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Effect of sensor locations on the solution of inverse Stefan problems
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1. Introduction

Inverse Heat Conduction Problem (IHCP) has re-
ceived a special attention from engineers, mathematicians
and physicists[1]. It has many applications in different
branches of science and technology. One of the most im-
portant applications of IHCP is solidification processes,
because the quality of solidified material is deeply depen-
dent on the cooling boundary conditions [2]. So the cool-
ing rate at the boundary and thus the solid-liquid interface
velocity define the solidified materials quality. Thus, the
desired material structures with desired quality and me-
chanical properties can be obtained by controlling the
thermal boundary conditions.

A wide variety of numerical methods were used
for direct and inverse modelling of solidification problems.
Voller [3] presented an enthalpy method with future time
stepping to solve inverse Stefan problem. The problem was
investigated with and without fluid flow consideration us-
ing Beck’s method, the steepest descent method and con-
jugate gradient method by references [4-11]. They used
front fixing and front tracking finite element method. In
their approach the problem should be treated as two dis-
tinct inverse problems for both liquid and solid phases.
Frankel and Keyhani [12] and Hale et. al. [13] applied the
global time method (GTM) to control interfacial tempera-
ture gradient and velocity. Xu and Naterer [14-16] esti-
mated boundary temperature history to control the velocity
and acceleration of the interface using combined experi-
mental and numerical techniques. The numerical method
was developed for enthalpy with control volume based
finite element method and Beck’s inverse method. Re-
cently, Okamoto and Li [17] used Tikhonov regularization
method to control the velocity and the shape of the solid-
liquid interface. Hinze and Ziegenbaly [18] solved inverse
Stefan problem for one and two region problems using
steepest descent method.

In this study, the heat flux test case is applied as a
boundary condition and the temperatures at different sen-
sor locations are recorded. These temperatures are used as
desired temperatures or measured temperatures. Then the
objective of the IHCP is to reconstruct a boundary heat
flux which leads to this temperature history at sensor loca-
tions. The cost functional is defined based on temperature
difference between the desired temperature and the com-
puted temperature at the sensor location. The accuracy of
the solution can be evaluated in comparison of the results
with the first input heat flux, used to generate desired tem-
peratures. The effect of different sensor locations is inves-
tigated on the solution of inverse problem. The results
show that the solution is less accurate especially when the

sensor is far from the active boundary. A random noise is
added to the measured temperatures to evaluate the effi-
ciency of solution under the perturbed input data in real
practical measurements due to the instruments error. The
simulated results show a close agreement with desired one
even in high noise levels.

2. Governing equations

The unidirectional conduction-dominated solidifi-
cation of a pure material with boundary conditions is
shown in Fig. 1. The governing equations of the problem
in enthalpy form are nondimensioned as equations set (1)
using following nondimensional distance, time, tempera-
ture, enthalpy, Stefan number and boundary heat flux
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where H is the enthalpy, T is the temperature and q(t) is

the boundary heat flux, Ste is the nondimensional form of
latent heat known as Stefan's number.
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Fig. 1 Schematic problem representation



Thus, the nondimensional model equations de-
scribing the temperature distribution in the solidifying re-
gion based on enthalpy form can be written as follows
[19]. The sign over the nondimensional parameters is ne-
glected for simplicity.
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The direct problem given by the sets of Eqs. (1)
and (2) is for the determination of the temperature field
T(X,t) and the interface velocity when the boundary heat
flux q(t) at x =0 is known.

On the other hand for the inverse problem, the
heat flux q(t) at x=0 is unknown while the temperatures

at some points, velocity, acceleration or location of inter-
face are known. The heat flux can be estimated by using
the measured temperatures or the desired temperatures
(pseudo measured temperatures).

So the inverse problem is established which
minimizes the objective function, cost function, defined
base on the L, norm of the error between the calculated

and the desired temperatures at sensor location (xm: meas-
urement point). In other words[1, 20]
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The conjugate gradient method with adjoint prob-
lem is applied to minimize the cost function of Eq. (3).

3. The sensitivity problem

It is assumed that the temperature T(X,t) and the
enthalpy H(X,t) change with an amount AT(X,t) and
AH (X, t), respectively when q(t) undergoes a perturba-
tion Aq(t). By substituting [T+4T] for T(xt),
[H+4H] for H(x,t) and [q+4q] for q(t) in the direct

problem Eq. (1) and subtracting the original direct problem
the following expressions are obtained as introduced in
[20]
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As AH =A4T . Clearly AT(x,t) represents

changes in T(X,t) with respect to the changes in the un-
known q(t) ; hence, is a sensitivity function. Egs. (4) can be
solved to obtain an optimal search step size.

4. The adjoint problem

To derive the adjoint problem, a new function
A(x,t) called Lagrange multiplier is introduced. In adjoint
problem the governing equations are multiplied by A(X,t)

and integrated over the spatial and temporal domains. The
results are then added to the cost functional Eq. (3) as
achieved in [20]
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The following adjoint problem can be obtained by
replacing T by [T +4T], q by [q+Aq] and s(q) by
[S(q)+A5(q)] in Eq. (5) then subtracting the obtained re-

sult from Eq. (5) and further using boundary and initial
conditions and allowing terms containing AT (X,t) to van-

ish
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After eliminating the terms containing AT (X,t),
the following integral term is left.

4s(q) = [} ~A(0.t) Aqdt )
since q(t) € L,(0,t;), one can write:
4s(q) =1 Aqvs[q(t)]dt ®)

Comparing the last two equations, one obtains
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Eq. (9) is used to calculate the objective function
gradient. Note that in the adjoint problem the last condition
is the value of A(X,t)at t=t,. However, the final value

problem Egs. (6) can be transformed into an initial value
problem by defining a new time variable given
byr=t, —t.

5. The conjugate gradient algorithm (CGM)

The unknown function q(t) can be determined by

a procedure based on minimizing of the objective function
s[q(t)] with an iterative approach by a proper selection of

the direction of descent and the search step size. The fol-
lowing iterative scheme is considered as conjugate gradient
method (CGM) to estimate the unknown heat flux[20]

gty =g - gd ) (10)

where Kk denotes the iteration number. The direction of de-
scent d*(t) is approximated from the following formula

d*(t)=-Vs[g“(t)], fork=0
(11)
d*(t) = —Vs[q* (t)]+ y*d* (1), for other k

The conjugate coefficient is defined according to
the following expression
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To implement the iterative procedure, one needs
to develop expression for the optimal search step size B

and solve the sensitivity problem by setting Aq(t) =d*(t).

The following formula is used for the calculation of S*
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The following stopping criterion is chosen to stop

the iterative procedure
sl (V] < ¢ (14)
where ¢ is the specified tolerance of the order —6 for the

noise free data and will be computed using discrepancy
principle for noisy data.

6. Simulation and results

A second order central space finite difference and
a third order compact Runge-Kutta scheme, RK3, is con-
sidered for computing the spatial derivative and the time
advancement in direct, sensitivity and adjoint equations,
respectively. The time advancement scheme developed by
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Wray [21] is used for the time marching of the simulation.
According to this scheme, the time advancement is per-
formed in three sub-steps. Detailed discussions along with
some numerical tests to evaluate the order of accuracy of
the numerical approach can be found in reference [21].

The aforementioned inverse method is applied for
a material with Ste = 1.5. To validate the method, consider
that the liquid is initially at T, =0.5.

A known heat flux is exposed to the boundary and
the calculated temperature at sensor location is used as
temperature measurement. A triangular heat flux with the
following equation is applied for time t; =0.3.

120t+15, 0<t<0.125
q(t)={-120t+45, 0.125<t<0.25 (15)
15, t>0.25

The exact and computed heat flux (triangular) and
resulting interface locations are illustrated in Figs. 2 and 3.
The accuracy of heat flux reconstruction is weaker when
the sensor is far from the active boundary as illustrated in
Fig. 2.
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Fig. 2 Desired and reconstructed triangular heat flux for
different sensor locations
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Fig. 3 Desired and computed interface locations for trian-
gular heat flux

Although the reconstructed heat flux has weak ac-
curacy, it shows a good estimation for the interface loca-
tion. The reduction rate of the objective function is shown
in Fig. 4. It indicates the convergence rate of the numerical
solution.

To evaluate the performance of the numerical ap-



proach in problems with sharp gradients, the following step
function is applied as an input and recovered by the inverse
approach.
10, 0<t<0.15
t)y=1_" 16
a® {20, 0.15£t<0.3} (16)

The desired and computed heat flux for different
sensor locations is depicted in Fig. 5. Also, Fig. 6 shows
the reduction rate of the objective function for the step
function.

From the obtained results, it is clear that the
method have a good convergence and acceptable results
even when the sensor is far away from the active boundary
for different types of heat flux containing sharp gradient in
the step function.

In order to evaluate the difference between the
desired and estimated heat flux, a relative root mean square
error €y is defined as

_ \/(1/ M )Zr'\::l (qdesired,m - qestimate,m )2
JUMEY (Gges )’

x100 (17)

RMS

where M is the total number of time steps. The comparison
of the error estimation is illustrated in Fig. 7 for different
sensor locations. It can be seen that although all sensor
locations have acceptable range of error, the error increases
gradually as the sensor becomes far from the boundary.
Thus in inverse heat flux estimation the sensor must be as
closely as possible to the active boundary. This phenome-
non will have a special importance in controlling the so-
lidification interface velocity because in such a kind of
problem there is a moving sensor exactly located at the
interface and it goes far from the active boundary gradu-
ally. Then it is expected that the solidification control re-
sults become less accurate in comparison with the station-
ary sensor locations.
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Fig. 4 Objective function reduction rate for triangular heat
flux

The proposed approach is tested over a range of
Stefan numbers and it is observed that the method is inde-
pendent of the Stefan number. A quantitative representa-
tion of the effect of Stefan number, the RMS error for a
wide range of Stefan number at different sensor locations
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is presented in Table 1 for step heat flux. It is obvious that
the Stefan number does not have an important effect on the
solution of inverse problem using the proposed approach
especially for the heat flux with sharp gradient.
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Fig. 5 Desired and reconstructed step heat flux for different
sensor locations
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Fig. 6 Objective function reduction rate for step heat flux
7. Effect of measurement errors

In order to evaluate the effectiveness and stability
of the inverse method under noisy data, a random noise is
added to the measured data. This is of the great importance
for practical applications because there are some noises in
measured data due to the measuring device errors. The
simulated measurement data are constructed by perturbing

the exact temperature T which obtained from the test
heat flux simulation, with an artificial measurement error
o using the following formula

T(X,) =T +ow (18)
where o is the standard deviation of the measurement and
w is generated from a zero mean normal distribution with
variance one. In this study different values of o are cho-
sen to evaluate the stability of the method under the real
practical conditions.

The stopping criterion in equation (14) is modi-
fied using the following discrepancy principle for the per-
turbed data
19
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Table 1
Comparison of RMS of computed heat flux for different Stefan numbers
RMS Error (%)
Stefan Number Xm=0.1 Xm =03 Xm=0.5 Xm=0.7 Xm=09
0.5 2.33 4.39 6.14 8.05 10.15
1 2.37 4.37 6.52 8.82 10.22
1.5 2.32 4.39 6.14 8.05 10.16
2 2.32 4.44 7.83 9.14 10.56
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Fig. 7 Heat flux RMS error estimation for different sensor
locations

Different measurement errors with different stan-
dard deviations are considered at X =0.1. Other sensor

locations are not considered due to the fact that sensors
which are far from the active boundary make the solution
less accurate. Thus the sensors at the start and the middle
point of the mould are investigated. The reconstructed
heat flux for noisy and noise free measurements for
X, =0.1 is shown in Fig. 8 and 9 for triangular and step

shape heat fluxes, respectively. Table 2 shows the values
of RMS error of estimation and the final value of objective
function for different noise values. As indicated, the ob-
tained results are still acceptable even with noisy data of
o =0.1. However, due to strong ill-posed of the consid-
ered inverse problem, the accuracy of the solution becomes
weaker and the estimation results could be unreliable with
larger noisy data employed.
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Fig. 8 Reconstructed triangular heat flux of noisy measured
temperature at Xp,, = 0.1

Fig. 9 Reconstructed step heat flux of noisy measured tem-
perature at X, = 0.1
Table 2
Comparison of objective function and RMS of computed

heat flux for different o

Triangular Heat Flux
o Objective Function RMS Error (%)
0 9.88E-07 0.056
0.02 2.28E-04 0.363
0.05 1.3E-03 0.58
0.1 4.9E-03 0.62
Step heat flux
o Objective Function RMS Error (%)
0 9.65E-06 2.32
0.02 2.20E-04 2.70
0.05 1.3E-03 3.32
0.1 5E-03 3.62
8. Conclusion

A transient inverse solidification problem was
formulated and solved by applying the conjugate gradient
optimization method. In addition, the enthalpy formulation
was applied to solve the inverse problem in a fixed domain
to avoid the solution for liquid and solid phases separately.
Two known heat flux test cases were considered as bound-
ary condition to generate the time history of temperatures
at sensor locations. These temperatures were used to re-
construct the boundary heat flux. The obtained results indi-
cated that the accuracy and the convergence of the solution
become stronger when the sensor is located near to active



boundary. To evaluate the performance of the method to
random noise in measured data, a random noise with
0=0.02,0.5 and 0.1 was added into the measured tem-

peratures. The reconstructed heat fluxes indicated a weak
dependency on noisy data even for large relative noises. It
was shown that the stability and accuracy of the estimation
become weak with large noise amplitudes due to ill-posed
of the inverse heat transfer problems.
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Abbas Nejad, M.J. Maghrebi, H. Basirat Tabrizi

SENSORIAUS PADETIES JTAKA ATVIRKSTINES
STEFANO PROBLEMOS SPRENDIMUI

Reziumé

Sio tyrimo tikslas — jvertinti sensoriaus padéties
itaka sprendziant atvirksting Stefano problema. Tiesinis
laidumas yra panaudotas sukietéjimo procesui valdyti. En-
talpijos savoka kartu su jungtiniu gradiento metodu yra
panaudoti krypties problemoms formuluoti ir tikslo funkci-
jal minimizuoti. Sensoriaus padéties kvadratinio nukrypi-
mo suma tarp iSmatuotos ir apskaiCiuotos temperatiiros
panaudotos kaip tikslo funkcija. Matuojamos temperatiiros
modeliuojamos naudojant tiesini trikampio ir slenks¢io
pavidalo ribinj $ilumos srovés sprendini. Parinktos skirtin-
gos sensoriaus padétys besipleCian¢ios erdvés skaiciavimo
srityse. Rezultatai rodo, kad esant sensoriui toliau nuo ak-
tyviy riby (riby, kuriose veikia §ilumos perdavimo srovés)
paklaida restauruotoje Silumos erdvéje yra didesné ir at-
virk§¢iai. IStyrus ivedimo duomeny trukdziy efekta matyti,
kad net esant aukStam matavimo duomeny trukdziy lygiui
sprendimas biina stabilus.

A. Abbas Nejad, M.J. Maghrebi, H. Basirat Tabrizi

EFFECT OF SENSOR LOCATIONS ON THE
SOLUTION OF INVERSE STEFAN PROBLEMS

Summary

The aim of this study is to investigate the effect of
sensor location on the solution of inverse Stefan problems.
A unidirectional conduction driven solidification process is
considered. The enthalpy formulation along with conjugate
gradient method is used to simulate the direct problem and
minimize the objective function. The sum of square devia-
tion between the measured and the calculated temperatures
at sensor location is defined as objective function. Meas-
ured temperatures are simulated using direct solver for



triangular and step shape boundary heat fluxes. Different
sensor locations in the spatial extent of the computational
domain are selected. The results show that as the sensor is
taken further from the active boundary (the boundary
which heat flux applied on it) the error in reconstructed
heat flux becomes larger and vice versa. Also the effect of
noisy input data is investigated which indicate that the so-
lution is stable even in high noise levels in measured data.

A66ac Hesin, M.J.Marxpe6u, X.bacupar Ta6pusu

BJIVSTHUE TIOJIOXKEHWST CEHCOPA J1JIS1
PEIIEHNA OBPATHOMU ITPOBJIEMbBI CTE®@AHA

Pe3zmomMme

[lenpro 3TOTO HCCIEAOBAHUS SIBISETCS OIECHKA
BIIMSIHUS TIOJIOKEHUSI CEHCOpa NPH PEIICHHH OOpaTHOH
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npobnemsl Credana. [[ng ynpaBiaeHns MporeccoM 3aTBep-
JEHUS MCIOJIB30BANIach NpsAMas NPOBOAUMOCTb. Dopmy-
JMPOBKa SHTAIBINKA BMECTE€ C METOAOM OOBEIUHEHHOTO
rpajiieHTa UCIIOIb30BAINCH JIISL PEIleHHs] MPoOIeMbl Ha-
MpaBICHUS ¥ MUHAMHU3AIWH 11eneBoi ¢pyHkuuu. V3mepse-
MbI€ TEMIIEpaTypbl MOJCIUPOBAIUCH MPH HCIOJIB30BAHUH
JIMHEHHOTO TPEYroJIbHOTO W TIOPOTOBOTO IPENEIHEHOTrO
penreHus Uil TemioBoro moroka. [lomoOpaHHbIe pasHbIC
TIOJIOXKEHHSI CEHCOpa B PacyeTHBIX 00JACTSAX PacLIMpSIO-
IIErocs MPOCTPaHCTBA. Pe3ynbTaThl pacyera MOKa3aiu, 4To
IPH TIOJIOKEHUH COHCOPA JAJIbIIe OT aKTHBHBIX IPEIENIOB
(TipenenoB, rae AeHCTBYIOT MMOTOKU MEpeaBaeMoro Teria)
ommOKa B peCTaBpHUPYyeMOM TEIUIOBOM IIPOCTPAHCTBE SIB-
nsiercst 6oubieit 1 HaoOopoT. MccnenoBan 3¢ ekt nomex
BBOJIMMBIX JAHHBIX MOKA3aj, YTO JaXe 3HAYUTEIbHBIC TO-
MEXH U3MEPSIEMBIX JTaHHBIX AAI0T CTAaOMIIBHOE pEelICHHE.
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