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1. Introduction

Multilayer structures (MS) were launched for techni-
cal applications in 19th century, but a wider usage was found
only in 20th century. Today they are replacing many of the
traditional one-material structures. MS has many unique fea-
tures, but their main advantages are the greater resistance to
deformation (e.g. reinforced concrete, steel-coated concrete
columns) and qualitatively new physical or chemical character-
istics. Materials, their alignment and geometry of the selection
options in MS are abundant. Therefore, often, their properties,
especially elastic, are not exploited to the maximum. One rea-
son is that the analytical techniques that could facilitate the so-
lution of the issue are in general, either still not created, or they
are based on assumptions which are untrue in the structures
used.

Variously deforming multilayered structures of differ-
ent properties, they obtain a complex stress and strain state [1-
8]. One of the reasons is the contact pressure arising between
the layers of distortion at the time. Its value determines the val-
ues of stress components. In the paper [1] the main reason for
the contact pressure is radial stretcher on different dimensions,
and the axial tightness equals zero. Various structures, particu-
larly pipelines are widely used to reinforce tubes [2-4]. Re-
cently, in the construction industry concrete filled columns have
become the commonplace [5, 6, 9, 10]. The specific characteris-
tics of such bars are that they can be exploited even after micro
cracks in the core begin.

Research is often limited to stress-state analysis with
FEM [2], or analyses are carried out experimentally determin-
ing the nature of fracture, strength, strain [3, 5, 9, 10], or such
aspects as stability [6]. In case of concrete-filled columns, such
amodel is acceptable, because to determine analytically stresses
of the beginning of micro cracking in the core material is com-
plicated. However, these columns are just one of many possible
options for the MS.

A cylindrical rod can be manufactured from several
different metals, plastics, or their combinations exposed to elas-
tic deformations. In this case, in order to assess the strength
and/or the stiffness it is necessary to know the stress-state com-
ponents. FEM has been successfully used in the assessment of
strength and determination of stress. However, it is difficult to
use when it is necessary to determine how the design parame-
ters affect the stress values, under what conditions and why they
are increasing, decreasing or becoming extreme values. In addi-
tion, FEM results have certain amount of methodological and
calculation errors, to determine which it is not easy.

The experimental method for these purposes is even
less efficient, as its measurement errors are typically higher than
FEM, they are more expensive and time consuming. In our
view, the more rational use of two-layer (and other MS) stress
analysis is to comprise and analyze the stress analytical expres-
sions, identify typical cases, comparing them with the results of
FEM, and only then to determine experimentally the stresses.

The absence of analytical equations and/or FEM model, the
complex planning of experiments, selection of suitable equip-
ment and ensuring the reliability of results becomes complicated.

The paper [11] presents the equations of the axial
stress for the two-layer bar. They were obtained considering the
fact that between the layers there is no axial or radial stretcher,
and the Poisson's ratios of the materials are the same. There is
no a contact pressure on the seam, and the stress state is axial.
The composite rods are manufactured of different materials;
therefore the Poisson's ratios are not necessarily the same.

The influence of these ratios for the analytical expres-
sions of stress components in two-layer bars (TB) was esti-
mated in the paper [12]. It has been received that in this case,
the stress-state layers are tri-axial. But it has not been answered
what value of relative pressure, compared to the axial stress,
what it depends upon and how it changes; also what kind of
evolution is to the stress state while changing the design pa-
rameters, e.g. their dimensions, materials and their arrangement.
There is no established methodology and application range.
These aspects are important because the methodologies [11]
and [12] are fundamentally different in their complexity. When
the number of layers is 3 or more, an accurate technique be-
comes even more complicated than the one presented in the
paper [12].

The aim of the paper is to analyze the stress state of
two-layer hollow bars, to present the analytical expressions of
relative stress in the contact area and to determine the patterns
of these variations, depending on cross-sectional area, modules
of elasticity, Poisson's ratios, the layers of geometry and layout.

2. Methodology

The subject matter is the two-layer, thick-wall, axially
loaded rod (Fig. 1). Let us consider that the rod does not have
its axial and radial tightness. The temperature is constant, or it
has no influence upon tightness. When Poisson's ratios of the
layers are different, due to different radial and hoop strains of
the layers (Fig. 2) a contact pressure between the layers occurs
(Fig. 1, pressure not shown).

In this case, in the contact zone the layers are in the tri-
axial (spatial) stress state. In addition to the axial stress the
stresses in radial and hoop directions emerge. The likelihood that
the stress state is tri-axial depends on the ratios of the stress com-
ponents. If the ring and radial stress is infinitely small, in com-
parison with the axial, the stress state is close to the axial one.

Then the two-layer bar stresses and strength condition
set according to the technique [11] will be close to the real
stresses and strength. However, if the hoop and/or radial
stresses form a large part of the axial stress, the stress-state is tri-
axial or biaxial, and stress value and strength is determined by
the methodology [12].

Let us examine a two-layer bar (Fig. 1). Before the
initial deformation, the length of the layers (L, L,) is the same
and known. The cylinders loaded with axial force, so that their



length and the deformation are equal. Therefore, the axial de-
formations also have to be equal

gz,l = gz,2 (1)

Fig. 1 The two-layer hollow rod effected by external force and
its cross-section

When the stress state is tri-axial, according to Hooke's
Law, axial strains of the layers are as follows
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Having written the Eq. (1) in stress obtain the following
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where o,; {p} and oy, {p} are radial and hoop stress in the
layers, with the radial coordinate p .

From Lame equations it is known that the sum of ra-
dial and circumferential stresses is independent of the radius.
Since axial stresses are independent on the radius, the Eq. (3) is
true with any radius p . If we consider that the construction is

not subjected to external and internal pressures then
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where p, is contact pressure between the layers;
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outer radius of the layer respectively.
In Eq. (4) there are three unknowns: o_,, o_, and
p. . Therefore there must be two additional equations. The

second is obtained from the static equilibrium, considering that
axial stresses in cross-section are distributed uniformly:

F=no, (R =)+ no,(R2 - 1}) )

Fig. 2 The internal (i = 1), external (i = 2) layers, two-layer bar
elements and their lateral strain

The third equation is obtained assuming that the con-
tact after deformation persists, (the layers remain bonded).
When in the initial moment the radial tightness between the
layers equals zero ( R, = r, ), then after deformation

Ar, = AR, (6)

where Ar, is the dimension change of the outer layer inner ra-
dius; AR, is the dimension change of the inner layer outer radius.

In case the layer delaminates, then the contact pres-
sure disappears and the stress turns to axial state. In such cases
the axial stresses are calculated according to methodology [11].

In paper [12] it was proved that radial strains of the
cylinder are in direct proportion to hoop, therefore

Ap = pe, {p} ™

where p, Ap is the radius and its change; &, {p} is hoop
strain, with radial coordinate p .

Using Eq. (7) and taking into account that radial tightness
between the layers equals zero, the equation (6) may be written as
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Having transformed strains to the stresses we obtain
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Having applied Lame equations from Eq. (9) we obtain
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In designing a bar it is preferred not to use radial di-



mension of the layers 7,, R,, but the general cross-sectional

area A, the hole radius r and the ratios of the layers cross-
sectional area v, , = 4,/4,,y, = 4,/A. We shall use these
parameters as the principal ones.

Finally from the Egs. (4), (5), (10) the analytical ex-
pressions of axial stress, contact pressure, radial, and hoop
stress were obtained
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o, 1s the stress state component in contact zone of the layers
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These Egs. (11)-(17), and their detailed deduction, us-
ing other notations, is presented in [12].

In order to determine the stress state (axial, biaxial or
tri-axial) it is not only important to know the numerical values
of stress state components, but also their ratios, i.c. how big the
contact pressure or hoop and radial stress in comparison with
axial stress is. The stress state in the material will depend on
these ratios.

If the radial and hoop stresses are very small in com-
parison with the axial ones, then the stress in the layer will be
close to the axial one. In contrast, when the radial and hoop
stresses represent a noticeable part of the axial stress, the stress
state becomes spatial, so therefore, the application of formulas
[11] to calculate the axial stress may not correspond the real
tension and the bar strength.

To assess the stress state in the layer relative stresses
will be used
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where 97, &, are relative radial (7 ), and hoop (&) stress of

the i-layer in the contact zone ( ¢ ) respectively.
3. Results

Using Eqgs. (18), (19) let us analyze how the stresses
change when relative dimensions, materials and their arrange-
ment are changed.

The most generic case is the hollow rod (>0), then,
after putting expressions (11)-(17) into the Egs. (18), (19), we
obtain
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When the cross-sectional area of the bar is constant,
from the numerical value of the inner radius it will depend
whether the layers are thin-walled or thick-walled. Egs. (20)-
(23) show that the relative stresses depends on the cross-
sectional area A and the radius 1.

From the condition of thin-walled cylinders
2r/(R—r)>20, we obtain that the bar and its layers will be

thin-walled, when

> 104 ~1.231J4 (24)
A217

When 0<r<1.231J4, the layers can be thin-

walled or thick-walled. It depends on the inner radius 7, and the
ratios of cross-sectional areas of the layers: v/, , v, .

The inner layer is thin-walled, when

217 12 7’
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Accordingly, the outer layer is thin-walled when
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r
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The Egs. (20)-(26) demonstrate that changing the di-



mensions 7 times, the stress and cross-sectional relatios will not
change (the ring radius changes 7 times, its cross-sectional area
changes as %)

Thus the stress ratios are independent of scale. There-
fore, the stress ratios in one construction will be equal to the
stress ratios in another, if the cross-sections of the construction
are proportional and materials and mechanical characteristics
are identical. In order to analyze the stress ratios, the inner ra-
dius and cross-sectional area can be chosen freely.

Let us analyze the bar, in which: 4 =1.0m>. Then,
the whole bar will be a thin-walled one, when r>1.231m.
Three general cases are possible: a solid bar, a thick-walled or a
thin-walled hollow bar (tube). In each case the thickness will
depend on the ratios y, and v, .

To analyze the axial loaded thin-walled tube localized
buckling needs to be taken into account, therefore, as it has
already been mentioned, we are going to examine the hollow
thick-walled construction, choosing the inner radius: » = 0.5m .

From the Eq. (26), the outer layer is thin-walled when
v, < 0.31. The inner layer is thin-walled when y, < 0.165.

As, we analyze the influence of Poisson's ratio; the
constructions into the positive and negative ones will be catego-
rized in accordance with the values of their coefficients. The
positive construction (PC) is the one in which the axial and
radial stress signs are the same, but in the negative one (NC)
these signs are opposite.

The PC will be when: v, >v,, and the NC when
v, <v, . Changing the arrangement, the NC or PC-type struc-
ture could be obtained. The parameters of the PC and NC varia-
tions are pesented in Figs. 3,4 and 5.

The Poisson's ratios of less rigid materials are gener-
ally higher; therefore we consider that the material with the
lower elasticity module has a higher Poisson's ratio.

Fig. 3 presents the data showing how the ratios of ra-
dial and hoop stresses depend on the inner layer of the relative
cross-sectional area (i, ). The Poisson's ratios of the layer ma-

terials: v, =0.4, v, = 0.3, the elastic module ratios for the PC
bar &, =10, and the NC &,, =0.1, the radial dimension:
r=0500m, R=0.754m.

In Fig. 3, a we see that when, y, =0 or y, =1 the

radial stress ratios is zero, since bar composed of one material.
So there is no contact pressure, and the relative stresses equal
Zero.

When y, (O 1), then the bar is composed of two
materials, and since v; # v, the contact pressure p_ appears.
Because of its impact length of the layers has varied. Since after
deformation the layers length should remain the same, there is
an increase or decrease in axial stresses. In this case, axial
stresses of the exchange ratio of areas (i), is changing

slightly, because the nature of most stress (9, ) affects the con-

tact pressure variation.

The contact pressure appears due to the different layers
of transverse strain. Its value does not only depend on the differ-
ence of deformation, but also the layers resistance to deformation.

The growth ratio y, between 0 and 1 of the inner
layer of the radial resistance is increasing, while the outer one is

decreasing. The value of the contact pressure determines the
resistance of the smaller layer.
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Fig. 3 The relative radial (a) and hoop (b) variation of the stress-
dependence on the inner layer of relative cross-sectional

areay,: PC: 1 (-x-) 8, 2(-11-)%,, 3 (-0-) 9, and
4(-0-) 35,5 NC:5(-%) 3, 6 (-0-) &y, 7 (-11-) &,
and 8 (-0-) %,

Therefore, while the inner resistance is lower, it de-
termines the contact pressure, and p, and &, increase (Fig. 3,

a, curve /). When resistance of the inner layer is higher than the
resistance of the second layer, the contact pressure depends on



the inner layer of resistance.
As it falls, y, further increases, thus p, and &', be-

gin declining. The relative radial stress (8,‘1) is found in the
peak position " of the Eq. (27)
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where k =v; -1, k, =&, -1, ky=v, =& v, kg=vv, L.
The argument " largely depends on the ratios of

elastic modules &, ;. When it rises and " rises as well, the

maximum moves from the left to the right and the curve / (Fig.
3, a) approaches the curve indicating the limit values of the

relative radial stress (., ) (dotted line Fig. 3, a), the equation of

which is as follows
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Using a limit curve (28), it is usually possible to deter-
mine the maximum possible relative radial stress available for the

construction of the bar. When the quantity z> is sufficiently
large in comparison with A , the limit curve turns into a line.

As the axial stresses in stiffer materials are higher, the
radial stress ratio value of the outer layer is lower (Fig.3, a,
curve 3). The nature of the variation is similar to the inner layer
(Fig. 3, a, curve 7), and the value is about 10 times lower due to
the same amount of larger axial stresses.

The maximum coordinate of curve 3 (Fig.3, a) is
found from the equality
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where k, =v} —1.

The equation of the relative stress §, , limit curve
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It should be noted that the maximums of curves / and
3 (Fig. 3, a), are generally at different points. The radial and
axial stresses in the NC, independently on the axial force, have

different signs, so ratio &, is negative.

As the NC is obtained from the PC, so the character of
stress representing curves 3, 7 (Fig. 3, a) can be obtained from
curves /, 3 having put them upside down on the axis oy, , and

rotated around line y, = 0.5, and switched the indexes.

It should be noted that following the restructuring of
curves /, 3 we do not receive the real stress values, only their
character. This is because the cylinder resistances for the exter-
nal and internal directions of radial strain are slightly different.
The stress values and the maximum limit curves are obtained
having applied the Egs. (27)-(30) for the PC bars, after inserting
the NC bar properties into them.

From the Eq. (14) it is obtained that the hoop stresses
in the contact zone in their absolute value are not lower than the
radial ones

95,29 @31

This results in the geometric characteristics of the lay-
ers. When the bar is getting thinner all over the wall or the inner
layer, the stress difference increase, and in the solid bar, they
become equal.

Relative hoop stress variation in the bar layers 3, and

8, depending on the inner layer of relative cross-sectional area

(w,) is presented in Fig. 3, b. It demonstrates that the relative

hoop stresses do not necessarily move closer to the zero values,
as the ratio , moves to the extreme values (i.e. 0 and 1). The

reason for this is that even a low pressure can cause a finite
amount of hoop stresses in the infinitely small thickness wall.
Therefore, as the ratio y, goes to the ends of its

variation interval, the layer which is currently of infinitely small
thickness, reaches finite unequal to zero relative hoop stresses,
even if the contact pressure, compared with the axial stresses, is
very low (Fig. 3, b, curves 2, 4).

While y, is growing, the inner relative hoop stress

(Fig. 3, curve 2) is initially slightly increasing (at the same time
as contact pressure is increasing), and then due to the thinner
outer layer wall a rapid decline takes place.

For the same reason, in the outer layer (Fig. 3, b,
curve 4), the relative hoop stresses initially vary slightly, but
when /, gets closer to 1 a rapid increase takes place.

When the contact pressure constitutes a significant
part of the axial stress, the relative variation of the hoop stress is
determined by both the layers geometry and the contact pres-
sure variation; in case the pressure is small, it is mainly due to
the change of geometry.

It has been obtained that changing the ratio of the

layer cross sections, the difference between stress 3, and

8, values tends to remain almost constant. By changing the

relative thickness of the layers in one layer the relative hoop
stress is decreasing while the other is increasing. The relative
hoop stress (Fig. 3, b, curve 2) peak position

@ _ xr’ (k3 +k4) .
l xrik, — Ak,

r\/A(izr2 + A);zk4 (27[)’2](3 — Ak, —k3))
+

(32)
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where k, =v, —1.
The limit curve equations (for curves 2, 4)
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Numerical value of the relative hoop stress of the NC-
type structure, as well as the relative radial stress event, will be
slightly smaller than the PC.

In the previous papers [11-13] a significant influence
of material layer elastic modules on the behaviour of multilayer
structures was determined. Therefore, it is important to deter-
mine the variation in the relative radial and hoop stresses,
changing the ratio of elastic modules.

When the construction of the size and value of Pois-
son's ratios are the same as previously, and the cross-sectional
areas of the layers are equal (y, =y, =0.5), their stress

variations are presented in Fig. 4.
It has been obtained that increasing the ratios of the
layer material elastic modules &, | , the relative radial stresses of

the inner layer of PC increase from zero to the maximum value,
but in the outside layer they decrease (curves /, 3 Fig. 4, a).

This is due to the axial stress level, which in a stiffer
layer is larger, therefore the relative radial stresses are small,
and in a less rigid one are high. Having compared the relative
radial stress levels of the PC (Fig. 4, a curves /, 3) and NC
(curves 5, 7) we have obtained that a greater stress is in the
layer of a less rigid material with a greater value of Poisson's
ratio.

The relative radial strain curves 7, 3 and 5, 7, mainly
due to the geometric factor are asymmetrical to line &, , =1.

When the layer is very thin, then the abovementioned
curves are symmetrical, and their value is infinitely small.
Therefore, in the thin-walled cylinder the radial stress can be
ignored. However, the hoop stresses are not equal to zero, so in
the thin-walled layer the stress state will be biaxial.

The relative hoop stresses (Fig. 4, b) vary similarly to
the radial ones (Fig. 4, a), only differing in their signs and val-
ues. The relative hoop stresses in their absolute size will always
exceed the relative radial stresses. That difference will be the
greater as the wall goes thinner.

The data presented in Fig. 4 demonstrate that both the
relative radial and hoop stresses of the PC are higher than the
NC, if only the modules of elasticity ratio in the PC are much
higher than one. If &, <<1, the relative radial and hoop

stresses will be higher in the NC-type bars. This means that
having produced the inner layer of less-rigid material it will
have higher relative radial and axial stresses than in case this
layer is on the outside of the bar.

It should be noted that tensing the PC and compress-
ing the NC the contact zone is tensioned so that if the adhesion
between the layers is poor, they can delaminate.

This is an important factor in long-term cyclic test
MC, because the resulting gap accelerates the degradation proc-
ess, reducing the layers of resistance to local buckling.

When &, ~1, the relative stress values can change

dramatically, but the maximum stress absolute value of both
cases is similar. The highest stress is the hoop one.
In this case, until &, > 2, the maximum is always

received in the same material (in which v is greater), despite
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Fig. 4 Variation the relative radial (a) and hoop (b) stress, in
hollow construction, depending on elastic modules ratio

3L when V=V, PC: 1(-x-) 9:,1 >
2(-15) g, 3(07) 9, 4(-0) %,
NC: 5 ('X') ‘9:,1 ’ 6('[') 3001 ’ 7('D') L9:2 ’
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the arrangement of materials.

The influence of Poisson's ratios on the relative radial
and hoop stress values (Fig. 5) was analysed in the construction
of the same dimensions as before, only the outer layer material
Poisson's ratio was varied from 0.1 to 0.5, while
v, =const =0.3.



We can see that the stresses are changing linearly and
they increase with the Poisson's ratios difference between the
layers of the bar.

0.2
19 c
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-0.2

0.1 0.2 0.3 0.4 0.5

vV,
Fig. 5 Stress ratios: (-x-) &, (-1-) &,, (- 0-) & ,, (-0-)
§;, dependences on v, values, when y, =y, , and
&y =10

It should be noted that numerical values of the relative
radial stress (19,‘1 ) in the inner layer were the highest.

The outer layer of the relative radial and circular
stresses is smaller as a result of higher axial stress values.

When the difference of Poisson's ratio between the
layers is equal to zero, the stress state is linear. All curves inter-
sects at the one point (Fig. 5), and the stress ratios are equal to
Zero.

The relative stress values do not only depend on Pois-
son's ratios difference, but they also depend on their numerical
values.

The closer the Poisson’s ratio is to 0.5, the higher are
the relative stresses at the same difference between the ratios.

4. Conclusions

A mathematical model for the two-layer axially
loaded cylindrical bars stresses state components (axial, radial
and hoop) and their limit value determination was presented.

To determine the stress state in the layer analytical
expressions (20)-(23) of the relative stress in the contact zone,
were obtained. These expressions enable the assessment of the
available construction; a stress state is triaxial, biaxial or axial.

Extreme boundaries of relative stress to determine the
limit curve and its equation were proposed.

It was obtained that the relative stresses depend on the
following factors.

1. Poisson's ratios values. The more they differ the
greater the contact pressure and relative radial and hoop stresses
are. Moreover, when Poisson's ratio of the material is closer to
0.5, the relative stresses are higher, although the difference in
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Poisson's ratios remains constant.
2. Elastic module ratios. When ¢, ~1, the relative

stresses are of similar size in both layers. By changing this ratio
in the layer the material of which is less elastic, the relative
stresses are increasing and in the stiffest one they are decreas-
ing.

3. The radial dimensions and cross-sectional area of
the layers. As the layer thickness goes smaller, the relative ra-
dial stresses become infinitely small, but the hoop stresses is
finite, unequal to zero (Bi-axial stress state). The stress state is
independent of the dimensions of the bar, where the layer pro-
portions remain constant, i.e. when the scale changes.

4. Material arrangement in the construction. In many
cases, the PC-type bar relative stresses are higher than those of
the same size NC. Until the PC ratio of elastic mod-
ules&,; >>1, or &, <<1 the maximum relative stresses are

always obtained in the same material, regardless of the layout of
the construction materials.

It was identified that the inner radius »=0.5 m, the
outer one R =0.745 m, Poisson's ratios 0.4 and 0.3, the maxi-
mum relative stresses reach 15% and while reducing the radius
of the inner layer and increasing the thickness of the layers, the
relative stress may increase to over 28%.
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DVISLUOKSNIU TUSCIAVIDURIU CILINDRINIU
STRYPU [TEMPIU BUVIS

Reziumé

Darbe nagrinéjamas dvisluoksniy, tus¢iaviduriy stry-
pu, veikiamy asinés apkrovos, itempiy biivis. Sluoksniy me-
dziaga yra izotropingé, homogeniné, tiesiskai tampri, o sluoks-
niai koncentriniai cilindrai.

Pateiktas matematinis modelis dvisluoksnio tempia-
mo ir gniuzdomo cilindrinio strypo asiniams, radialiniams ir
ziediniams jtempiams ir jy ribinéms vertéms sluoksniuose nu-
statyti. [tempiy biiviui sluoksniuose ivertinti gautos santykiniy
itempiy kontakto zonoje israiskos, kurios igalina nustatyti, kiek
nagrinéjamai konstrukcijai jtempiy biivis yra erdvinis, plokscias
ar vienaSis. Santykiniy jtempiy réziams nustatyti pasitlytos
ribiniy ver¢iy kreivés ir pateiktos ju lygtys.

Nustatyta, kad santykiniai jtempiai priklauso nuo Pua-
sono koeficienty veréiy, tamprumo moduliy bei strypo radiali-
niy matmeny ir sluoksniy skerspjivio ploty santykiu, taip pat ir
medziagy iSdéstymo konstrukcijoje. Gauty lygciy analizé pa-
rode, kad tam tikrais atvejais radialiniai ir Ziediniai jtempiai gali
sudaryti nemaza asiniy itempiy vertés dali. Maksimalioms san-
tykiniy jtempiy vertéms nustatyti pasitlytos ribiniy kreiviy lyg-
tys.

N. Partaukas, J. BareiSis

THE STRESS STATE IN TWO-LAYER HOLLOW
CYLINDRICAL BARS

Summary
The stress state of two-layer hollow bars in which

they are exposed to axial load is analyzed. The layers are made
of isotropic, homogeneous, linearly elastic material, and the
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layers are as concentric cylinders.

A mathematical model for two-layer tension- com-
pression cylindrical bar axial, radial and ring stress and to set
the limit values in the layers is presented. To asses the stress
condition in the layers the expression of reletive stresses in the
contact zone is obtained. It enables to determine how much for
the construction under discussion, the stress state is three-
dimensional, two-dimensional or axial. For the relative stress
determination a limit curve and its equation are proposed.

It has been determined that the relative stresses de-
pend on the values of Poisson's ratio, modulus of elasticity, the
radial dimensions and cross-sectional layer areas ratios, also the
layout and construction materials. The analysis of the derived
equations demonstrated that in certain cases, radial and circular
stresses may form a significant part of axial stress value. The
maximum relative stress-establish the proposed limit curves
equation.

H. IMaprayxac, 1. bapeuiic

HATIPSDKEHHOE COCTOSIHME B JIBYXCJIOMHHBIX
TOJIBIX [WUIMHPUYECKUX CTEPYKHSIX

Pesome

B pabore wccnenoBaHO HampsDKEHHOE COCTOSTHHE
JIBYXCJIOMHBIX MOJBIX LIIMHIPHYIECKUX CTEp)KHEH, Harpy>KeH-
HBIX 0CeBOM crIoi. COM KOHUEHTPUYECKUX LIJIMHAPOB U3I0-
TOBJICHBI W3 M30TPOIMHOTO, TOMOT€HHOIO, JIMHEWHO YHIPYTOro
Marepraa.

[pencraBnena mMaremMaTudecKkas MOIETb IS OIIpe-
JICTICHNS] OCEBBIX, PAIMAIBHBIX M KOJBIIEBBIX HATPSDKCHUN U
MX TPENEIbHBIX 3HAYECHUH B CIIOSX JIBYXCIIOWHBIX CTEpP)KHEH
NPH MX PacTsHKEHMHM M CKaTuM. [ OLEHKH HANpsHKEHHOTO
COCTOSIHUSL B CIIOSIX, TIOJyYeHB! BBIPAXKEHUS OTHOCHUTEIIBHBIX
HaIpsDKeHUH B 30HE KOHTAKTa, KOTOPbIE MO3BOJIIOT OLIEHUTH
HACKOJIBKO /ISl JAHHOM KOHCTPYKIMH, HamlpshKEHHOE COCTOS-
HUE SIBJISIETCSl TPEXMEpPHBIM, JBYMEpPHBIM WM OceBbIM. [l
oIpe/ielIeHNs] MPEeeNbHBIX 3HAUYCHUI OTHOCHUTENBHBIX HArps-
JKEHUI yCTAHOBJIEHBI KPUBBIE MPE/IETBHBIX 3HAYCHUH U TIpea-
JIOXKEHBI UX YPABHEHUSL.

'YCTaHOBIIEHO, YTO OTHOCHTENBHBIC HAIPSHKEHUS 3a-
BHUCAT OT 3HaueHni kodddurmenta [Tyaccona, Mmomyreit ynpy-
TOCTH, a Takke W OT OTHOIICHHUS paIHalbHBIX pa3MepoB
CTep)KHS C IUIOMIABIO TIOTIEPEYHBIX CEYEHHH CIIOEB M OT pac-
TIOJIOKEHUST MAaTepHalioB B KOHCTPYKUMH. AHAIN3 TIOIydeH-
HBIX YpaBHEHHH IOKa3aj, YTO B OIpEETeHHBIX CITy4asx, pa-
JIAJTbHBIE W KOJIBLIEBBIC HATIPSHKEHUSI MOTYT COCTaBUTH CYILle-
CTBEHHYIO 4YaCTb OCEBBIX HampsbkeHuil. st ompereneHus
MaKCHUMaJIbHBIX 3HAYEHWM OTHOCHUTENBHBIX  HANpsHKEHUH
HPEJIOKEHBI YPABHEHNUS IPECIBbHBIX KPUBBIX.
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