. that the stress function in the inter-
val of integration should not change its sign. This causes 
difficulties in the application because the integration inter-
vals should be chosen so that the stress function sign does 
not change. It is assumed that for a very short time period 
(tj-tj-1) the mean of the stress functions is equal to the ar-
ithmetical stress mean value [22]

, dτε σ τ τ
τ

∂
= −

∂
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 (6) 

 ( ) ( ) ( )1 2i , j j i j i jt ,t t tξσ σ σ− = + 1−⎡ ⎤⎣ ⎦  (12) 

After putting (12) into (11) and integration of the 
obtained relationship according to the Newton-Leibniz rule 
we get  
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After an algebraic transformation, taking into ac-
count the condition (8), also that t=tm, we obtain the final 
system of recursive linear equations which relates the 
stresses in layers and the axial forces 
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The system of Eqs. (14) can be written in the ma-
trix form as follows 
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Here Qi and ui, are calculated as follows 
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When the determinant of the Eqs. systems (14) 
and (15) is not equal to zero, i.e. ( ) 0mt ≠Q , these systems 
have a single solution.  
 By solving the Eqs. systems (14), (15) or (19) 
when m = 1, m = 2, m = 3, ..., m = z we obtain the stress 
and strain values at t1, t2, t3, ..., tz time moments. The stress 
σi(t0) at initial time moment t0 can be obtained by using the 
dependence [26] 

 ( ) ( ) ( ) ( )0 0 0i it E t N t B t0σ =  (17) 

where B is the compressive stiffness of the layered com-
posite calculated according to the formula [26] 
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In order to calculate the (14) or (15) equations 
systems it is more convenient to use computer programs 
which solve the linear equation systems in the matrix form. 

Instead of the recursive matrix (15), it is possible to form a 
single matrix the solution of which gives us the strain of 
the composite and the stresses of the layers. For this pur-
pose the Eqs. system (14) is written down in the following 
matrix form 

 ( )[ ] ( ) ( )m m mt t t=M s d  (19) 

here ( )mtM , s(tm) , and ( )mtd  are 
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here ( ) ( ) ( )1 11 2i k j i k j i k jv t ,t / t ,t t ,tδ δ+ −= −⎡ ⎤⎣ ⎦  

At the time moment t the elastic modulus of the 
layered composite along its layers can be obtained by using 
upper bound of Reuss’ and Voigt’s estimate or by using 
the so called rule of mixture [2-4] 
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where Vi is the volume fraction of the ith layer. By the 
given assumption the expression (20) is exact. For a 
greater convenience of calculation, the relationship (20) 
can be expressed in the following form 
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The elastic modulus of many materials, with re-
spect to time, can be described by the equation 

 ( ) ( )1 e tE t E αβ −
∞= −  (22) 

where E∞ is the elastic modulus when t→∞; β and α are 
empirical values. By putting (22) into (21) and collecting 
of term, we obtain the following expression of elastic 
modulus of the layered composite along the layers 
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If we know the elastic modulus of a layered com-
posite and the total deformation, we can calculate the spe-
cific creep of the composite according to the Eq. (4). It 
should be noted that, according to the above-mentioned 
methods, deformations are found numerically and that is 
why evaluation of the specific creep by applying Eqs. (14), 
(15) and (19) is found only at the loading moment t0. If the 
modulus of elasticity and specific creep of layered materi-
als vary with respect to time, in order to calculate specific 
creep ( )cC t,τ  of a multilayer composite for different load-
ing moments, i.e. ( )1cC t,t , ( )2cC t,t ,  ..., ( )1c zC t,t − , we 
have to calculate the specific creep according to Eqs. (14), 
(15) and (19) by taking the loading start t1 > t2 > t3 > ... > tz-

1 at time moments. The obtained numerical values of a 
composite specific creep can be approximated by analyti-
cal functions. According to method [27] it is possible to 
approximate the specific creep and relaxation coefficients 
of a non-aging composite. According to methods [28-30] it 
is possible to determine the specific creep of an aging com-
posite. 

3. Analysis of results 

The proposed method was compared to the known 
analytical method [31] which allows calculation of defor-
mation of a two-layered composite. According to this 
method, the creep function of layers is as follows 

 ( ) ( )( )0
0 1 1 i t t

i i ,it t E C e ,i ,γδ − −
∞− = + − =1 2  (24) 

Fig. 2 plots the specific creep of a two-layered 
composite and its layers with respect to time, calculated 
according to exact analytical method [31] (dotted curve) 
and numerically according to (14) - (19) (diamond-shape 
dots) when the number of integration steps are equal to 
m=1. Fig. 2 a) plots curves when E1=10 GPa, E2=3 GPa, 
C∞,1=1·10-9 Pa, C∞,2=3·10-9 Pa, γ1=0.2 and γ2=0.4, whereas 
Fig. 2 b) plots curves when E1=200 GPa, E2=30 GPa, 
C∞,1=0.4·10-9 Pa, C∞,2=3·10-9 Pa, γ1=0.2, γ2=0.4. In both 
cases the axial loading and areas of the layers are as fol-
lows: N=0.2 Pa, A1=A2=0.1 m2. As we can see from Fig. 2, 
only one integration step is enough to calculate the two-
layer composite deformations rather precisely. 

In numerical calculations based on Eqs. (14) - 
(15), it is very important to select such steps of time inter-
vals which, on the one hand, would ensure that the error of 
integration would not be too large, and, on the other hand, 
would cause as few iterations as possible. When loading 
remains constant over time, stresses in layers change most 
quickly during the initial stage of loading, later stresses in 
layers change more slowly, and in the end they become 
steady. Therefore, when we apply rational calculus, the 
width of steps should depend on the stress changes. The 
simplest method to select the width of an integration step 
more rationally is to divide the measurement period into 
intervals of certain uneven width according to a preset rule. 

 
Fig. 2 Specific creep of two different composites calcu-

lated by the analytical method [31] - 1 and by the 
numerical method according to Eqs. (14) - (19), 
when the number of steps m=1, 2, 3 and 4 are spe-
cific creep of the first and second layer respectively. 
A more detailed explanation is given in the text 

The width of these intervals gradually increases from the 
shortest at the beginning of the loading to the longest at the 
loading end. The simplest dependency for calculation of 
the width of integration steps can be as follows 

 ( )0 1 2k
j mt t t m j , j , ,...,m= + =  (25) 

where m is the number of steps, t0 is the age of material at 
the loading, degree k = 1,2,3,…,n. It is clear that the bigger 
is k, the shorter are the initial time periods of loading and 
the longer are the final periods of loading. 

Fig. 3 shows the convergence of a relative error of 
creep deformations of an axial compressed reinforced con-
crete element to 0 depending on the number m of integra-
tion steps and the degree k of the equation (25). The rela-
tive error of composite specific creep ΔCc(m) and stress 
Δσi(m) of its layers can be calculated in percents by the 
following relationship 

 ( )
( ) ( )
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0 500 0

500 0

100c,m c,
c

c ,

С t ,t С t ,t
С m

С t ,t
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100 1 2i ,m i ,
i

i ,

t ,t t ,t
m ,

t ,t
i ,

σ σ
σ

σ
−

Δ = =  (27) 

where Cc,m(t,t0), Cc,500(t,t0), σi,m(t,t0), σi,500(t,t0) are specific 
creep of the composite and stress of its layers calculated 
according to Eqs. (14) and (15) for m and 500 (i.e. m=500) 
iterations. The creep function of concrete was taken ac-
cording to EC2 [32]. The parameters of this function are as 
follows: relative air humidity RH=80%, cement hardening 
coefficient - s=0.25, average compressive strength of con-
crete - fcm=38 MPa, scale coefficient - h0=133. The second 
layer - steel reinforcement, E2= =200 GPa. Ratios of the 
cross-section areas of the layers -  A2/A1=0.03. The age of 
the concrete at loading moment t0=1 day, the duration of 
the loading - t=100 days.  
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Fig. 3 Convergence of the relative errors of specific creep 
(a) and the stresses of the layers σ1(m) and σ2(m) (b) 
of an axially compressed reinforced concrete ele-
ment to 0 depending on the number m of integration 
steps and the degree k of equation (25). 1 - when 
k = 1; 2 - when k=2; 3 - when k=3; 4 - when k=5; 5 - 
when k=7; 6 - when k=10; 7, 8 - when k=5; 9, 10 - 
when k=7; 11, 12 - when k=10. Other explanations 
are given in the text 

As we can see from Fig. 3, when the degree of 
equation (25) is equal to k=5, 7 or 10 and the number of 
integration steps is equal to m=4, specific creep of the 
composite and stresses of its layers, calculated according to 
proposed methods, are fairly accurate for practical applica-
tions. The relative error of calculation in this specific case 
did not exceed 2.23 %. 

Fig. 4 shows the convergence of relative errors of 
specific creep and the stresses of layers of a similar ele-
ment to 0, depending on the loading duration t. These rela-
tive errors were calculated by Eqs. (26) and (27). In this 
case it was taken that number of integration steps is equal 
to m=4 (Fig. 4, a)). When the duration of loading is equal 
to 5000 days, the relative error of calculation does not ex-
ceed 2 %. In practical calculations of reinforced concrete 
elements it is possible to assume that 5000 days of loading 
duration are equal to infinity. Therefore, when the number 
of integration steps is equal to m=4 and the degree k of 
formula (25) is equal to k=10, the strain and the stresses of 
a reinforced concrete element can be calculated rather ex-
actly according to Eqs. (14), (15). In the case when the 
number of integration steps is equal to m=20 (Fig. 4, a)), 
the relative error of specific creep of composite does not 
exceed 1.05%. 

The performed analysis shows that the elasticity 
modulus of a composite is higher than the lowest elasticity 

modulus of a layer and smaller than the highest elasticity 
modulus of a layer, i.e. (min Ei(t)) < Ec(t) < (max Ei(t)). If 
the specific creep of a composite is higher than the lowest 
specific creep of a layered material and smaller than the 
highest  specific creep of layered material, i.e. 
(min Ci(t,τ)) < Cc(t,τ) < (max Ci(t,τ)), the creep function of 
the composite will be between the lowest and highest creep 
functions of the layered material, i.e. 
(min δi(t,τ)) < δc(t,τ) < (max δi(t,τ)), (Fig. 2, curves 1, 2, 3). 

 
Fig. 4 The relative error of specific creep and the stresses 

of the layers of an axially compressed reinforced 
concrete element depending on the duration of load-
ing when k=10 and m=4 - a or when m=20 - b. 1 and 
2 are the relative errors of the stresses of the 1-st 
and the 2-nd layers respectively, 3 is the relative er-
ror of composite specific creep. Other explanations 
are given in the text 

Another possible variant is that at a certain mo-
ment of loading specific creep of the composite will be 
higher than the highest specific creep of the layered mate-
rial, i.e. (max Ci(t,τ)) < Cc(t,τ) although δc(t,τ) < max δi(t,τ). 
Such a possibility is given in Fig. 5, when E1=10 GPa, 
E2=1 Gpa, C∞,1=C∞,2=1·10-9 Pa, γ1=0.2, γ2=0.8, areas of the  
layer A1=Α2=0.1 m2. 

As we can see in Figs. 2 and 5, the creep deforma-
tions of the composite under constant loading always settle 
during a shorter period of time than the longest settling 
time of creep deformations of a composite material and 
longer than the shortest settling time of creep deformation 
of the same material. 

The given examples show that if we select the 
properties of composite layers improperly, the creep and 
total deformations of a composite may be significantly 
increased and in this way its long term behaviour may be 
worsened. 
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Fig. 5 Specific creep - a) and creep function - b) of a two 
layer composite calculated by numerical method ac-
cording to Eqs. (14) and (15) - 3, 1 and 2 are creep 
functions and the specific creep of the 1st and the 
2nd layers respectively. The shape of the creep 
functions of the layers is Eq. (24), more details are 
given in the text 

4. Conclusions 

1. Having compared the known analytical method 
to the proposed numerical method, it was determined that 
the developed numerical method allows calculating the 
deformations of a layered composite element and stresses 
of its layers fairly precisely. 

2. If the creep function of concrete is according to 
EC 2, the number of integration steps is equal to four and 
the coefficient k of formula (25) is equal to k=10, the rein-
forced concrete is also under constant axial compressing 
loading, the relative error of the stresses and deformations 
of the concrete and reinforcement is less than 5 %. 

3. When the number of integration steps is equal 
to twenty and the coefficient k of formula (25) is equal to 
k=10, the relative error of specific creep of the above men-
tioned reinforced element, is less than 1.5%. 

4. In some cases the specific creep of layered 
composites can be higher than the highest specific creep of 
the layers materials. 

5. The creep function of some layered composites 
at a given moments of time can be greater than the highest 
creep function of the layers of materials.  

6. When a layered composite is under constant ax-
ial loading, its creep deformations settle more quickly than 
the longest settling time of the creep deformation of the 
layered materials of this composite and more slowly than 
the shortest settling time of the creep deformation of its 
layers. 
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D. Zabulionis, A. Gailius 

 
SLUOKSNIUOTŲJŲ KOMPOZITŲ VALKŠNUMO 
PARAMETRŲ SKAITINIS MODELIAVIMAS 
 
R e z i u m ė 

 
Darbe pasiūlyta sluoksniuotųjų kompozitų tiesinių 

valkšnumo parametrų modeliavimo metodika sluoksnių 
sujungimo kryptimi. Parengtoji metodika paremta skaitiniu 
integralinės Volterra antros eilės lygties integravimu prieš 
integralo ženklą iškeliant įtempių vidurkį. Žinomą tikslų 
analizinį dvisluoksnio kompozito deformacijų apskaičia-
vimo metodą palyginus su skaitiniu, nustatyta, kad su-
darytu skaitiniu metodu galima tiksliai apskaičiuoti 
sluoksniuoto kompozito deformacijas. Nustatyta, kad kai 
kuriais atvejais kompozito valkšnumo matas gali būti di-
desnis už kiekvieno atskirai paimto sluoksnio medžiagos 
valkšnumo matą, taip pat kai kuriais atvejais, tam tikrą 
trumpą laiko tarpą, kompozito valkšnumo funkcija gali 
būti didesnė už kiekvieno atskirai paimto sluoksnio me-
džiagos valkšnumo funkciją. 
 
 
D. Zabulionis, A. Gailius 
 
NUMERICAL MODELING OF CREEP FUNCTIONS OF 
LAMINATED COMPOSITES 
 
S u m m a r y 
 

This research paper proposes the simulation 
method of linear creep parameters of laminated composites 
when the composite is loaded along the joint of the layers. 

The developed method is based on the numerical integra-
tion of the second kind Volterra integral equation taking 
out the stress mean before the integral. Having compared 
the creep deformations calculated by the known exact ana-
lytical solution and by the proposed method it has been 
determined that the proposed method allows to calculate 
creep deformation of composite materials fairly close to 
the exact value. It has been determined that in some cases 
the specific creep of a composite may be higher than the 
specific creep of each layer of the composite material  
Also, in some cases for a certain short period of loading 
time the creep function of a composite may be higher than 
the creep functions of each layer of the composite material. 
 
 
Д. Забулёнис, A. Гаилюс 
 
ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПАРАМЕТРОВ 
ПОЛЗУЧЕСТИ СЛОИСТЫХ КОМПОЗИТОВ 
 
Р е з ю м е 
 

В статье приведена методика численного мо-
делирования параметров линейной ползучести слои-
стых композитов, когда нагрузка действует вдоль сло-
ев. Предложенная методика основана на численном 
интегрировании интегрального уравнения Волтерра 
второго рода, когда перед интегралом выносится сред-
нее значение напряжения. После сравнения результа-
тов полученных с помощью предложенного метода и 
известного аналитического решения в явном виде, ус-
тановлено, что приведенная методика позволяет точно 
рассчитать деформации ползучести слоистых компози-
тов. Установлено, что в некоторых случаях мера пол-
зучести слоистого композита может быть больше меры 
ползучести материала каждого отдельно взятого слоя, 
а также в некоторых случаях в короткий промежуток 
времени функция ползучести слоистого композита 
может быть больше функции ползучести материала 
каждого отдельно взятого слоя. 
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