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An analysis of beam elongation influence to postbuckling
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1. Introduction

In the analysis of buckling and postbuckling of
beams and plates, applied load is commonly considered to
be a constant in direction and intensity (i.e. dead-load) [1-
3]. In the case of beams, a very small increase in the load
over the critical value produces extremely large displace-
ment from the primary equilibrium position [1], so the as-
sumption about the unchanged intensity and direction of
the load may be incorrect. Axial deformation of a beam is
neglected because of large lateral displacements and
constant axial force. In practice, the applied axial force,
which causes buckling, often arises from the compression
of another elastic part of the system (elastic support,
adjacent member in truss, etc.), and this force may depend
on the postbuckling displacement [4]. An assumption that
treats this load as a dead load is satisfactory for the
calculation of the critical load, however, the postbuckling
behavior is significantly different [5, 6] and it is not widely
researched. In this case, a displacement dependent force
may cause beam elongation and axial deformation must be
taken into account.

This paper deals with the numerical and experi-
mental analysis of the influence of beam elongation on
postbuckling displacements of a beam under axial force
produced by the compression with an elastic bar, which is
initially compressed while the beam is in the straight-line
position. Axial force produced in this way, is constant in
direction but its magnitude changes with the lateral dis-
placements of the buckled beam. This setup makes the
analysis different from common problems in the
postbuckling analysis of beams [2]. Numerical analysis is
done using the finite elements method, where the Euler-
Bernoulli beam is considered. Numerical results are
obtained by the direct solution of equilibrium equation. An
experimental verification is performed for the considered
problem. The paper presents experimental setup and ex-
perimental results for a simple (pinned-pinned) Euler
beam. Numerical results are compared with the obtained
experimental results.

2. Problem formulation

Let us consider axially loaded beam as shown in
the Fig. 1. The load is applied by compression of the spring
of stiffness Cy. Axial force is introduced by initial
shortening of the spring for length Aly, while the beam was
restrained in the straight line position. When the beam
looses stability of straight line position, lateral
displacement causes shortening of support distance and,
because of that, elongation of the rod and decreasing of the

axial force exerted on the beam. Decreasing of the axial
force also results in increasing of the beam length, what
causes additional lateral displacements of the buckled
beam. It is supposed that elastic properties of the system
remain linear under this displacement.

Bended shape of the beam and elongation of the
elastic rod may be uniquely determined by the lateral
displacement W(S) measured in the natural coordinate
system [1].
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Fig. 1 Axially loaded simple beam for which the load
varies during buckling process

3. Numerical analysis

Numerical analysis is performed by using Finite
Element Method (FEM). For this purpose, the beam in
Fig.1 is divided into n standard Euler beam elements with
two nodes and four d.o.f. in the element displacement
vector {d}7 = {w; Wi W, Wy, T, where w; and w, are

lateral displacements and w;s and W,s are derivatives
(Fig. 2).

3.1. Interpolation of displacement

Using the derivatives W;, and W, as nodal
displacements (which represent sine of slope angles)
instead of slope angles 6 and 6, allows the usage of the
same function of interpolation and shape function as in the
linear finite elements analysis.

Fig. 2 Deformed shape of the beam finite element in case
of large displacements



Considering the standard third order polynomial
interpolation function, the displacement of an arbitrary
point inside the element €; could be calculated from the
nodal displacements as

Wi (s) =[NJ{d}" = N, Ny N,J{d}* (D
where N;, j = 1,...,4 are the coefficients of beam element
shape matrix [N].

The shape matrix [N] has the same form as in the
case of linear analysis of bending and stability [7]. The
difference is only in the coordinate system which is used.
Expression (1) holds only in the interior of finite element
€.

3.2. Potential energy of deformation

Curvature of the beam elastic line in the natural
coordinate system be expressed by using the displacement

we (s)as [1]

e Wei (s)’sS (2)
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where « is the curvature and ( ),s and (), are the first and
second derivatives with respect to S.

By expanding the expression (2) in the power
series, and by considering up to the third order terms, the
curvature may be written as

K= Wei (S)’SS +%WEi (S)’ss Wei (S),ZS (3)

Beam shortening due to lateral displacements
(equal to the spring elongation) may be calculated on the

basis of displacement W% (s) as, [1],

Al :i[l —Ij,/l—we‘ (s)ids} 4)

where Al, is beam shortening and | is length of finite
element e;.

Expanding to power series and limiting to terms
of the forth order, the shortening may be written in the
following form

nol
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Deformation energy of the considered system of
beam and spring is then
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:%Z Bj(w‘*i (S) +%wei (s), W (s)ij ds+

+= CO[NOS Zn:_i'( W (s)% +— We'(S)) ] (6)

where B is the beam bending stiffness.
Using equation (1) for interpolation of displace-
ments in interior of particular finite element, deformation

energy may be written in terms of the nodal displacements
as
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3.3. Influence of beam elongation

Decreasing the axial force by CyAl, causes the ax-
ial elongation of the compressed beam by

coAll,

Aly, =
bo AE

®)
where AE is beam axial stiffness and I, is beam length.
It is known that small axial shortening of the

buckled beam corresponds to high lateral displacement [1].
It is taken into account by defining apparent stiffness of the
spring using the equation

Capp (41, + 410) = ¢, 4, O]
Using this value of axial stiffness additional elongation of
the spring for Aly, is simulated.

3.4. Equilibrium equation
Derivation of the expression for deformation en-

ergy (7) in sense of displacement get equilibrium equation
in the form

>[Ik )" + [k T ) ]

~Capp (AlOs —i[z({d}% )T (k.. 1% {d}* }Jx
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where [K]9 :.[ B[N][N]ds is the element stiffness
e, J‘[N

stiffening matrix,

matrix and [ ds is the element stress

adopted from linear analysis [7].
Matrices [k, ] and [k, ,]% are nonlinear element stiffness
and stress stiffening matrices given by the equations

[T =) (B(IND. i) ) INTLIND,, +
2 (11)
+B([NT. {d)* ) INTLIN], s

[k 1 = [ (IN1 103" INTL N, [ds (12)



Axial load exerted on the beam after buckling is given as

"1 ! . !
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where original spring stiffness Cy is used.
Summing matrices at the element level over all n
finite elements, equilibrium equation (10) may be written
in the simplest form

[KI{D} +[K,]{D} -

~P({D})([K,1{D} +[K,,1{D}) =0 (14)
where [K], [K;], [K,] and [K,] are global matrices of
linear and nonlinear stiffness and stress stiffening, created
by standard finite elements procedure from the correspond-
ing element matrices [k]%, [k 1%, [k, ]% and [k_,]%, and
{D} is global displacement vector.

3.5. Direct solution of equilibrium equation

The equilibrium equation (14) is a set of nonlinear
algebraic equations, and its solution may be obtained by
direct numerical solution procedures. In this case the
method of linear iterations is used. For this purpose,
equation (14) is transformed in the form

{D} =[KT" (-[K,]{D} +

+P({D})([K, 11D} +[K,, 1{D}))’ (15)
Setting initial force Py = Cy4lys and considering initial solu-
tion {D}”, solution of Eq. (14) is determined successively
by applying Eq. (15). After solution in i-th iteration is cal-
culated, the solution of (i +1)-th iteration is then calculated
as

(D} =[KT" (-IK, 1{D}" +

+PUDN® (IK, 1D} +[K,,](D}"))  (16)

Apparent stiffness and axial force in current iteration are
calculated as

®
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The calculations are performed until the conver-
gence of displacements is achieved. Solution for the par-
ticular simple beam is presented in Fig. 3. It is shown that
in case of such kind of axial force moderate displacement
of order beam thickness appear.

The convergence of the middle point displace-
ment of a simple beam in sense of required mesh density
for different values of initial axial force is shown in Fig. 4.
It can be seen that the value of displacement converges for
very small number of finite elements.

The number of required iterations for fixed
number of finite elements and initial value of axial force is
presented in Fig. 5. It can be seen that the number of
iteration is almost independent on the number of finite
elements, and the result converges after approximately 30
iterations.
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The influence of beam elongation on postbuckling
displacement of the middle point of simple beam for
different axial stiffness of spring is presented in Fig. 6. If
the beam elongation is not taken into account, error
increases with increasing of axial stiffness of the spring
and tends to 30%.
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Fig. 3 Postbuckling displacement of middle point of simple
beam calculated by linear iteration. Initial solution is

first buckling eigenvector
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Fig. 4 Value of vertical displacement of the beam middle

point for different values of the initial axial force
and different number of finite elements
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Fig. 5 Convergence of the calculation of the simple beam
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buckling eigenvector, where the displacement of
midpoint is scaled to w = 0.000092 [m]
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Fig. 6 Difference in the displacement of middle-point of a
simple beam if the beam elongation is and it is not
taken into account

4. Experimental analysis

An experimental testing
illustrated in Fig. 7 is provided.

using equipment

Amplifier
(SPIDER 8)

Fig. 7 Schematic view of experimental setup

Beam-like specimen 4 is connected to the testing
platform 7 with two supports 3 and 5. Axial force over
axially movable support 3 and measured with strain gage
dynamometer 2 is applied. The dynamometer is a hollow
circular steel tube with bonded strain gages LY6/120
connected in a full Wheatstone bridge. Dynamometer is
also the main bearer of axially movable part of movable
support. Displacement is measured with inductive
displacement transducer WA20, positioned at the middle
point of the beam and on the axially movable support. The
beam is restrained in a straight position until the force is
regulated by adjusting screw 1 to a desired value P, > Py.
After initial compression beam is allowed to buckle. Force
and displacement of the characteristic point are measured
by amplifier SPIDER 8 in transition to the new equilibrium
position. This testing for different initial values of the axial
force is repeated. To remove the influence of contact force
of the displacement transducer, the displacement is
measured using the movable rod 6, which is driven by a
screw to make a contact with the buckled beam. Contact
between them is registered by the indicator closed current
circuit.
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The experiment is performed for the prismatic
steel beam with the following characteristics: modulus of
elasticity E = 207 GPa, length I, = 0.382 m, and cross
sectional area A = 14.3x2.628 mm, critical force P, =
=302.9 N. The beam is supported by pinned supports, as
shown on Fig. 7.

4.1. Identification of axial stiffness

Movable support is a complex system, and axial
stiffness of axially movable support is determined
experimentally. The change of axial force and axial
displacement of the movable support caused by buckling is
measured. Fig. 8 presents the change of value of axial
force during initial compression and buckling process.
During initial compression, force—displacement depend-
ence slightly differs from straight-line because of support
adjusting. Large displacements of the beam cause beam
shortening, and this shortening also causes decompression
of the dynamometer, what is presented by the left part of
Fig. 8. The beam snaps to a new position and the sudden
change of the axial force appears, what produce vibrations
around new buckled configuration. The dependency force-
displacement during buckling is linear and defines axial
stiffness. Measurement for values of P, < Py < 2P, is
performed.

Measured value of axial rigidity of elastic parts in
the system of the movable support is ¢ = 14.48 MN/m.
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Fig. 8 Numerical and experimental displacements of the
beam middle point

5. Comparison of numerical and experimental results

The results of numerical and experimental
analysis for the pinned-pinned support condition of a beam
are shown in the Fig. 9. Numerical results predict stable
postbuckling state, however, due to the existing
imperfections in this experiment, the beam tends to buckle
on the one side. Buckling in the opposite direction by
additional external influence may be achieved. Also,
imperfection causes lateral displacements for the value of
the axial force that is less than the exact value of the
critical force.

Experimental analysis shows that numerical
analysis with introduced beam elongation may be used to
predict the wvalue of postbuckling displacements.
Experimental results depart somewhat from the numerical



analysis, because of the imperfections of real beam-like
probe and approximations used in the numerical model.
Discrepancy of the results slightly increases with the
increase of initial value of the axial force.
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Fig. 9 Comparison of numerical and experimental results
for the displacement of middle point of simple beam

6. Conclusion

An influence of beam elongation on equilibrium
states of a buckled beam compressed by an elastic body is
analysed both numerically and experimentally. In the
numerical analysis, the equilibrium equation, containing
third order nonlinearities, is derived using the finite
elements method. Using the method of linear iterations for
different initial axial compression the equilibrium equation
is solved. The results already converge under a small
number of finite elements, within only a few iterations. It
is shown that beam elongation affects the value of lateral
displacements, and its influence is increasing with
increasing of axial stiffness of body compressing the beam,
and may have the value of even 30%. Effect of beam
elongation is taken into account by defining apparent axial
stiffness of the compressive body.

The experimental results show good coincidence
with numerical results for initial value of axial force
greater than critical when the beam elongation is taken into
account. Displacements of the compressed beam exist
when the force has a less value than critical. Accuracy of
numerical results decreases for initial axial force close to
critical, due to the presence of imperfections in a real
system.
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STRYPO PAILGEJIMO ITAKOS KLUPDYMO VIRS
KRITINES RIBOS POSLINKIAMS PRIKLAUSOMALI
NUO ASINES JEGOS POVEIKIO ANALIZE

Reziumé

Straipsnyje analizuojama strypo, veikiamo aSine
spaudimo jéga, priklausoma nuo deformacijos dydzio, pa-
ilgéjimo jtaka klupdymo vir§ kritinés ribos poslinkiams.
Atlikta skaitiné ir eksperimentiné Sio poveikio analizé.
Skaitiné analiz¢ atlikta baigtiniy elementy metodu. Taikant
iteracijy metoda sudaryta ir iSspresta netiesiné sistemos
pusiausvyros lygtis. Skaitinés analizés rezultatai patikrinti
eksperimentiskai. Skaitiniai ir eksperimentiniai tyrimy
rezultatai rodo, kad strypo pailgéjimas turi didelg itaka vir$
kritinés ribos klupdomo strypo poslinkiams.

V. Dolecek, S. Isi¢, A. Voloder

AN ANALYSIS OF BEAM ELONGATION
INFLUENCE TO POSTBUCKLING DISPLACEMENTS
UNDER DISPLACEMENT DEPENDENT AXIAL
FORCE

Summary

This paper presents an analysis of beam elon-
gation influence on the postbuckling displacements in case
of axial compression by a force depending on axial
deformation of the beam. It is performed both numerical
and experimental analysis of this effect. Numerical
analysis is done by using finite elements method. Nonlin-
ear equilibrium equation is derived and solved using the
method of simultaneous iterations. Verification of numeri-
cal results is done by experimental analysis. Both numeri-
cal and experimental results show significant influence of
the beam elongation on postbuckling displacements.



B. Honeuek, C. Ucuy, A. Boroxep

AHAJIN3 BJIMSHUSA YUIMHEHNS CTEPXKHSI [1PU
EI'O BO3JIEMCTBUM OCEBOM CUJION,
3ABUCSILEN OT JE®@OPMALIMIL HA EI'O CIBUT
[IPU CJ)KATHHU B 30HE, [TPEBBIIIAIOLIEN
KPUTUYECKUIA [TPEJE]T

PesmomMme
B crarbe aHanmM3MpyeTCs BIMSHUC YIJIHMHCHHS

CTEPKHS Ha €ro YCTOMYUBOCTD MPHU CHKATUU OCEBOW CUJIOH,
3aBUCSIIEH OT BEMMYMHBI JeopManuy B 30HE, IMPEBHI-

30

marouie kpurtuueckuil npenen. I[IpoBeneH 4nuciaeHHbI U
9KCICPUMCHTAIBHBIA aHaN3 3Toro 3¢ dekra. UnciaeHHbIH
aHaJIU3 MPOBEACH NPU HCIIOIb30BAaHUU METOIa KOHEYHBIX
aneMeHTOB. CocTaBlieHa METOJIOM MTHOBEHHBIX UTepanuit
U pellieHa CUCTeMa HEIMHEHHBIX YpaBHEHUI PaBHOBECHUS.
PesynbTaThl YMCIOBBIX MCCICIOBAHUIN MPOBEPEHBI JKCIIC-
pUMeHTaNbHO. UWCIIOBBIE W AKCHEPHUMEHTABHBIC HCCIIC-
JTOBAaHUS MMOKA3BIBAIOT CYIIECTBCHHOE BIUSHUC YITMHCHUS
CTepKHA Ha ero aedopMamuu CXaTusi B 30HE, IPEBBI-
LIaKoIIed KpUTHUECKUN ITpenes.
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