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1. Introduction 
 

Multilayer structures (MS) were launched for techni-
cal applications in 19th century, but a wider usage was found 
only in 20th century. Today they are replacing many of the 
traditional one-material structures. MS has many unique fea-
tures, but their main advantages are the greater resistance to 
deformation (e.g. reinforced concrete, steel-coated concrete 
columns) and qualitatively new physical or chemical character-
istics. Materials, their alignment and geometry of the selection 
options in MS are abundant. Therefore, often, their properties, 
especially elastic, are not exploited to the maximum. One rea-
son is that the analytical techniques that could facilitate the so-
lution of the issue are in general, either still not created, or they 
are based on assumptions which are untrue in the structures 
used. 

Variously deforming multilayered structures of differ-
ent properties, they obtain a complex stress and strain state [1-
8]. One of the reasons is the contact pressure arising between 
the layers of distortion at the time. Its value determines the val-
ues of stress components. In the paper [1] the main reason for 
the contact pressure is radial stretcher on different dimensions, 
and the axial tightness equals zero. Various structures, particu-
larly pipelines are widely used to reinforce tubes [2-4]. Re-
cently, in the construction industry concrete filled columns have 
become the commonplace [5, 6, 9, 10]. The specific characteris-
tics of such bars are that they can be exploited even after micro 
cracks in the core begin. 

Research is often limited to stress-state analysis with 
FEM [2], or analyses are carried out experimentally determin-
ing the nature of fracture, strength, strain [3, 5, 9, 10], or such 
aspects as stability [6]. In case of concrete-filled columns, such 
a model is acceptable, because to determine analytically stresses 
of the beginning of micro cracking in the core material is com-
plicated. However, these columns are just one of many possible 
options for the MS.  

A cylindrical rod can be manufactured from several 
different metals, plastics, or their combinations exposed to elas-
tic deformations. In this case, in order to assess the strength 
and/or the stiffness it is necessary to know the stress-state com-
ponents. FEM has been successfully used in the assessment of 
strength and determination of stress. However, it is difficult to 
use when it is necessary to determine how the design parame-
ters affect the stress values, under what conditions and why they 
are increasing, decreasing or becoming extreme values. In addi-
tion, FEM results have certain amount of methodological and 
calculation errors, to determine which it is not easy.  

The experimental method for these purposes is even 
less efficient, as its measurement errors are typically higher than 
FEM, they are more expensive and time consuming. In our 
view, the more rational use of two-layer (and other MS) stress 
analysis is to comprise and analyze the stress analytical expres-
sions, identify typical cases, comparing them with the results of 
FEM, and only then to determine experimentally the stresses. 

The absence of analytical equations and/or FEM model, the 
complex planning of experiments, selection of suitable equip-
ment and ensuring the reliability of results becomes complicated. 

The paper [11] presents the equations of the axial 
stress for the two-layer bar. They were obtained considering the 
fact that between the layers there is no axial or radial stretcher, 
and the Poisson's ratios of the materials are the same. There is 
no a contact pressure on the seam, and the stress state is axial. 
The composite rods are manufactured of different materials; 
therefore the Poisson's ratios are not necessarily the same. 

The influence of these ratios for the analytical expres-
sions of stress components in two-layer bars (TB) was esti-
mated in the paper [12]. It has been received that in this case, 
the stress-state layers are tri-axial. But it has not been answered 
what value of relative pressure, compared to the axial stress, 
what it depends upon and how it changes; also what kind of 
evolution is to the stress state while changing the design pa-
rameters, e.g. their dimensions, materials and their arrangement. 
There is no established methodology and application range. 
These aspects are important because the methodologies [11] 
and [12] are fundamentally different in their complexity. When 
the number of layers is 3 or more, an accurate technique be-
comes even more complicated than the one presented in the 
paper [12]. 

The aim of the paper is to analyze the stress state of 
two-layer hollow bars, to present the analytical expressions of 
relative stress in the contact area and to determine the patterns 
of these variations, depending on cross-sectional area, modules 
of elasticity, Poisson's ratios, the layers of geometry and layout.  
 
2. Methodology 

 
The subject matter is the two-layer, thick-wall, axially 

loaded rod (Fig. 1). Let us consider that the rod does not have 
its axial and radial tightness. The temperature is constant, or it 
has no influence upon tightness. When Poisson's ratios of the 
layers are different, due to different radial and hoop strains of 
the layers (Fig. 2) a contact pressure between the layers occurs 
(Fig. 1, pressure not shown). 

In this case, in the contact zone the layers are in the tri-
axial (spatial) stress state. In addition to the axial stress the 
stresses in radial and hoop directions emerge. The likelihood that 
the stress state is tri-axial depends on the ratios of the stress com-
ponents. If the ring and radial stress is infinitely small, in com-
parison with the axial, the stress state is close to the axial one.  

Then the two-layer bar stresses and strength condition 
set according to the technique [11] will be close to the real 
stresses and strength. However, if the hoop and/or radial 
stresses form a large part of the axial stress, the stress-state is tri-
axial or biaxial, and stress value and strength is determined by 
the methodology [12]. 

Let us examine a two-layer bar (Fig. 1). Before the 
initial deformation, the length of the layers (L1, L2) is the same 
and known. The cylinders loaded with axial force, so that their 



 6

length and the deformation are equal. Therefore, the axial de-
formations also have to be equal 
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Fig. 1 The two-layer hollow rod effected by external force and 
its cross-section 

 
When the stress state is tri-axial, according to Hooke's 

Law, axial strains of the layers are as follows 
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Having written the Eq. (1) in stress obtain the following 
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where { }ρσ ir ,  and { }ρσθ i,  are radial and hoop stress in the 
layers, with the radial coordinate ρ . 

From Lame equations it is known that the sum of ra-
dial and circumferential stresses is independent of the radius. 
Since axial stresses are independent on the radius, the Eq. (3) is 
true with any radius ρ . If we consider that the construction is 
not subjected to external and internal pressures then 
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where cp  is contact pressure between the layers; 
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outer radius of the layer respectively. 
In Eq. (4) there are three unknowns: 1,zσ , 2,zσ  and 

cp . Therefore there must be two additional equations. The 
second is obtained from the static equilibrium, considering that 
axial stresses in cross-section are distributed uniformly: 

 ( ) ( )2
2

2
22,

2
1

2
11, rRrRF zz −+−= πσπσ  (5) 

 

Free

i = 1

i = 2

i = 1

i = 2

0=zε

0<zε

21 νν >

 
 

Fig. 2 The internal (i = 1), external (i = 2) layers, two-layer bar 
elements and their lateral strain 

 
The third equation is obtained assuming that the con-

tact after deformation persists, (the layers remain bonded). 
When in the initial moment the radial tightness between the 
layers equals zero ( 21 rR = ), then after deformation 

 
 12 Rr ΔΔ =   (6) 

 
where 2rΔ  is the dimension change of the outer layer inner ra-
dius; 1RΔ  is the dimension change of the inner layer outer radius. 

In case the layer delaminates, then the contact pres-
sure disappears and the stress turns to axial state. In such cases 
the axial stresses are calculated according to methodology [11]. 

In paper [12] it was proved that radial strains of the 
cylinder are in direct proportion to hoop, therefore 

 
 { }ρρερΔ θ=   (7) 

 
where ρ , ρΔ  is the radius and its change; { }ρεθ  is hoop 
strain, with radial coordinate ρ .  

Using Eq. (7) and taking into account that radial tightness 
between the layers equals zero, the equation (6) may be written as 
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Having transformed strains to the stresses we obtain 
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Having applied Lame equations from Eq. (9) we obtain 
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In designing a bar it is preferred not to use radial di-
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mension of the layers ir , iR , but the general cross-sectional 
area A , the hole radius r  and the ratios of the layers cross-
sectional area , ,i j i j i iA A A Aψ ψ= = . We shall use these 
parameters as the principal ones. 

Finally from the Eqs. (4), (5), (10) the analytical ex-
pressions of axial stress, contact pressure, radial, and hoop 
stress were obtained 
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c
ji,σ  is the stress state component in contact zone of the layers 

(i=z, r or θ); ,i j i jE Eξ = . 
These Eqs. (11)-(17), and their detailed deduction, us-

ing other notations, is presented in [12]. 
In order to determine the stress state (axial, biaxial or 

tri-axial) it is not only important to know the numerical values 
of stress state components, but also their ratios, i.e. how big the 
contact pressure or hoop and radial stress in comparison with 
axial stress is. The stress state in the material will depend on 
these ratios. 

If the radial and hoop stresses are very small in com-
parison with the axial ones, then the stress in the layer will be 
close to the axial one. In contrast, when the radial and hoop 
stresses represent a noticeable part of the axial stress, the stress 
state becomes spatial, so therefore, the application of formulas 
[11] to calculate the axial stress may not correspond the real 
tension and the bar strength. 

To assess the stress state in the layer relative stresses 
will be used 

 

 
iz

c
irc

ir
,

,
, σ

σ
ϑ =   (18) 

 

 
iz

c
ic

i
,

,
, σ

σ
ϑ θ
θ =   (19) 

 
where c

ir ,ϑ , c
i,θϑ  are relative radial ( r ), and hoop (θ ) stress of 

the i-layer in the contact zone ( c ) respectively. 
 
3. Results 
 

Using Eqs. (18), (19) let us analyze how the stresses 
change when relative dimensions, materials and their arrange-
ment are changed.  

The most generic case is the hollow rod (r>0), then, 
after putting expressions (11)-(17) into the Eqs. (18), (19), we 
obtain 
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When the cross-sectional area of the bar is constant, 

from the numerical value of the inner radius it will depend 
whether the layers are thin-walled or thick-walled. Eqs. (20)-
(23) show that the relative stresses depends on the cross-
sectional area A and the radius r. 

From the condition of thin-walled cylinders 
20)(2 >− rRr , we obtain that the bar and its layers will be 

thin-walled, when 
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When 0 1.231r A< < , the layers can be thin-

walled or thick-walled. It depends on the inner radius r, and the 
ratios of cross-sectional areas of the layers: 1ψ , 2ψ . 

The inner layer is thin-walled, when 
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Accordingly, the outer layer is thin-walled when 
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The Eqs. (20)-(26) demonstrate that changing the di-
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mensions n times, the stress and cross-sectional relatios will not 
change (the ring radius changes n times, its cross-sectional area 
changes as n2). 

Thus the stress ratios are independent of scale. There-
fore, the stress ratios in one construction will be equal to the 
stress ratios in another, if the cross-sections of the construction 
are proportional and materials and mechanical characteristics 
are identical. In order to analyze the stress ratios, the inner ra-
dius and cross-sectional area can be chosen freely. 

Let us analyze the bar, in which: 21.0A m= . Then, 
the whole bar will be a thin-walled one, when 1.231r m≥ . 
Three general cases are possible: a solid bar, a thick-walled or a 
thin-walled hollow bar (tube). In each case the thickness will 
depend on the ratios 1ψ  and 2ψ .  

To analyze the axial loaded thin-walled tube localized 
buckling needs to be taken into account, therefore, as it has 
already been mentioned, we are going to examine the hollow 
thick-walled construction, choosing the inner radius: 0.5r m= .  

From the Eq. (26), the outer layer is thin-walled when 
31.02 <ψ . The inner layer is thin-walled when 165.01 <ψ . 
As, we analyze the influence of Poisson's ratio; the 

constructions into the positive and negative ones will be catego-
rized in accordance with the values of their coefficients. The 
positive construction (PC) is the one in which the axial and 
radial stress signs are the same, but in the negative one (NC) 
these signs are opposite. 

The PC will be when: 21 νν > , and the NC when 

21 νν < . Changing the arrangement, the NC or PC-type struc-
ture could be obtained. The parameters of the PC and NC varia-
tions are pesented in Figs. 3, 4 and 5. 

The Poisson's ratios of less rigid materials are gener-
ally higher; therefore we consider that the material with the 
lower elasticity module has a higher Poisson's ratio. 

Fig. 3 presents the data showing how the ratios of ra-
dial and hoop stresses depend on the inner layer of the relative 
cross-sectional area ( 1ψ ). The Poisson's ratios of the layer ma-
terials: 4.01 =ν , 3.02 =ν , the elastic module ratios for the PC 
bar 101,2 =ξ , and the NC 1.01,2 =ξ , the radial dimension: 

0.500r m= , 0.754R m= . 
In Fig. 3, a we see that when, 01 =ψ  or 11 =ψ  the 

radial stress ratios is zero, since bar composed of one material. 
So there is no contact pressure, and the relative stresses equal 
zero. 

When ( )101 ∈ψ , then the bar is composed of two 
materials, and since 21 νν ≠  the contact pressure cp  appears. 
Because of its impact length of the layers has varied. Since after 
deformation the layers length should remain the same, there is 
an increase or decrease in axial stresses. In this case, axial 
stresses of the exchange ratio of areas ( 1ψ ), is changing 

slightly, because the nature of most stress ( c
ir ,ϑ ) affects the con-

tact pressure variation. 
The contact pressure appears due to the different layers 

of transverse strain. Its value does not only depend on the differ-
ence of deformation, but also the layers resistance to deformation. 

The growth ratio 1ψ  between 0 and 1 of the inner 
layer of the radial resistance is increasing, while the outer one is 
decreasing. The value of the contact pressure determines the 
resistance of the smaller layer. 
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Fig. 3 The relative radial (a) and hoop (b) variation of the stress-
dependence on the inner layer of relative cross-sectional 
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Therefore, while the inner resistance is lower, it de-

termines the contact pressure, and cp  and ,1
c
rϑ  increase (Fig. 3, 

a, curve 1). When resistance of the inner layer is higher than the 
resistance of the second layer, the contact pressure depends on 
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the inner layer of resistance. 
As it falls, 1ψ  further increases, thus cp  and ,1

c
rϑ  be-

gin declining. The relative radial stress ( ),1
c
rϑ  is found in the 

peak position )1(
1ψ  of the Eq. (27) 
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where 12

21 −=νk , 11,22 −=ξk , 11,223 νξν −=k , 1216 −= ννk . 

The argument )1(
1ψ  largely depends on the ratios of 

elastic modules 1,2ξ . When it rises and )1(
1ψ  rises as well, the 

maximum moves from the left to the right and the curve 1 (Fig. 
3, a) approaches the curve indicating the limit values of the 
relative radial stress ( c

r 1,ϑ ) (dotted line Fig. 3, a), the equation of 
which is as follows 
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Using a limit curve (28), it is usually possible to deter-

mine the maximum possible relative radial stress available for the 
construction of the bar. When the quantity 2rπ  is sufficiently 
large in comparison with A , the limit curve turns into a line. 

As the axial stresses in stiffer materials are higher, the 
radial stress ratio value of the outer layer is lower (Fig. 3, a, 
curve 3). The nature of the variation is similar to the inner layer 
(Fig. 3, a, curve 1), and the value is about 10 times lower due to 
the same amount of larger axial stresses. 

The maximum coordinate of curve 3 (Fig. 3, a) is 
found from the equality 
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where 12

15 −=νk . 
 The equation of the relative stress c

r 2,ϑ , limit curve 
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It should be noted that the maximums of curves 1 and 

3 (Fig. 3, a), are generally at different points. The radial and 
axial stresses in the NC, independently on the axial force, have 
different signs, so ratio ,

c
r iϑ  is negative. 

As the NC is obtained from the PC, so the character of 
stress representing curves 5, 7 (Fig. 3, a) can be obtained from 
curves 1, 3 having put them upside down on the  axis 1ψo , and 
rotated around line 5.01 =ψ , and switched the indexes. 

It should be noted that following the restructuring of 
curves 1, 3 we do not receive the real stress values, only their 
character. This is because the cylinder resistances for the exter-
nal and internal directions of radial strain are slightly different. 
The stress values and the maximum limit curves are obtained 
having applied the Eqs. (27)-(30) for the PC bars, after inserting 
the NC bar properties into them.  

From the Eq. (14) it is obtained that the hoop stresses 
in the contact zone in their absolute value are not lower than the 
radial ones 

 
 c

r
c

1,1, ϑϑθ ≥   (31) 
 
This results in the geometric characteristics of the lay-

ers. When the bar is getting thinner all over the wall or the inner 
layer, the stress difference increase, and in the solid bar, they 
become equal. 

Relative hoop stress variation in the bar layers c
1,θϑ  and 

c
2,θϑ depending on the inner layer of relative cross-sectional area 

( 1ψ ) is presented in Fig. 3, b. It demonstrates that the relative 
hoop stresses do not necessarily move closer to the zero values, 
as the ratio 1ψ  moves to the extreme values (i.e. 0 and 1). The 
reason for this is that even a low pressure can cause a finite 
amount of hoop stresses in the infinitely small thickness wall. 

Therefore, as the ratio 1ψ  goes to the ends of its 
variation interval, the layer which is currently of infinitely small 
thickness, reaches finite unequal to zero relative hoop stresses, 
even if the contact pressure, compared with the axial stresses, is 
very low (Fig. 3, b, curves 2, 4). 

While 1ψ  is growing, the inner relative hoop stress 
(Fig. 3, curve 2) is initially slightly increasing (at the same time 
as contact pressure is increasing), and then due to the thinner 
outer layer wall a rapid decline takes place. 

For the same reason, in the outer layer (Fig. 3, b, 
curve 4), the relative hoop stresses initially vary slightly, but 
when 1ψ  gets closer to 1 a rapid increase takes place. 

When the contact pressure constitutes a significant 
part of the axial stress, the relative variation of the hoop stress is 
determined by both the layers geometry and the contact pres-
sure variation; in case the pressure is small, it is mainly due to 
the change of geometry. 

It has been obtained that changing the ratio of the 
layer cross sections, the difference between stress c

1,θϑ  and 
c

2,θϑ  values tends to remain almost constant. By changing the 
relative thickness of the layers in one layer the relative hoop 
stress is decreasing while the other is increasing. The relative 
hoop stress (Fig. 3, b, curve 2) peak position 
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where 124 −=νk . 

The limit curve equations (for curves 2, 4) 
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Numerical value of the relative hoop stress of the NC-

type structure, as well as the relative radial stress event, will be 
slightly smaller than the PC. 

In the previous papers [11-13] a significant influence 
of material layer elastic modules on the behaviour of multilayer 
structures was determined. Therefore, it is important to deter-
mine the variation in the relative radial and hoop stresses, 
changing the ratio of elastic modules. 

When the construction of the size and value of Pois-
son's ratios are the same as previously, and the cross-sectional 
areas of the layers are equal ( 5.021 ==ψψ ), their stress 
variations are presented in Fig. 4. 

It has been obtained that increasing the ratios of the 
layer material elastic modules 2,1ξ , the relative radial stresses of 
the inner layer of PC increase from zero to the maximum value, 
but in the outside layer they decrease (curves 1, 3 Fig. 4, a). 

This is due to the axial stress level, which in a stiffer 
layer is larger, therefore the relative radial stresses are small, 
and in a less rigid one are high. Having compared the relative 
radial stress levels of the PC (Fig. 4, a curves 1, 3) and NC 
(curves 5, 7) we have obtained that a greater stress is in the 
layer of a less rigid material with a greater value of Poisson's 
ratio. 

The relative radial strain curves 1, 3 and 5, 7, mainly 
due to the geometric factor are asymmetrical to line 11,2 =ξ . 

When the layer is very thin, then the abovementioned 
curves are symmetrical, and their value is infinitely small. 
Therefore, in the thin-walled cylinder the radial stress can be 
ignored. However, the hoop stresses are not equal to zero, so in 
the thin-walled layer the stress state will be biaxial. 

The relative hoop stresses (Fig. 4, b) vary similarly to 
the radial ones (Fig. 4, a), only differing in their signs and val-
ues. The relative hoop stresses in their absolute size will always 
exceed the relative radial stresses. That difference will be the 
greater as the wall goes thinner. 

The data presented in Fig. 4 demonstrate that both the 
relative radial and hoop stresses of the PC are higher than the 
NC, if only the modules of elasticity ratio in the PC are much 
higher than one. If 11,2 <<ξ , the relative radial and hoop 
stresses will be higher in the NC-type bars. This means that 
having produced the inner layer of less-rigid material it will 
have higher relative radial and axial stresses than in case this 
layer is on the outside of the bar. 

It should be noted that tensing the PC and compress-
ing the NC the contact zone is tensioned so that if the adhesion 
between the layers is poor, they can delaminate. 

This is an important factor in long-term cyclic test 
MC, because the resulting gap accelerates the degradation proc-
ess, reducing the layers of resistance to local buckling. 

When 11,2 ≈ξ , the relative stress values can change 
dramatically, but the maximum stress absolute value of both 
cases is similar. The highest stress is the hoop one.  

In this case, until 21,2 >ξ , the maximum is always 
received  in  the  same  material  (in which ν  is greater), despite 
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Fig. 4 Variation the relative radial (a) and hoop (b) stress, in 
hollow construction, depending on elastic modules ratio 

1,2ξ , when 21 ψψ = : PC: 1 (-×-) c
r 1,ϑ ,  

2 (-�-) c
1,θϑ , 3 (-□-) c

r 2,ϑ , 4 (-○-) c
2,θϑ ,  

NC: 5 (-×-) c
r 1,ϑ , 6 (-�-) c

1,θϑ , 7 (-□-) c
r 2,ϑ , 

8 (-○-) c
2,θϑ  

 
the arrangement of materials. 

The influence of Poisson's ratios on the relative radial 
and hoop stress values (Fig. 5) was analysed in the construction 
of the same dimensions as before, only the outer layer material 
Poisson's ratio was varied from 0.1 to 0.5, while 

3.01 == constν . 
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We can see that the stresses are changing linearly and 
they increase with the Poisson's ratios difference between the 
layers of the bar. 
 

0.1 0.2 0.3 0.4 0.5

0.2−

0.1−

0

0.1

0.2

 
Fig. 5 Stress ratios: (-×-) c

r 1,ϑ , (-�-) c
1,θϑ ,  (- □-) c

r 2,ϑ , (-○-) 
c

2,θϑ  dependences on 2ν  values, when 21 ψψ = , and 
101,2 =ξ  

 
It should be noted that numerical values of the relative 

radial stress ( ),1
c
rϑ  in the inner layer were the highest.  

The outer layer of the relative radial and circular 
stresses is smaller as a result of higher axial stress values. 

When the difference of Poisson's ratio between the 
layers is equal to zero, the stress state is linear. All curves inter-
sects at the one point (Fig. 5), and the stress ratios are equal to 
zero. 

The relative stress values do not only depend on Pois-
son's ratios difference, but they also depend on their numerical 
values. 

The closer the Poisson’s ratio is to 0.5, the higher are 
the relative stresses at the same difference between the ratios. 
 
4. Conclusions 
 

A mathematical model for the two-layer axially 
loaded cylindrical bars stresses state components (axial, radial 
and hoop) and their limit value determination was presented. 

To determine the stress state in the layer analytical 
expressions (20)-(23) of the relative stress in the contact zone, 
were obtained. These expressions enable the assessment of the 
available construction; a stress state is triaxial, biaxial or axial.  

Extreme boundaries of relative stress to determine the 
limit curve and its equation were proposed. 

It was obtained that the relative stresses depend on the 
following factors. 

1. Poisson's ratios values. The more they differ the 
greater the contact pressure and relative radial and hoop stresses 
are. Moreover, when Poisson's ratio of the material is closer to 
0.5, the relative stresses are higher, although the difference in 

Poisson's ratios remains constant. 
2. Elastic module ratios. When 11,2 ≈ξ , the relative 

stresses are of similar size in both layers.  By changing this ratio 
in the layer the material of which is less elastic, the relative 
stresses are increasing and in the stiffest one they are decreas-
ing. 

3. The radial dimensions and cross-sectional area of 
the layers. As the layer thickness goes smaller, the relative ra-
dial stresses become infinitely small, but the hoop stresses is 
finite, unequal to zero (Bi-axial stress state). The stress state is 
independent of the dimensions of the bar, where the layer pro-
portions remain constant, i.e. when the scale changes. 

4. Material arrangement in the construction. In many 
cases, the PC-type bar relative stresses are higher than those of 
the same size NC. Until the PC ratio of elastic mod-
ules 11,2 >>ξ , or 11,2 <<ξ  the maximum relative stresses are 
always obtained in the same material, regardless of the layout of 
the construction materials. 

It was identified that the inner radius r =0.5 m, the 
outer one R =0.745 m, Poisson's ratios 0.4 and 0.3, the maxi-
mum relative stresses reach 15% and while reducing the radius 
of the inner layer and increasing the thickness of the layers, the 
relative stress may increase to over 28%. 
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N. Partaukas, J. Bareišis 
 
DVISLUOKSNIŲ TUŠČIAVIDURIŲ CILINDRINIŲ 
STRYPŲ ĮTEMPIŲ BŪVIS 
 
R e z i u m ė 
 

Darbe nagrinėjamas dvisluoksnių, tuščiavidurių stry-
pų, veikiamų ašinės apkrovos, įtempių būvis. Sluoksnių me-
džiaga yra izotropinė, homogeninė, tiesiškai tampri, o sluoks-
niai koncentriniai cilindrai.  

Pateiktas matematinis modelis dvisluoksnio tempia-
mo ir gniuždomo cilindrinio strypo ašiniams, radialiniams ir 
žiediniams įtempiams ir jų ribinėms vertėms sluoksniuose nu-
statyti. Įtempių būviui sluoksniuose įvertinti gautos santykinių 
įtempių kontakto zonoje išraiškos, kurios įgalina nustatyti, kiek 
nagrinėjamai konstrukcijai įtempių būvis yra erdvinis, plokščias 
ar vienašis. Santykinių įtempių rėžiams nustatyti pasiūlytos 
ribinių verčių kreivės ir pateiktos jų lygtys. 

Nustatyta, kad santykiniai įtempiai priklauso nuo Pua-
sono koeficientų verčių, tamprumo modulių bei strypo radiali-
nių matmenų ir sluoksnių skerspjūvio plotų santykių, taip pat ir 
medžiagų  išdėstymo konstrukcijoje. Gautų lygčių analizė pa-
rodė, kad tam tikrais atvejais radialiniai ir žiediniai įtempiai gali 
sudaryti nemažą ašinių įtempių vertės dalį. Maksimalioms san-
tykinių įtempių vertėms nustatyti pasiūlytos ribinių kreivių lyg-
tys. 

 
 

N. Partaukas, J. Bareišis 
 

THE STRESS STATE IN TWO-LAYER HOLLOW 
CYLINDRICAL BARS 
 
S u m m a r y 
 

The stress state of two-layer hollow bars in which 
they are exposed to axial load is analyzed. The layers are made 
of isotropic, homogeneous, linearly elastic material, and the 

layers are as concentric cylinders.  
A mathematical model for two-layer tension- com-

pression cylindrical bar axial, radial and ring stress and to set 
the limit values in the layers is presented. To asses the stress 
condition in the layers the expression of reletive stresses in the 
contact zone is obtained. It enables to determine how much for 
the construction under discussion, the stress state is three-
dimensional, two-dimensional or axial. For the relative stress 
determination a limit curve and its equation are proposed. 

It has been determined that the relative stresses de-
pend on the values of  Poisson's ratio, modulus of elasticity, the 
radial dimensions and cross-sectional layer areas ratios, also the 
layout and construction materials. The analysis of the derived 
equations demonstrated that in certain cases, radial and circular 
stresses may form a significant part of axial stress value. The 
maximum relative stress-establish the proposed limit curves 
equation. 
 
 
Н. Партаукас, И. Бареишис 
 
НАПРЯЖЕННОЕ СОСТОЯНИЕ В ДВУХСЛОЙННЫХ 
ПОЛЫХ ЦИЛИНДРИЧЕСКИХ СТЕРЖНЯХ  
 
Р е з ю м е 
 

В работе исследовано напряженное состояние 
двухслойных полых цилиндрических стержней, нагружен-
ных осевой силой. Слои концентрических цилиндров изго-
товлены из изотропного, гомогенного, линейно упругого 
материала. 

Представлена математическая модель для опре-
деления осевых, радиальных и кольцевых напряжений и 
их предельных значений в слоях двухслойных стержней  
при их растяжении и сжатии. Для оценки напряженного 
состояния в слоях, получены выражения относительных 
напряжений в зоне контакта, которые  позволяют оценить 
насколько для данной конструкции, напряженное состоя-
ние является трехмерным, двумерным или осевым. Для 
определения предельных значений относительных напря-
жений установлены кривые предельных значений и пред-
ложены их уравнения. 

Установлено, что относительные напряжения за-
висят от значений коэффициента Пуассона, модулей упру-
гости, а также и от отношения радиальных размеров 
стержня с площадью поперечных сечений слоев и от рас-
положения материалов в конструкции. Анализ получен-
ных уравнений показал, что в определенных случаях, ра-
диальные и кольцевые напряжения могут составить суще-
ственную часть осевых напряжений. Для определения 
максимальных значений относительных напряжений 
предложены уравнения предельных кривых. 
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