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1. Introduction 

 

The knowledge about granular materials is rather 

limited compared to the respective information on the sol-

ids, while a unified theory encompassing all granular mate-

rial phenomena has not been created yet [1].  

Despite the fact that granular material is the dis-

continuous media its behavior is commonly described by 

the continuum approach. Consequently, the definition of 

stresses in granular material is a controversial topic of me-

chanics [2, 3]. In particular, some researchers (e.g. [4]) 

claim that the stress tensor is asymmetric and the coupled 

stresses responding to the material instabilities, such as 

shear bending, exist. Others (e.g. [5]) affirm that stress 

asymmetry is not bound or can be negligible in practical 

predictions.  

The simplified continuum models are used to pre-

dict the pressure fields, especially those acting on the walls 

but they have serious drawbacks in evaluating the effects 

occurring on the particle level. Furthermore, the experi-

mental stress investigations within the granular material 

are also complicated, requiring non-invasive and precise 

contact force measurements [6, 7]. An alternative is to per-

form DEM-based [8] simulations and then average the 

particle contact forces and their contact locations over the 

particular volumes. Such numerical studies based on the 

linkage of microscopic variables in discrete concept to the 

macroscopic variables in continuum approach can be found 

in e.g. [3], [9, 10].  

In the current research, the numerical stress analy-

sis of granular material, based on discrete particle model 

involving laws of single particle contact mechanics and the 

effects of friction as well as viscous damping forces is per-

formed. Verification of the obtained results and their com-

patibility with well-known continuum-based indications 

are also demonstrated. 

 

2. Theoretical background  

 

Let us consider the volume V of a granular mate-

rial filled with N number of spheres. Some of them can be 

subjected to external forces applied from the exterior, 

while internal forces acting on the particles are represented 

by the particle contact forces. From the experimental in-

vestigations (e.g. [6, 7]), it is well known that the force 

amplitude fluctuates from contact to contact. From theoret-

ical point of view, it is also well known (e.g. [5]) that the 

macroscopic mean stress tensor can generally be derived 

from the microscopic quantities of discrete particle, such as 

the contact force distribution and the contact location, as 

their complex homogenization over the volume V 
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where c
F  and c

l  are contact force and contact position 

vector at the contact c while i (j) denotes the ith (jth) com-

ponent of these vectors over the range i,j=1, 2, 3 or i,j≡x, y, 

z. 

In general, the symmetrical stress tensor 
ij  de-

fines the three-dimensional state of stresses which act on 

three mutual perpendicular planes at a given point of gran-

ular material.   

Now let us consider the assembly of granules 

bound by rigid walls into a cuboid shape. The particles 

contacting with the walls cause wall reaction forces that 

can be treated as external actions on the granular assembly. 

The assembly of particles subjected to the external forces 

is in equilibrium, when each particle subjected to the ac-

tion of internal (contact) forces is in equilibrium. There-

fore, the stresses, acting on cuboid faces, can be simply 

found if the corresponding particle-wall reaction force vec-

tors wc
R at the contact cw are known. They are as follows 
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where i
A  is the ith face area of the cuboid.  

Since Eq. (1) substantially produces averaged 

stresses in the centre of the volume, averaged reaction 

forces must also be used in Eq. (2). In these formulations, 

the first subscript refers to the face of cuboid on which the 

stress acts and the second subscript refers to the direction 

in which the associated force acts. 

Thus, the stresses resulted from their homogeniza-

tion in the given volume, according to Eq. (1) and those 

induced by wall reaction forces, according to Eq. (2), will 

be verified below.  

 

3. Numerical analysis 

 

The current numerical analysis is intended to: 

analyze stress distribution within granular material caused 

mainly by the granular material weight and friction; ex-

plore inaccuracies that can arise from the numerical im-

plementation of Eq. (1) or the continuum representation by 

a priori chosen amount of the discrete particles; evaluate 

the stresses obtained by Eq. (1) comparing them with those 

obtained by Eq. (2). The circumstances of the comparison 

are attributed to frictionless and frictional granular materi-

al. 
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3.1. The technique used 

 

Stress analysis of granular material involving dif-

ferent analysis techniques could be found in literature. For 

instance, Bardet [2] analytically investigated the reason for 

stress asymmetry in double and multiple layers, while La-

grange’s multiplier method, mainly based on statistical 

physics, was implemented by Evesque [11] in modeling 

the densifying of spherical granules. Nevertheless, the dis-

crete element method, introduced by Cundall and Strack 

[8] has been recognized as a more powerful and universal 

tool for such analysis. Therefore, the DEM technique 

based on [12-14] was implemented in the current simula-

tion and is briefly described below.  

Let us consider the kinematics and contact ge-

ometry of two spherical particles plotted in Fig. 1. 
 

 
 

Fig. 1 Contact geometry of the particles 

Two particles in contact, i and j, are defined by 

their positions xi and xj, representing the locations of the 

centres of gravity Oi and Oj (Fig. 1). Position of the parti-

cles is time-dependent. The particles are subjected to the 

translational velocities vi and vj, as well as the rotation ve-

locities wi and wj.  

In terms of DEM, the particles are treated as indi-

vidual objects with their own dynamical parameters (posi-

tion, velocity, etc.). Therefore, the dynamics of each parti-

cle can be defined by forces and torques acting on the par-

ticle and described by a system of dynamical equations 

within Newton’s laws 
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where xi, i are position vectors of the of the centre of 

gravity and orientation of the particle (Fig. 1), mi is the 

mass of the particle i (i = 1, …, N),  Ii is inertia moment of 

the particle, 
ijF  is inter-particle or particle-wall contact 

forces acting on the contact centre point Cij  (Fig. 1), 
cijd  is 

the vector specifying the position of the contact point Cij 

with respect to the centers of contacting particles (Fig. 1), 

g is the vector of gravity acceleration, while t is the time 

considered.  

Contact deformation of the particle i with respect 

to another particle j is approximated by representative 

overlap area in the vicinity of contact centre point Cij. 

Hence, the resulting contact force Fij arising from a visco-

elastic collision between particles i and j and acting on this 

point is expressed in terms of the normal and the tangential 

components 
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are the vectors of elastic and viscous damping forces nor-

mal to the contact surface;  is the power coefficient (for 

Hooke’s law,  = 1); E and  are the elastic modulus and 

Poisson’s ratio of particle material, hij is the overlap 

(Fig. 1), ijR  and ijm  are the normalized radius and nor-

malized mass, ijn  is the unit vector normal to the contact 

surface (Fig. 1); 
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as well as 
ij

v

ij,n

e

ij,n

dyn

ij,t
tFFF     are the vectors of static 

and dynamic friction forces acting in tangential to the con-

tact surface direction, 
ij

t  is the unit vector of tangential 

direction depending on tangential velocity (Fig. 1), 
ij,nv  

and 
ij,tv  are the normal and tangential components of con-

tact velocities depending on vi and vj, as well as wi and wj, 

γn and γt  are the viscous damping coefficients in normal 

and tangential directions.   

A detailed description of the above force models 

can be found in [12, 14]. 

Relating the stress tensor from Eq. (1) with 

Eq. (5) and relying on the similarity of the contact geome-

try outlined in ( 

Fig. 1), the equality of ij

c
FF   and cij

c
dl   are 

used in the current analysis.  

The time-dependent contact forces Fij are com-

puted at each time step by applying contact searching algo-

rithm described in [13]. Linkage of these forces with the 

particle dynamical parameters is performed by resolving 

Eqs. (3) and (4) by using 5th – order Gear’s predictor-

corrector scheme [12, 14].     

 

3.2. Description of the tests  

 

The tests performed involve numerical simulation 

of granular material behavior for frictionless and frictional 

particles. The material is considered as an assembly of 

N = 1980 particles. The values of the particle radii Ri, rang-

ing from 0.03 to 0.035 m, are generated by using uniform 

distribution. Total mass M of the material is fixed to be the 

same for frictionless and frictional particles and is equal to 

M = 143.7 kg. The main data on the visco-elastic granules 

are given in Table.  

The granular assembly is subjected to two-stage 

compaction in the defined size of the box. The first part 

involves particle compaction due to their free fall, while 

the second stage comprises particle compaction by the 

moving wall.  
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                                                                    Table 

Basic data on granules 
 

Quantity Symbol Value 

Density, kg/m3 ρ 500 

Poisson’s ratio  ν 0.30 

Elasticity modulus, Pa E 0.3∙106 

Shear modulus, Pa G 0.11∙106 

Friction coefficient μ 0; 0.3 

Normal viscous damping coefficient, 

1/s 

γn 60.0 

Tangential viscous damping coeffi-

cient, 1/s 

γt 10.0 

  

The creation of granular assembly starts from the 

particles falling due to the fixed gravity acceleration in the 

box (Fig. 2).  

 
Fig. 2 Behavior of the particles under the compaction 

caused by gravity (µ=0)  

For this purpose, the space above the box was di-

vided into cubic cells as an orthogonal and uniform 3D 

grid of 0.1 m size. Initially, at time t = 0, the particles were 

embedded into the centers of the cells and were free of 

contact. In order to mix up the particles during their set-

tling the initial particle velocities are artificially imposed. 

The fields of particle velocities were defined randomly by 

uniform distribution and variation of their magnitude over 

the range of 0-0.3 m/s. The frictionless particles behavior 

at the time instance, t=1 s, the size of the box and the sys-

tem of global coordinates are shown in Fig. 2. 

The end of the first stage of compaction is as-

sumed to be a quasistatic state of particles which under-

went negligible small velocities. The occurrence of a qua-

sistatic mode was controlled by the system’s kinetic ener-

gy.  

In order to slightly consolidate the settled material 

and to control numerically the changes in the volume of 

particles assembly, the particles compaction by the moving 

wall was adopted in the second stage. Thus, the theoretical-

ly assumed time instance of the quasistatic stage is fixed as 

the time of the second stage beginning. Consequently, a 

new time scale referred to as the initial time t = 0 was em-

ployed and all dynamical parameters of the particles ob-

tained at the quasistatic mode were assumed to be the ini-

tial conditions. The top wall motion was induced by im-

posing vertical velocity equal to vbc,z=-0.01 m/s. The dura-

tion of the second stage was assumed to be 1s, which lead 

to vertical deformation of the assembly equal to -9.2 o/oo 

and -8.6 o/oo for frictionless and frictional material, respec-

tively. 

 

3.3. Results and discussion 

 

Let us firstly consider the results obtained for fric-

tionless particles. This assembly of particles, for which the 

stress computations will be performed later is depicted in 

Fig. 3. The obtained structure of granules was captured at 

the end of the first compaction stage, while the color-bar 

depicted shows the inter-particle contact forces, 
 ji

ijF . 

These forces will be used to calculate stress tensor (1). 

 

 
Fig. 3 The assembly of particles (µ=0) and the particle 

forces (measured in N) 

In Fig. 3, the formation of material layers having 

different inter-particle contact force values is shown. The 

magnitudes of these forces at the top surface are much 

lower compared to those at the bottom, since these forces 

are caused by the weight of the granules. In the upper lay-

ers, these forces are distributed more uniformly, while the 

layers above the bottom wall are characterized by less-

uniformly distributed contact forces. 

The plots of vertical force equilibrium during the 

second stage of compaction (i.e. compaction by the mov-

ing wall) are shown in Fig. 4.   

 

 
Fig. 4 Forces vs time (µ=0) 

In the graphs of Fig. 4, equilibrium between the 

reactions of the top and bottom walls ( top
R33

 and bottom
R33

, 

respectively) and the force induced by the particles weight 

can be treated as satisfying. A relatively low artificial 

damping, (error, ranging from 0.4% to 3%), indicates that 

the particles assembly subjected to external (wall reaction) 

forces and internal (contact) forces is in equilibrium. 

Moreover, the visible time-fluctuation in reaction forces 

indicates that the assembly of frictionless particles is suffi-

ciently sensitive to external action produced by the moving 

wall. On the other hand, the time fluctuation of wall reac-

tion forces is related to the wave of inter-particle contact 

force propagation within the material.  

The obtained horizontal reaction averaged over all 

vertical walls (  lateralR41 ) is quite close to the vertical 



 15 

reaction produced by horizontal walls, since the average 

area of vertical walls is two times greater than the area of 

the bottom in the current simulation (Fig. 4).  

At time instance t=1s, the average stress tensor (in 

Pa) computed by Eq. (1) in the whole volume of the as-

sembly shown in Fig. 3 is as follows 



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













1637.0-4.316.6

4.31550.2-3.5

16.63.51663.1-
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As it can be seen, the values of shear stresses are 

sufficiently low, but not equal to zero, while three normal 

stresses are approximately equal, showing the fact that the 

assembly of frictionless particles is subjected to near-

hydrostatic pressure. Negative sign of normal stress de-

notes the material compression. 

The obtained nonzero shear stresses are mainly at-

tributed to a relatively small number of particles used in 

simulation and produce a certain friction effect resulted 

from the particle coordination peculiarities. It should be 

expected, that, with the increase of the particles number the 

difference between the components of normal stresses 

could be smaller, covering zero shear.   

The graphs comparing normal stresses computed 

by Eq. (1) and Eq. (2) are plotted in Fig. 5.  

 

 
 

Fig. 5 Normal stresses vs time in frictionless granular ma-

terial. Thin lines – Eq. (1), bold lines - Eq. (2) 

As it is shown in Fig. 5, there is a good coinci-

dence between normal stresses homogenized in the given 

volume by Eq. (1) and those produced by the averaged 

wall reactions according to Eq. (2). The difference in stress 

33
 , reaching up to 6%, is attributed to the above men-

tioned friction effect. 

Let us consider the results obtained for granular 

material which has the friction, µ=0.3. The obtained struc-

ture of the assembly is shown in Fig. 6. By comparing the 

particle forces depicted in Fig. 3 and Fig. 6, it can clearly 

be indicated that frictional material has non-uniform force 

distribution in the assembly. This means that some of the 

particles are subjected to higher contact forces than their 

neighbours. The observed bulk volume of the frictional 

assembly is greater than the volume of frictionless materi-

al. The linked stress arches that form between the particles 

lead to increasing in the bulk volume and thus increase the 

overall porosity of the assembly. 

The plots of vertical forces for frictional material 

are shown in Fig. 7. 

These graphs show the well-known fact that fric-

tional material transfers weight toward vertical walls via 

friction forces. The difference between vertical reactions of 

the top and bottom wall versus material weight indicates 

that the part of about 10% of the material weight is trans-

mitted to the vertical walls by its shear forces. This portion 

is quite small due to a sufficiently small size of the model 

used. It can also be seen, that there is no fluctuation of the 

reaction forces in time, what shows that the frictional par-

ticles are not sensitive (opposite to frictionless particles) to 

the given external action produced by the moving wall.  

 

 
 

Fig. 6 Assembly of particles (µ=0.3) and the particle forces 

(measured in N)  

 
 

Fig. 7 Forces vs time (µ=0.3) 

At the time instance t=1 s, the average stress ten-

sor (in Pa) homogenized by Eq. (1) in the volume of fric-

tional particles’ assembly shown in  

Fig. 6 is as follows 

 

-1299.80 0.423 -0.413

0.221 -1284.66 -21.43

-0.422 -22.51 -1516.53

ij

 
 


 
  

σ   

Since the stress tensor (1) is symmetric, any com-

puted asymmetry in 
ijσ  should be interpreted as an inaccu-

rate calculation or the lack of static equilibrium. The ob-

tained stress values indicate that the symmetry in stress is 

effectively satisfied. The relatively small inconsistence is 

found for stresses 12
σ  and 21

σ . This could also be attribu-

ted to the assembly thinness as was pointed out in [2]. In 

addition, the condition 221133    suggests that ac-

tive stress state occurs after the first stage of compaction 

[15].  

The graphs comparing normal stresses computed 

by Eqs. (1) and (2) (bold lines) in frictional granular media 

are plotted in Fig. 8.  

Fig. 8 shows good matching of normal stresses 

homogenized in the given volume by Eq. (1) and those 

produced by the averaged walls reaction for frictional par-

ticles. The difference up to 3% is mainly referred to the 

stress 33
 .  
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Fig. 8 Normal stresses vs time in frictional material. Thin 

lines – Eq. (1), bold lines - Eq. (2) 

It is very difficult to make accurate stress meas-

urements within the bulk mass of the material by experi-

ments. Nevertheless, there are continuum-based indications 

about the distribution of stresses within granular material. 

Verifying these assumptions, let us now consider the dis-

tribution of stresses within granular material obtained nu-

merically. 

For the stress derivation within the granular mate-

rial, the whole volume was divided into representative 

spheres, while microscopic quantities of the particle within 

these spheres were homogenized by using Eq. (1). The 

volume of the material within a given sphere was defined 

by excluding particle overlaps, while the volume of the 

representative sphere adjacent to the wall was also deter-

mined, relying on the sphere-wall intersection geometry. 

The computed stress tensor components were then dis-

played on a spatial grid. This was made by using a three-

dimensional cubic spline interpolation/extrapolation pro-

cedure, allowing computing the values of spatial stress 

function on the intermediate and out-of-the range points of 

the grid. The obtained distribution of normal stress 33
  

within the frictional granular assembly is presented in 

Fig. 9. The midsection stress was captured at the end of the 

first stage of compaction.  

As shown in Fig. 9, the normal stress 33
  increas-

es with the increase of the material depth, z, since it is 

caused by the material weight. Moreover, at any vertical 

cross-section the computed )(33 z  is nonlinearly depend-

ent on material depth z indicating that particles friction 

forces transmit the material weight towards vertical walls. 

The quantitative illustration of this, considering wall reac-

tion forces can also be found (Fig. 7).   

 
Fig. 9 Distribution of 33

  in frictional granular material 

(µ=0.3) 

The distribution of normal stresses (Fig. 9) has a 

convex shape with peak values at the centre and lower val-

ues at the wall planes due to the increase of shear stress 

toward the walls. In particular, the obtained convex shape 

of 33 is well-coincident with the asymptotic stress distri-

bution found by Drescher [16] by using the method of 

characteristics in the analysis of hopper wall pressure.  

The eigenvalues, as well as eigenvectors, of stress 

tensor (1) were also analyzed. The eigenvalues represent 

principal stresses, while eigenvectors denote orientations 

of the planes, on which the principal stresses act (see 

sketch on Fig. 10). The trajectories of the principal stress 

1
 represented as eigenvectors n1 are plotted at the end of 

the first compaction stage in Fig. 10. 

 

 
 

Fig. 10 Trajectories of the principal stress 1
  (µ=0.3) 

From the continuum analysis [16], it follows that 

for the corresponding active stress state the trajectories of 

1
  are approximately vertical with a slight bending to-

wards the walls due to shear. The obtained numerical re-

sults shown in Fig. 10 are effectively consistent with this 

indication.  

 

4. Concluding remarks 

 

It is very difficult to make experimentally accu-

rate stress measurements within the bulk mass of material. 

Consequently, a discrete particle model based on inter-

particle contact forces with laws of classical Newton’s 

mechanics was applied to stress numerical analysis in 

granular material. The macroscopic stress tensor was ho-

mogenized by Eq. (1), taking into account microscopic 

quantities of particles, and then comparing it with the nor-

mal stresses produced by the averaged wall reactions by 

Eq. (2). The accuracy of these results was satisfactory. 

After verification, the obtained stresses were examined in 

terms of well-established assumptions of the continuum 

mechanics.  

In particular, the contribution of friction forces 

(produced by a discrete particle model) on bulk material 

weight transmitted toward vertical walls was revealed by 

the wall’s reaction forces, the distribution of normal stress-

es within the material as well as by the respective values of 

the mean stress tensor (1). The obtained convex shape of 

vertical normal stress distribution is well-coincident with 

the asymptotic stress character prevailing for an active 

stress state. 

The computed mean stress tensor (1) for an as-

sembly of granules satisfied sufficiently the continuum-

based conditions on shear stress symmetry, while the de-

termined trajectories of principal stress were effectively 

consistent with the indications of the continuum-based 

approach. 

The obtained nonzero shear stresses for friction-



 17 

less material were mainly attributed to a relatively small 

number of the particles used, producing certain heteroge-

neity of material and resulting in a portion of friction. It 

should be also noted that discrete particle micro-

mechanical properties contribute the stress fields that 

would be more precise with increasing number of the par-

ticles in the model.  

The results obtained may contribute to better un-

derstanding of microscopic–macroscopic behavior of gran-

ular material.  
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SKAITINIS GRANULIUOTOS MEDŽIAGOS ĮTEMPIŲ 

TYRIMAS  

R e z i u m ė 

Tiesiogiai išmatuoti granuliuotos medžiagos į-

tempius yra labai keblu. Todėl straipsnyje atliktas skaitinis 

šių įtempių modeliavimas įvertinant diskrečias daleles vei-

kiančias jėgas. Pateikta gautų rezultatų verifikacija ir jų 

suderinamumas su žinomais kontinuumo mechanikos tei-

giniais. 
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NUMERICAL STRESS ANALYSIS OF GRANULAR 

MATERIAL 

 

S u m m a r y 

 

From the experimental point of view, it is very 

difficult to obtain accurate stress measurements within the 

bulk of granular material. The numerical stress analysis 

based on the forces acting on the discrete particle was per-

formed. Verification of the obtained results and their com-

patibility with well-known continuum-based indications 

were demonstrated. 
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ЧИСЛЕННЫЙ АНАЛИЗ НАПРЯЖЕНИЙ В 

ГРАНУЛИРОВАННОМ МАТЕРИАЛЕ 

Р е з ю м е 

Измерение напряжений, действующих в гра-

нулированном материале, экспериментальным путем 

всегда сопровождается большими трудностями. По-

этому в данной статье произведен их численный ана-

лиз на основе сил, действующих непосредственно на 

частицы материала. Дана проверка и совместимость 

полученных результатов с известными предпосылками 

механики сплошной среды.   
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