ISSN 1392 - 1207. MECHANIKA. 2007. Nr.3(65)

Numerical modelling of creep functions of laminated composites

D. Zabulionis*, A. Gailius**

*Vilnius Gediminas Technical University, Saulétekio al. 11, 10223 Vilnius, Lithuania, E-mail: dariusz@st.vtu.lt
**Vilnius Gediminas Technical University, Saulétekio al. 11, 10223 Vilnius, Lithuania,

E-mail: AlbinasGailius@yahoo.com

1. Introduction

Fibered or reinforced as well as layered structures
and their elements are widely used at present. Specific
creep and creep characteristic which characterize viscoe-
lastic properties of composite materials can be determined
by modelling a composite element as a layered material
loaded by axial force. However, it is possible to model like
this not only the above-mentioned composites, but also
concrete [1] and other composites [2, 3]. The limiting val-
ues of composite mechanical properties can be obtained by
modelling the composite as a layered element loaded in a
longitudinal and perpendicular direction to the joints of the
layers. These limits are known as the Reus-Voight estimate
[2, 3]. However, by modelling a composite as a layered
element loaded in longitudinal direction to the joints of the
layers it is also possible to determine the upper limits of
creep characteristics and a specific creep of the composite.

A lot of methods have been developed that allow
to forecast the elastic properties of composites according to
the properties of the components, i.e. shape and joining of
the layers: elasticity and shear modulus, coefficients of
thermal and hygral expansion [2-7]. There are much fewer
methods allowing to forecast the viscoelastic properties of
materials. Many investigators model the composite viscoe-
lastic properties by using operational methods of calculus
[3, 8-14]. These methods are based on the equality of con-
volution of two functions to the product of mapping of
these functions according to Laplace or two-side Laplace
transformation. By application of this rule for integral
equation we get operational equations with operators. In
these equations instead of stress, deformation and specific
creep or creep characteristic functions we have maps of
these functions. Upon putting these operators into the
known equations whose purpose is to calculate the elastic
mechanical properties of composites we get analytical ex-
pressions of the function map of viscoelastic mechanical
properties of composite materials. After finding the origi-
nals of these function we get an analytical expression of
viscoelastic mechanical properties of the composites.
When expressions of maps are complex, it is very difficult
to obtain the originals of these maps. It may happen that
the originals of these maps in explicit function forms do
not exist [3,15]. In this case viscoelastic properties of com-
posites can be obtained numerically by maps of functions.
A number of methods have been developed for this pur-
pose [3,15]. In practice we can obtain the originals of maps
in explicit function forms when the expressions of the
maps are simple. This is possible only if creep functions of
the components of the composite are very simple.

Other authors model the viscoelastic deformations
of layered composites by using the age-adjusted effective
modulus method [16]. Equations obtained by using this

method are with integral terms. Solution of these equations
is complicated because integral terms include stress mem-
bers which depend on time. Therefore, application of this
method for engineering calculation may be complicated.

The finite element method is a universal method
for modelling mechanical properties of composites [17,18].
It is also used to determine the precision of calculation of
analytical methods which are used in modelling the me-
chanical properties of composites [9, 11, 19, 20]. However,
due to its complexity, the method of labour expenditure of
modelling and analysis of results of the finite elements
may be inconvenient for engineering applications. In prac-
tice, it is important to have simple calculation methods
allowing to make precisely calculations of viscoelastic
properties of composites.

Therefore, we offer a relatively simple and practi-
cal calculation method which allows to model the viscoe-
lastic properties of composites when the loading is applied
by parallel to the joint of the layers.

2. Main dependences

A multilayered composite (Fig. 1) loaded with ax-
ial force N was studied. The directions of layers are paral-
lel to the direction of loading.
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Fig. 1 The design scheme of a layered composite element —
a and layered element cross-section — b

The linear creep deformation of composite can be
described by the creep function which is widely used in the
creep theory

o.(tt)= L+
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where E_ (t)), C,(t.t,) and ¢, (¢,4,) are elastic modulus,
specific creep and creep coefficient of the layered compos-
ite at time moment #, respectively. The creep coefficient
and specific creep are related to the well-known relation-
ship: ¢, (t.t,) = E(t,)C(¢,%,) . According to Eq. (1), if we
know two different functions which characterize creep
function, i.e. E, (¢,) and C,(t,2,), or E_ (¢,) and ¢, (2,¢,),



or C,(t,t) and ¢, (t,¢,), it is very easy to obtain the third
unknown member.

If the stresses remain unchanged over time, then
the composite deformation and stresses are related by the
following equation

N (fo)
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where o, (¢,) is the stress of composite, N (z,) is the axial

loading force applied to the composite element at time ¢,
A, is the area of the composite cross-section (Fig. 1). It is
not difficult to find the creep function and relationships of
specific creep from Eq. (2)
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Therefore, if we know the composite deforma-
tions &.(t,ty) in a given time period, we can find the specific
creep C.(,%y) of the composite. The purpose of the follow-
ing investigation is development of a method for calculat-
ing the deformations of axial compressed layered compos-
ite in (z,Z) time interval.

The proposed calculation method is based on the
following assumptions:

1. the joints of the layers are absolutely rigid and all la-
yers deform together;

2. the uniaxial stress state of the composite and the lay-
ers is assumed;

3. the layered composite does not bend and deformation
arises only on axial strain;

4. the linear creep deformations of each separate layer
of the composite and of the whole composite are as-
sumed;

5. the creep functions of the layers under tension and
compression are even.

If the stresses do not exceed a certain limit, the
fourth assumption can be applied to many materials such
as concrete, mortar, masonry, many plastics, wood, gyp-
sum and etc.

When a composite is under uniaxial stress state,
the axial deformation &, (f) of the layers at the moment ¢ of

time can be described by the following integral equation
[3,14,21]
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where n is the number of layers, o, (f) and &, (¢,7) are

stress and creep functions of the ith layer. After integration
of the Eq. (5) into parts we get
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where E, (f) is the elastic modulus function of ith layer.

Since the layers of the composite deform together, the de-
formation of each layer is equal to the axial deformation of
the whole composite

&) =¢.() ™

where ¢, (f) is axial deformation of the composite at ¢

moment. The sum of forces of all layers is equal to the
external axial loading. Generally, this loading varies with
time

> 4, (=N ®

where 4; is the area of the ith layer. Taking into account
relationships (5)-(8) the system of equations interconnect-
ing the deformation and stresses of the composite is de-
signed
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This system has n+1 unknowns and is made up of
n+1 equations, that is why it can be solved by well-known
integral equation solution methods. It can be solved by
taking out the mean of the stress function before the inte-
gral [22 - 25]. The n first equations of the Eqs. system (9)
can be written as follows
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By using the mean-value theorem for two func-
tions [22 - 25], the Eq. (10) can be rewritten as follows
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where 0;A1;,1;.1) is the mean value of the the stress function
of the ith layer in time interval (#,¢.,). However, in this
case, beside the others, there is an additional requirement
for stress functions, i.e. that the stress function in the inter-
val of integration should not change its sign. This causes
difficulties in the application because the integration inter-
vals should be chosen so that the stress function sign does
not change. It is assumed that for a very short time period
(t-t.1) the mean of the stress functions is equal to the ar-
ithmetical stress mean value [22]
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After putting (12) into (11) and integration of the
obtained relationship according to the Newton-Leibniz rule
we get

(12)
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After an algebraic transformation, taking into ac-
count the condition (8), also that r=t,, we obtain the final
system of recursive linear equations which relates the
stresses in layers and the axial forces
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The system of Egs. (14) can be written in the ma-
trix form as follows

Qe (,)=c(,) (15)
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Here Q; and u;, are calculated as follows
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When the determinant of the Egs. systems (14)
and (15) is not equal to zero, i.e. |Q(z,) # 0, these systems

have a single solution.

By solving the Egs. systems (14), (15) or (19)
when m=1, m=2, m=3, ..., m=z we obtain the stress
and strain values at ¢, £, £, ..., ¢, time moments. The stress
oi(ty) at initial time moment ¢, can be obtained by using the
dependence [26]

o,(t,)=E, (to)N(to)/B () (17)

where B is the compressive stiffness of the layered com-
posite calculated according to the formula [26]

B(t) =Y E ()4 (18)

In order to calculate the (14) or (15) equations
systems it is more convenient to use computer programs
which solve the linear equation systems in the matrix form.

Instead of the recursive matrix (15), it is possible to form a
single matrix the solution of which gives us the strain of
the composite and the stresses of the layers. For this pur-
pose the Egs. system (14) is written down in the following
matrix form

M(,)]s(,)=d(,) (19)

here M(z,) , s(t,) , and d(z,) are
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here [Q(#,)] and 6(z,) are the same as in (15), while
[V(tk,tj)], and y(z,) are
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here v, (1,.1,)=1/2[6, (t;.1,,1) = 6, (t.1,)]

At the time moment ¢ the elastic modulus of the
layered composite along its layers can be obtained by using
upper bound of Reuss’ and Voigt’s estimate or by using
the so called rule of mixture [2-4]
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where V; is the volume fraction of the ith layer. By the
given assumption the expression (20) is exact. For a
greater convenience of calculation, the relationship (20)
can be expressed in the following form

EO-YEO4 >4 @

The elastic modulus of many materials, with re-
spect to time, can be described by the equation

E(t)=E,(1-pe™) (22)

where E,, is the elastic modulus when #—o0; f and a are
empirical values. By putting (22) into (21) and collecting
of term, we obtain the following expression of elastic
modulus of the layered composite along the layers



E.()=E., (1 -BLi AE,p eJ 23)

oo i=l

where £, = iA,.Em/i 4, B, = Zn:AiEl.yoo
i=1 i=1 i=1

If we know the elastic modulus of a layered com-
posite and the total deformation, we can calculate the spe-
cific creep of the composite according to the Eq. (4). It
should be noted that, according to the above-mentioned
methods, deformations are found numerically and that is
why evaluation of the specific creep by applying Egs. (14),
(15) and (19) is found only at the loading moment #,. If the
modulus of elasticity and specific creep of layered materi-
als vary with respect to time, in order to calculate specific
creep C, (t,7) of a multilayer composite for different load-
ing moments, ie. C (), C.(t,t,), ..., C.(t,t,,), we
have to calculate the specific creep according to Eqgs. (14),
(15) and (19) by taking the loading start #,> t,> ;> ... > ¢,
. at time moments. The obtained numerical values of a
composite specific creep can be approximated by analyti-
cal functions. According to method [27] it is possible to
approximate the specific creep and relaxation coefficients
of a non-aging composite. According to methods [28-30] it
is possible to determine the specific creep of an aging com-
posite.

3. Analysis of results

The proposed method was compared to the known
analytical method [31] which allows calculation of defor-
mation of a two-layered composite. According to this
method, the creep function of layers is as follows

S5, (t—1,)=1/E,+C, (1-e7™"),i=12 (24)

Fig. 2 plots the specific creep of a two-layered
composite and its layers with respect to time, calculated
according to exact analytical method [31] (dotted curve)
and numerically according to (14) - (19) (diamond-shape
dots) when the number of integration steps are equal to
m=1. Fig. 2 a) plots curves when E;=10 GPa, E,=3 GPa,
C,,;=1-10” Pa, C,.,,=3-10” Pa, ,=0.2 and 7,=0.4, whereas
Fig.2b) plots curves when E;=200 GPa, E,=30 GPa,
Crsi=0.4-107Pa, C,,,=3-10" Pa, 7,=0.2, 7,=0.4. In both
cases the axial loading and areas of the layers are as fol-
lows: N=0.2 Pa, 4,=4,=0.1 m>. As we can see from Fig. 2,
only one integration step is enough to calculate the two-
layer composite deformations rather precisely.

In numerical calculations based on Egs. (14) -
(15), it is very important to select such steps of time inter-
vals which, on the one hand, would ensure that the error of
integration would not be too large, and, on the other hand,
would cause as few iterations as possible. When loading
remains constant over time, stresses in layers change most
quickly during the initial stage of loading, later stresses in
layers change more slowly, and in the end they become
steady. Therefore, when we apply rational calculus, the
width of steps should depend on the stress changes. The
simplest method to select the width of an integration step
more rationally is to divide the measurement period into
intervals of certain uneven width according to a preset rule.
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Fig. 2 Specific creep of two different composites calcu-
lated by the analytical method [31] - / and by the
numerical method according to Egs. (14)-(19),
when the number of steps m=1, 2, 3 and 4 are spe-
cific creep of the first and second layer respectively.
A more detailed explanation is given in the text

The width of these intervals gradually increases from the
shortest at the beginning of the loading to the longest at the
loading end. The simplest dependency for calculation of
the width of integration steps can be as follows

t=ty+t, (m/ ), j=12...m (25)
where m is the number of steps, ¢, is the age of material at
the loading, degree k= 1,2,3,...,n. It is clear that the bigger
is k, the shorter are the initial time periods of loading and
the longer are the final periods of loading.

Fig. 3 shows the convergence of a relative error of
creep deformations of an axial compressed reinforced con-
crete element to 0 depending on the number m of integra-
tion steps and the degree & of the equation (25). The rela-
tive error of composite specific creep 4C,(m) and stress
Ao (m) of its layers can be calculated in percents by the
following relationship

C.  (tt)-C, 1,1
ACC (m) — c,m ( 0) ¢,500 ( 0) 100
Cc,SOO (t’ tO)

(t.t) - O 500 (t.)
O 500 (t.4)

(26)

100,i=1,2

Ao, (m) = @7

where C..(tt0), Ces00(t,to), Tim(tto), iso0(t,to) are specific
creep of the composite and stress of its layers calculated
according to Egs. (14) and (15) for m and 500 (i.e. m=500)
iterations. The creep function of concrete was taken ac-
cording to EC2 [32]. The parameters of this function are as
follows: relative air humidity RH=80%, cement hardening
coefficient - s=0.25, average compressive strength of con-
crete - f.,=38 MPa, scale coefficient - #;=133. The second
layer - steel reinforcement, E,= =200 GPa. Ratios of the
cross-section areas of the layers - A4,/4,=0.03. The age of
the concrete at loading moment #=1 day, the duration of
the loading - =100 days.
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Fig. 3 Convergence of the relative errors of specific creep
(a) and the stresses of the layers g,(m) and o,(m) (b)
of an axially compressed reinforced concrete ele-
ment to 0 depending on the number m of integration
steps and the degree k£ of equation (25). / - when
k=1;2 - when k=2; 3 - when k=3; 4 - when k=5; 5 -
when k=7; 6 - when k=10; 7, 8 - when k=5; 9, 10 -
when £k=7; 11, 12 - when k=10. Other explanations
are given in the text

As we can see from Fig. 3, when the degree of
equation (25) is equal to &=5, 7 or 10 and the number of
integration steps is equal to m=4, specific creep of the
composite and stresses of its layers, calculated according to
proposed methods, are fairly accurate for practical applica-
tions. The relative error of calculation in this specific case
did not exceed 2.23 %.

Fig. 4 shows the convergence of relative errors of
specific creep and the stresses of layers of a similar ele-
ment to 0, depending on the loading duration ¢. These rela-
tive errors were calculated by Egs. (26) and (27). In this
case it was taken that number of integration steps is equal
to m=4 (Fig. 4, a)). When the duration of loading is equal
to 5000 days, the relative error of calculation does not ex-
ceed 2 %. In practical calculations of reinforced concrete
elements it is possible to assume that 5000 days of loading
duration are equal to infinity. Therefore, when the number
of integration steps is equal to m=4 and the degree k of
formula (25) is equal to £=10, the strain and the stresses of
a reinforced concrete element can be calculated rather ex-
actly according to Egs. (14), (15). In the case when the
number of integration steps is equal to m=20 (Fig. 4, a)),
the relative error of specific creep of composite does not
exceed 1.05%.

The performed analysis shows that the elasticity
modulus of a composite is higher than the lowest elasticity

modulus of a layer and smaller than the highest elasticity
modulus of a layer, i.e. (min E(?)) < E.(f) < (max E(?)). If
the specific creep of a composite is higher than the lowest
specific creep of a layered material and smaller than the
highest specific creep of layered material, i.e.
(min C{(t,7)) < C(t,7) < (max C(t,7)), the creep function of
the composite will be between the lowest and highest creep
functions of the layered material, ie.
(min Jd(¢,7)) < J.(t,7) < (max d,(¢,7)), (Fig. 2, curves 1, 2, 3).
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Fig. 4 The relative error of specific creep and the stresses
of the layers of an axially compressed reinforced
concrete element depending on the duration of load-
ing when k=10 and m=4 - a or when m=20 - b. / and
2 are the relative errors of the stresses of the 1-st
and the 2-nd layers respectively, 3 is the relative er-
ror of composite specific creep. Other explanations
are given in the text

Another possible variant is that at a certain mo-
ment of loading specific creep of the composite will be
higher than the highest specific creep of the layered mate-
rial, i.e. (max Cy(t,7)) < C.(t,7) although J.(z,7) < max J(t,7).
Such a possibility is given in Fig. 5, when E;=10 GPa,
Ex=1 Gpa, Cp,i=C,,,=1:10" Pa, 71=0.2, y,=0.8, areas of the
layer 4,=4,=0.1 m”.

As we can see in Figs. 2 and 5, the creep deforma-
tions of the composite under constant loading always settle
during a shorter period of time than the longest settling
time of creep deformations of a composite material and
longer than the shortest settling time of creep deformation
of the same material.

The given examples show that if we select the
properties of composite layers improperly, the creep and
total deformations of a composite may be significantly
increased and in this way its long term behaviour may be
worsened.
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Fig. 5 Specific creep - a) and creep function - b) of a two
layer composite calculated by numerical method ac-
cording to Eqgs. (14) and (15) - 3, I and 2 are creep
functions and the specific creep of the 1st and the
2nd layers respectively. The shape of the creep
functions of the layers is Eq. (24), more details are
given in the text

4. Conclusions

1.Having compared the known analytical method
to the proposed numerical method, it was determined that
the developed numerical method allows calculating the
deformations of a layered composite element and stresses
of its layers fairly precisely.

2.1f the creep function of concrete is according to
EC 2, the number of integration steps is equal to four and
the coefficient k of formula (25) is equal to k=10, the rein-
forced concrete is also under constant axial compressing
loading, the relative error of the stresses and deformations
of the concrete and reinforcement is less than 5 %.

3.When the number of integration steps is equal
to twenty and the coefficient £ of formula (25) is equal to
k=10, the relative error of specific creep of the above men-
tioned reinforced element, is less than 1.5%.

4.In some cases the specific creep of layered
composites can be higher than the highest specific creep of
the layers materials.

5.The creep function of some layered composites
at a given moments of time can be greater than the highest
creep function of the layers of materials.

6.When a layered composite is under constant ax-
ial loading, its creep deformations settle more quickly than
the longest settling time of the creep deformation of the
layered materials of this composite and more slowly than
the shortest settling time of the creep deformation of its
layers.
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D. Zabulionis, A. Gailius

SLUOKSNIUOTUJU KOMPOZITU VALKSNUMO
PARAMETRU SKAITINIS MODELIAVIMAS

Reziumé

Darbe pasitilyta sluoksniuotyju kompozity tiesiniy
valk§numo parametry modeliavimo metodika sluoksniy
sujungimo kryptimi. Parengtoji metodika paremta skaitiniu
integralinés Volterra antros eilés lygties integravimu pries
integralo Zenkla iSkeliant itempiy vidurki. Zinoma tiksly
analizini dvisluoksnio kompozito deformaciju apskaicia-
vimo metoda palyginus su skaitiniu, nustatyta, kad su-
darytu skaitiniu metodu galima tiksliai apskaiCiuoti
sluoksniuoto kompozito deformacijas. Nustatyta, kad kai
kuriais atvejais kompozito valkSnumo matas gali biiti di-
desnis uz kiekvieno atskirai paimto sluoksnio medziagos
valkSnumo mata, taip pat kai kuriais atvejais, tam tikra
trumpa laiko tarpa, kompozito valk§numo funkcija gali
biti didesné uz kiekvieno atskirai paimto sluoksnio me-
dziagos valk§numo funkcija.

D. Zabulionis, A. Gailius

NUMERICAL MODELING OF CREEP FUNCTIONS OF
LAMINATED COMPOSITES

Summary
This research paper proposes the simulation

method of linear creep parameters of laminated composites
when the composite is loaded along the joint of the layers.
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The developed method is based on the numerical integra-
tion of the second kind Volterra integral equation taking
out the stress mean before the integral. Having compared
the creep deformations calculated by the known exact ana-
Iytical solution and by the proposed method it has been
determined that the proposed method allows to calculate
creep deformation of composite materials fairly close to
the exact value. It has been determined that in some cases
the specific creep of a composite may be higher than the
specific creep of each layer of the composite material
Also, in some cases for a certain short period of loading
time the creep function of a composite may be higher than
the creep functions of each layer of the composite material.

J1. 3a0ynénuc, A. 'anroc

UNCJIIEHHOE MOAEJIMPOBAHUE ITAPAMETPOB
MOJI3YUECTH CJIIOUCTBIX KOMIIO3UTOB

PezomMe

B craThe mpuBeneHa METOIMKA YHCICHHOTO MO-
JIeNMpOBaHUs NAapaMeTPOB JIMHEHHOM IOJ3y4eCTH CJIOU-
CTBIX KOMIIO3UTOB, KOT/Ia Harpy3ka JIeiicTByeT BJOJb CIIO-
eB. IIpeutojkeHHass METOAMKAa OCHOBAaHA Ha YHCICHHOM
HUHTETPUPOBAaHUM HHTETPaJbHOIO ypaBHeHHs Bonteppa
BTOPOTO PoJia, KOTJa Mepesl MHTErpajloM BBIHOCUTCS Cpejl-
Hee 3HaueHHe HampspkeHus. Ilocie cpaBHeHHs pe3ynbTa-
TOB IOJIyYEHHBIX C MOMOIIBIO MPENIOKEHHOIO METOAA U
H3BECTHOTO aHATMTUYECKOIO PEIICHUS B SBHOM BUJE, yC-
TaHOBJICHO, YTO IPHUBEJCHHAS METOJHUKA TTO3BOJISIET TOYHO
paccunTath AeOpPMAIMN MON3YIECTH CIOUCTBIX KOMITO3H-
TOB. YCTaHOBJIEHO, YTO B HEKOTOPHIX CIy4asx Mepa MHoJj-
3Y4ECTHU CIIOUCTOTO KOMITO3MTa MOXKET OBITh OOJIbIIIE MEPHI
MOJI3Y4ECTH MaTepualla KakJoro OTJENbHO B3STOrO CIOS,
a TaKXke B HEKOTOPBIX CIy4asX B KOPOTKUH MPOMENKYTOK
BpeMeHN (QYHKIHS IOJ3Yy4YEeCTH CJIOMCTOrO KOMIIO3UTa
MOXeET ObITH Ooblie (QyHKIMH IONI3ydecTH MarepHhaja
Ka)XJJOTO OTJIENTLHO B3SITOTO CIIOA.
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