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1. Introduction

Functionally graded materials (FGMs) are a new
type of advanced composites that are introduced for use in
high temperature environments. The composition, micro-
structure and/or crystal structure of the FGMs change
gradually which lead to form a nonhomogeneous material
with continuously varying thermomechanical properties. In
recent years, FGMs have been used widely in other appli-
cations [1].

According to the experimental studies of Kawa-
saki and Watanabe [1], when sudden cooling is applied to
ceramic/metal FGMs, some edge cracks are created on the
ceramic surface. Therefore, examining the surface crack
problem in FGMs under thermal loading, especially ther-
mal shock, is important in failure analysis of these materi-
als.

Jin and Noda [2] derived the general form of the
thermoelastic crack-tip fields in FGMs. They assumed that
the material properties are continuous and piecewise dif-
ferentiable function of spatial position and some of them
are not zero at the crack-tip. According to their study, the
variation of material properties does not affect the order of
singularity of thermoelastic crack-tip fields. Kishimoto et
al. [3] showed that in the presence of thermal loading, the
path independency of original J-integral is lost. They pre-
sented a path-independent form of J-integral included extra
term to regard the thermal effect. Analytical approaches
including perturbation method and singular integral equa-
tions have been used to consider thermal fracture of FGMs
[4, 5]. It is important to know that using analytical ap-
proaches is limited to some simple problems or especial
conditions. For example, Noda and Guo [5] have studied
the edge crack problem in FGMs under thermal shock us-
ing the perturbation method. For the sake of simplification,
they assumed that the Poisson's ratio is constant. Yildirim
[6] and Dag [7] developed an equivalent domain integral to
compute the mode-I stress intensity factor (SIF) under
steady-state and transient thermal loading in isotropic and
orthotropic FGMs, respectively. Dag and Yildirim [8] im-
plemented the Ji-integral to evaluate the mixed-mode
stress intensity factors in FGMs under thermal loading.
These analyses were performed by using very fine meshes
of regular elements in HEAT2D and FRAC2D software.
KC and Kim [9] used the interaction integral to evaluate
the mixed-mode SIFs under steady-state thermal loading.
Chen [10] used interaction integral in conjunction with
element-free Galerkin (EFG) method to compute SIFs for
an interface crack in orthotropic functionally graded coat-
ing under steady-state thermal loading. These results were

obtained by using first-order polynomial basis functions
which lead to a fine node arrangement. Also, Chen re-
ported the value of J-integral was not completely path-
independent and results were unreliable for small integral
domain sizes.

The EFG method provides an efficient and robust
framework to analyze fracture mechanics problems. This
method has been implemented for fracture analysis of
cracks in FGMs under mechanical loading e.g. [11] or
steady-state thermal stresses [10]. In this paper, the EFG
method is applied in both steady-state and transient ther-
mal fracture of FGMs. The transient thermal loading is
imposed in the form of thermal shock.

This paper is organized as follows. Section 2 pre-
sents the thermoelastic governing equations. Section 3
provides the EFG discretization form of governing equa-
tions. Section 4 explains the use of the equivalent domain
integral for thermal fracture of FGMs. Section 5 describes
the modal decomposition technique to obtain the transient
temperature field. Section 6 presents numerical results and
discussion about the relevant aspects of the results. Finally,
section 7 draws conclusions.

2. Governing equations

A body occupying a space Q surrounded by a sur-
face I" under external and body forces and prescribed ther-
mal boundary conditions has been considered. The govern-
ing equations for static linear thermoelasticity in the do-
main Q are

Vo+b=0 (H

or
~Va+Q=pe—- @)

Also, the heat flux is obtained based on the Fou-
rier law

q=—kIVT 3)

The constitutive equation is defined as

a:é:(s—s”’) @)
where
e=V.u %)

&' =a(T-T,)1 (6)



Here, the material properties are the forth-order Hooke
tensor C, isotropic conductivity k, expansion coefficient a,
density p and specific heat c¢. The field variables are dis-
placement u, strain tensor g, stress tensor &, and thermal
strain &” and the imposed values are heat source O and
body force b. I is the identity second-order tensor and V

is the symmetric gradient operator on a vector field. The
boundary conditions are as follows

T=T only (7
kIVT.n=q onl, ®)
KINTn+h(T-T,)=q onl, ©9)
u=u onl, (10)
on=t onl; (11)

where 4 is the convection coefficient and n is the outward
unit vector which is normal to .

3. Element-free Galerkin method in thermoelasticity

We implement the EFG method to solve govern-
ing partial differential equations (PDEs) of 2D thermoelas-
tic problems. This method needs only a set of nodes to
construct the discretized model. In EFG, using moving
least square (MLS) approximation leads to stability in
function approximation and applying the Galerkin proce-
dure provides stable and well-behaved system of discre-
tized equations. Here we use the EFG discretization in the
space dimensions only and follow the Kantorovitch semi-
discretization process. According to the EFG method, the
final discrete equations can be obtained as

(12)
(13)

"7 +(K" + K" ) = F" + F!
(K+K" W =F+F"

where the dot (.) denotes differentiation with respect to
time and

Ci;.h = J-Qpcgoi(pde (14)
KI' = kB'TB'dQ+ jrch(/w I (15)
K =y[_oSp.dr (16)
7 7/ 1"”(0,' (p]
th _ —
F'=[,00d0+[ Godl+[, hT.pdl (17)
F/ =y[ Sugdr (18)
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K, = | DB/B,dQ (20)
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where
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S= , S = ) ) (24)
0 S, 0 ifu, notgivenonr’,
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Y
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In the enriched EFG method, the singularity prob-
lems due to the presence of a crack are alleviated by en-
richment functions. In the intrinsic enrichment, the stan-
dard basis (usually polynomials) vector is enriched by in-
cluding the near-tip asymptotic displacement field as [12]

l,xl,xz,x/;cosg,\/;sing,

(27)
\/;singsinﬁ, \/;cosgsinﬁ

p'(x)=

where r and 6 are the usual crack-tip polar coordinates.
4. Equivalent domain integral for thermal fracture

The J-integral is an energy-based method which is
widely used to calculate SIFs e.g., [13]. The J-integral
originally was derived in the form of contour integral [14]

J=[, W6, ~o,u)n,dr, (28)

where 7 is an arbitrary contour enclosing the crack-tip
and #; is the jth component of the outward unit vector nor-
mal to I';. Because of calculating purpose, it is suitable this
contour form is converted into an equivalent domain inte-
gral (EDI). Defining a smooth weight function ¢ and ap-
plying divergence theorem, the equivalent domain form of
J-integral is derived as [6]

J= JA (a,.jul.’1 —W(Slj)q’jdA+J.A(W1)exp,qu (29)

where 4 is the area inside the contour 7. The second inte-
gral contains (W), i.€., the explicit partial derivatives of
W with respect to x;. It should be noted that in FGMs tem-
perature field and material properties are dependent on the
spatial coordinates. In linear elastic fracture mechanics, J-
integral is equal to the energy release rate and the relation-
ship between the energy release rate and the mode-I SIF is
given by

J=K? /E,j.p (30)



where E;p =E,, for plane stress and E,, / (l—vép) for

plane strain. E,, and v,, are Young's modulus and Pois-
son's ratio, respectively, evaluated at the crack-tip.

5. Transient heat conduction problem

To obtain temperature field, we should solve the
first-order matrix differential Eq. (12). Among many meth-
ods, we choose the modal decomposition technique [15].
Modal decomposition is an analytical approach to solve
systems of ordinary differential equations (ODEs) without
the introduction of additional approximations. Based on
modal decomposition procedure, a coupled system of
ODEs is turned into uncoupled equations by using eigen-
vectors. The solution of Eq. (12) can be expressed as linear
combination of all eigenvectors of the homogenous sys-
tem T (¢) = [T1 T, TN] w(t)=Mwy(t), where M is an
NxN square matrix whose columns are the eigenvectors.
Substituting above definition into Eq. (12) and premulti-
plying it by M’, we can obtain the uncoupled system of
equation

Cth*‘/l_i_Kth*l//: MT (Fth +E,th) (31)
where
Kth* — MTKthM , Cth* _ MTcthM (32)

The system of Eq. (31) contains N uncoupled
equations

i +sy, =
vV, +SV; C

i

(=1,2,...,N) (33)

where s, = K" /C" and A=M"(F"+ F,”). The initial
condition y(0) can be obtained from 7(0) =M /(0). De-
pending on the complexity of right-hand side of Eq. (31), it
is solved either analytically or numerically.

6. Numerical results and discussion

In this section, we consider calculation of the
mode I stress intensity factor for an edge crack in function-
ally graded plate (FGP) under thermal stresses. The distri-
bution of material properties is determined by means of
continuum functions, e.g., exponential function or micro-
mechanics models, e.g., self-consistent model. The follow-
ing examples are presented:

1. an edge cracked plate: exponentially gradation;
2. an edge cracked plate: linear gradation;
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3. composite strip with an edge crack;
4. edge crack in an FGP: micromechanics model.

The FGP of length W and height A with a crack of
length a is considered. The thickness (in the x; direction)
of plate is assumed quite thin for plane stress analysis and
large enough for plane strain analysis. The crack is aligned
parallel to the direction of material property gradation.
Initially, the FGP is at a uniform stress-free temperature 75.
The thermal boundary conditions are applied on the x; = 0
and x; = W faces. All other faces, including the crack sur-
faces, are assumed to be insulated which results in a one
dimensional heat conduction problem in the x; direction. In
all cases, the calculated SIFs will be normalized by divid-
ing to

K, = E(0)a(0)T, N7 [(1-1(0)) . (34)

6.1. An edge cracked plate: exponentially gradation

An unconstrained FGP with an edge crack of
length a as shown in Fig. 1, a is considered. Fig. 1, b pre-
sents the complete node arrangement of the FGP which
consists of 1695 regular nodes and 40 crack-tip nodes, with
a total of 1735. Fig. 1, ¢ shows the crack-tip node ar-
rangement. In this case, the FGMs with exponentially
varying thermomechanical properties, in the x; direction,
(for E, v, a, k, pc) are considered, e.g., as

E(x)) = E(0) exp(Pyx,) (35)

where the nonhomogeniety parameters are define, e.g., as

oo 200)
W E0)

Here, the ceramic/metal ZrO,/Ti-6Al-4V material with
properties of Table 1 is assumed.

For the sake of comparison, two different cases of
the thermal boundary conditions are considered in the
steady-state analysis. In the third case, a transient analysis
is also carried out for different temperatures at the left and
right sides of the plate.

In order to verify the implementation of the dis-
placement correlation technique (DCT) which is a conven-
ient direct method for evaluation of SIF [16] and EDI ap-
proach in the framework of EFG method, we first present
comparisons of the calculated SIFs and the available refer-
ence solutions. In this case, the temperature of x;=0 and
x1= W faces are decreased from 7, to 7| and 7, respec-
tively.

(36)

Table 1
Material properties of ZrO, and Ti-6Al-4V
Young's . , Cocfficient Thermal . Specific
. Poisson's of thermal . Mass density,
Materials modulus, ratio expansion conductivity, Ko/’ heat,
GPa 1%,6 K W/(m K) & (kg K)
710, 151.0 0.33 10.0 2.09 5331 456.7
Ti-6A1-4V 116.7 0.33 9.5 7.5 4420 537.0
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Table 2 compares the normalized SIFs with the
results provided by Erdogan and Wu [4], KC and Kim [9]
and Yildirim [6]. As shown in Table 2, the obtained solu-
tions are in good agreement with the references. It is inter-

esting to note that our model is comprised of 1735 nodes,
while the 2D mesh discretization in KC and Kim [9] con-
sists of 966 elements and 2937 nodes in the framework of
the finite element method.

Table 2
Normalized mode I SIF in FGP under steady-state thermal loading
. . Normalized SIF
M;t;rgé rl: & Load Artlal};sm Present Erdogan and KC and Yildirim
P EDI | DCT Wu [4] Kim [9] [6]
Plane
T,=0.5T, strain 0.0124 0.0126 0.0125 0.0128 0.0128
WPe=In(5) 7,=0.5T, Plane
WP,=In(2) S 0.0090 0.0088 _ 0.0090 0.0090
T,=0.05T, Plane
T=0.05T, strain 0.0246 0.0240 0.0245 0.244 _
B Plane 0.0334 0.0343 0.0335 0.0334 0.034
WPe=In(5) T,=0.2T, strain
G T,=0.5T, Plane
WP,=In(2) stress 0.0234 0.0239 _ 0.0235 0.024
WP, =In(10)
T7:=0.05T, Plane
T,=0.5T, strain 0.0405 0.0411 0.0410 0.0406 _

Since the surface crack is usually created during
cooling, the FGP problem subjected to a cooling shock is
here considered. To consider the thermal shock, we assume
that the FGP is initially at a uniform stress-free tempera-
ture 7, and suddenly cooled down to constant temperatures
T, and T; at the left and right hand side faces, respectively.
The assumed values are 7,=0.25 T, and 7,=0.75 T,.

il
H=8W

a b c

Fig. 1 An FGM plate with an edge crack: a - geometry,
b - complete node arrangement, ¢ - crack-tip node
arrangement

The obtained results for the transient temperature
distribution in the ZrO,/Ti-6Al-4V FGM versus normal-
ized time 7, as is defined in Eq. (37), is depicted in Fig. 2.

- k<0)//VaV(20)c(0)t 7

According to these results, the temperature gradi-
ent near the plate edges is considerably large at the early
times after imposing the thermal shock. This large tem-
perature gradient leads to significantly large tensile stresses
near the edges of FGP [4]. Here, we assume that AT =
= T(x,?) - Tp. Also, these transient temperature and others
in the next examples indicate that the modal decomposition

technique is an efficient tool to obtain the transient tem-
perature distribution in thermal shock problems. Because
the order of time points in which analysis is performed
varies between -4 and 2.

0.4

=0 — =le-4 — r=le-2 =le-1 =1

0.2

Fig. 2 Transient temperature distribution in the FGP
(ZrO,/Ti-6Al-4V) for various normalized time with
Tl/ T(): 0.25 and Tz/ T(): 0.75

Figs. 3 and 4 present normalized SIFs in the
ZrO,/Ti-6Al-4V plate resulting from the transient tempera-
ture field versus the normalized time 7 and the normalized
crack length a/W for plane strain and plane stress cases,
respectively. As shown in these figures, the SIF increases
quickly to a peak value that is drastically larger than steady
value and then decreases rapidly to the corresponding
steady value for all crack lengths. In addition, the magni-
tude of SIF decreases as the normalized crack length a/W
becomes larger in both transient and steady states that are
in agreement with the results recently reported by Noda
and Guo [5]. As the final point, the magnitude of SIF for
plane strain is larger than plane stress. Noda et al. [17]
have derived thermal stresses analytically for a homogene-
ous isotropic strip under one-dimensional transient tem-
perature distribution. These results indicate that the ther-
mal stresses for the plane strain case are equal to those of
plane stress multiplied by a factor of 1/(1 - v). Regarding
the fact 0 < v < 0.5, this factor is greater than one, that
implies a larger SIF for the plane strain in comparison with



the plane stress problem, which can be noticed from
Figs. 2 and 3. The agreement between SIFs evaluated by
means of EDI and DCT is found to be acceptable.
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== EDI- a/W=0.2
- EDI- a/W=0.3
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DCT- a/W=0.3
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T

Fig. 3 Normalized mode I SIF in the ZrO,/Ti-6Al-4V plate
versus normalized time and different crack lengths
in plane strain condition
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Fig. 4 Normalized mode I SIF in the ZrO,/Ti-6Al-4V plate
versus normalized time for different crack lengths in
plane stress condition

6.2. An edge cracked plate — linear gradation

The configuration of the first example is consid-
ered here assuming a linear gradation for material proper-
ties. Moreover, a different set of thermal boundary condi-
tions is imposed on the uncracked face of FGP. To apply a
thermal shock, the cracked face is assumed to be quenched
to a constant temperature of 7 = 0.15 T, while having the
free convection at other face with a convection coefficient
of h =1 W/(m°’K) and the ambient temperature is assumed
Ty. The transient temperature distribution in the ZrO,/Ti-
6Al-4V plate is presented in Fig. 5. The effect of the con-
vection at the x;=W face on the temperature distribution is
observed at the steady-state. Figs. 6 and 7 show the tran-
sient thermal SIF versus crack lengths for plane strain and
plane stress cases, respectively. As it is seen, the variation
of the thermal SIF is the same as the previous example.
The effect of the thermal boundary condition applied on
the uncracked face, is illustrated in the Fig. 8. Here, the
h =0 corresponds to the insulated thermal boundary condi-
tion and h=o corresponds to the known temperature
boundary condition. According to this figure, while the
value of the SIF is independent of the type of the thermal
boundary condition applied on the uncracked face, the
steady-state value is completely dependent on. Moreover, a
greater value for the steady-state SIF is obtained for the
case of constant temperature faces.

0.4

03 —1=0 —7=le-4 —1=le-2 =le-1 =1

0.9 =
0 0.3 0.4 0.5 0.6 0.7 08 0.9 I

xi/W

Fig. 5 Transient temperature distribution in the ZrO,/Ti-
6Al1-4V plate for various normalized times with
Ti/Ty = 0.15 and free convection at x,= W

—EDI- a/=0.1
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DCT- a/W=0.1
0.25 DCT- a/W=0.2
. DCT-a/W=0.3

fi
0,05}

Fig. 6 Normalized mode I SIF in the ZrO,/Ti-6Al-4V plate
versus normalized time and different crack lengths
in plane strain condition
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— EDI- a/W=0.1
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0.2 DCT- a/W=0.1
DCT- a/W=0.2
DCT- a/W=0.3

KK,

Fig. 7 Normalized mode I SIF in the ZrO,/Ti-6Al-4V plate
versus normalized time for different crack lengths in

plane stress condition
008,
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Fig. 8 The effect of thermal boundary condition at x; = W
on the variation of normalized thermal SIF

6.3. Composite strip with an edge crack

Crack analysis in composite structures requires
consideration of the piecewise continuous nature of the
material properties comprising the structure. Here, we con-
sider a composite plate composed of two different materi-



als with an graded interface zone. The variation of material
properties is approximated by a hyperbolic-tangent func-
tion as follows

E(W)+ E(0) N EQ)-EW) y
2 2
xtanh(n; (x, +d))

E(x|) =
(38)

when 7—oo a jump occurs in the gradation of material
properties across the interface at x; = -d. The configuration
under consideration and the variation of the Young's
modulus are shown in Figs. 9, a and b, respectively.

- —xI %F
o
interfage
zone
' ] 0.5 1 13
a b

Fig. 9 A cracked FGM plate (a) configuration (b) the varia-
tion of the Young's modulus in the FGP

The following data were used for the plane strain
and plane stress cases

a/W=0.1-03, H/W=2

d=-05,n5=15, 1= 1= m=1p.=5

(E ), E(0) = (1,3), (v (W), v (0)) =(0.1,0.3)
(o (W), a (0)) = (0.03,0.01)

(k (W), k (0)) = (3,1), (pc (W), pc (0)) = (1,1)

Here, we assume that only the left hand side face of the
FGP is suddenly cooled down to the constant temperature
T, = 0. The transient temperature distribution in the FGP
versus normalized time 7, as is defined in Eq. (37), is de-
picted in Fig. 10. The effect of the conductivity difference
of plate sides on the temperature distribution is clearly ob-
served in the steady-state graph.

0.4

—=0 =1

—r=le-4 ——7=le-3

Fig. 10 Transient temperature distribution in the FGP for
various normalized times with 7, =0 and 7>/ Ty= 1
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Figs. 11 and 12 show transient thermal SIFs in the
FGP versus the normalized crack length a/W for plane
strain and plane stress cases, respectively. According to
these figures, the SIF increases quickly to a peak value and
then decreases rapidly until the crack is closed. The corre-
sponding time of the crack closure increases as the crack
length is increased. In this example, the crack closure was
occurred in steady-state for all crack lengths.

—EDI- a/W=0.1

~—EDI- a/W=0.2

------- EDI- a/W=0.3
DCT- a/W=0.1
DCT- a/W=0.2
DCT- a/W=0.3

Fig. 11 Normalized mode I SIF in the FGP versus normal-
ized time and crack length in plane strain condition

— EDI- a/W=0.1

=== EDI- a/W=0.2

== EDI- a/W=0.3
DCT- a/W=0.1
DCT- a/W=0.2
DCT- a/W=0.3

0.l 0.25 0‘: 0.35
Fig. 12 Normalized mode I SIF in the FGP versus normal-
ized time and different crack lengths in plane stress

condition
6.4. Edge crack in an FGP: micromechanics model

Prediction of the effective macroscopic properties
is one of the important problems of interest in composite
material theory. For FGMs, as one of the graded compos-
ites, a few micromechanical models of composites have
been developed. Among the micromechanical models de-
veloped for FGMs, the self-consistent method (SCM) is
here used. Zuiker has been pointed out that the SCM pro-
vides a simple and initial estimate for the effective proper-
ties which is beneficial for the related optimal property
distributions [18]. Moreover, in this method the properties
are determined independent of the phases of inclusions and
matrices. This is important for FGMs in which the volume
fraction of the constituent phases varies in a wide range.
For two-phase FGMs, the volume fraction of the ceramic
and the metal phases are assumed in the form of a power
function, i.e.,

Ve=1-(@x/Wy
Vu=1-V,

(39)
(40)

in which W is the material gradation length and the expo-
nent p is the gradient index. Here x; = 0 corresponds to the
pure ceramic phase and x; = W to the pure metal material.
For two-phase composite, the effective material properties
are determined from [18, 19].



1 V. v
= < + m 41)
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(KC+4/1/3 K, +4u/3

V., VK ]
+ +

+S[M+Mj+2:0 (42)
H—H, H—H,

- 1/x-1

(/x.—1/x,)
c:cch+cme7p:pcI/c+pme (44)

where the subscripts m and ¢ stand for metal and ceramic
phases, respectively. We consider an edge crack in an un-
constrained FGP of length ' =1 and height H = 8. With
the purpose of imposing the thermal shock, we assume that
only the cracked face of the FGP is suddenly cooled down
to the constant temperature 7; = 0 from the stress-free tem-
perature 7,. The transient temperature distribution in the
FGP is shown in Fig. 13.

02
=.1e-1 wmeet=10

—10 —7=le-4 —r=le-2

0.4 0.5 0.6 0.7 0.8 0.9 1
x|/ W

Fig. 13 Transient temperature distribution in the FGP for
various normalized times with 7, = 0 and 7,/ T,=1

Fig. 14 depicts the transient thermal SIF versus
normalized crack lengths a/W for the plane strain case.
Although the steady value of SIF is greater for longer
cracks, the peak value of SIF is significantly larger for the
short ones.

0.6

— EDI- a/W=0.1

= EDI- a/W=0.2

<o EDI- a/W=0.3
DCT- a/W=0.1
DCT- a/W=0.2
DCT- a/W=0.3

- -
1] 0.02 0.04 0.06 0.08 0.1 0.12 014 0.16 0.18 0.2
T

Fig. 14 Normalized mode I SIF in the FGP versus normal-
ized time and different crack lengths in plane strain
condition

7. Conclusions

In this paper, fracture behaviour of functionally
graded materials under steady-state and transient tempera-
ture field is studied. Both domain form of J-integral (EDI)
and displacement correlation technique (DCT) in conjunc-
tion with element-free Galerkin method are implemented

to evaluate mode I stress intensity factor. The modal de-
composition approach is used to obtain the transient tem-
perature field analytically. The present study points out
that:

1. In the enriched EFG framework a coarse mesh
is sufficient to accurate analysis of cracks in FGMs under
thermal loading.

2. At early time of thermal shock, the SIF gets to
a large peak value which is significantly greater than corre-
sponding steady value and then decreases rapidly to the
steady value. Moreover, although the crack is closed at
steady state for some cases, the value of SIF might be
reach to a large positive peak value during the thermal
shock period. These phenomenons imply that in thermal
fracture analysis of FGMs, the SIF at the beginning of
thermal loading might be the main factor in fracture failure
analysis.

3. Comparison of numerical results with the refer-
ence solutions points out both energy-based EDI method
and direct approach DCT in the framework of enriched
EFG are efficient tools to analyze thermal fracture of
FGMs.
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FUNKCIONALIAI VKOKYBngU TERMISKAI
APKRAUTU MEDZIAGU SUIRIMO ANALIZE

Reziumé

Analitiniu Galiorkino metodu atliekama kokybis-
ky medziagy suirimo, esant | tipo nestacionariam termi-
niam apkrovimui, analizé. [tempiy intensyvumo koeficien-
tai buvo nustatyti naudojant ekvivalentini erdvini integrala
ir poslinkio koreliacijos metoda. Medziagos mechaninéms
savybéms apibiidinti buvo panaudotos kontinuumo funkci-
jos ir mikromechaninis modelis. Siluminio $oko analizei
taikytas modalinis suskaidymo metodas, kuris yra pusiau
diskretiné priemoné nestacionariam temperatiiros laukui
nustatyti. Skaitinio tyrimo rezultatams patikrinti buvo pa-
sinaudota kity autoriy darbais. Tyrimas parodé, kad item-
piu intensyvumo koeficientas yra didziausias pradinéje
terminio Soko stadijoje, taigi $i stadija yra svarbi suirimo
procesui.
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MESHLESS ANALYSIS OF CRACKED
FUNCTIONALLY GRADED MATERIALS UNDER
THERMAL LOADING

Summary

The element-free Galerkin method which is en-
riched intrinsically is applied for fracture analysis of func-
tionally graded materials under mode I steady-state and
transient thermal loading. The stress intensity factors are
evaluated by means of both equivalent domain integral and
displacement correlation technique. Continuum functions
and micromechanical model are used to describe the distri-
bution of material properties. For thermal shock analysis,
the modal decomposition method which is a semi-
discretization approach is implemented to obtain the tran-
sient temperature field. The accuracy of numerical results
is verified using the available reference solution. The re-
sults imply that the magnitude of the stress intensity factor
gets to a large peak at the early time of the thermal shock
which indicates its significant role in the fracture failure.

M.b. Hazapu, M. lllapuatu, M.P. Ecnamu, b. Xaccanu

AHAJIN3 PA3PYIIEHMA ©YHKIIMOHAJIBHO
KAYECTBEHHBIX TEPMHUYECKHU HAT'PY>KEHHBIX
MATEPHAIJIOB

Pe3womMme

AHanutnueckuil Metoll ['anepkuHa MCHOIB30BaH
JUIsl aHallM3a pa3pylleHus] KayeCTBEHHBIX MAaTepUalioB C
NpUMEeHeHHeM | THla HeCTauMOHAPHOTO TEPMHYECKOTO
HarpyxeHus. KoahdumeHT HHTeHCHBHOCTH HANPSHKCHUN
OTIpeNeeH TpPH TOMOINM 3KBHUBAJICHTHOTO IIPOCTPAHCT-
BEHHOT'O MHTETpajia ¥ METO/a KOPPEeJIHUU IIepeMEIICHNUS.
OYHKIUN KOHTHHYyMa M MHKpOMEXaHHYecKas MOJeNb
WCIIONIb30BaHa JIJIsi OMUCAHUS MEXaHWYECKHX XapaKTepHu-
CTHK MaTepHaia. J[s aHanmM3a TEIIoBOrO yaapa HCIIONb-
30BaH MOJAIbHBIM METOJ pa3ieleHus, KOTOPBIN SBISETCS
MOJIY TUCKPETHBIM CIIOCOOOM [Tl OTIPEACICHUS MOCTOSIH-
HOTO TeMIleparypHoro mojisi. HamexHOCTh MOoTy4YeHHBIX
pe3yIBTaTOB OICHEHA MPU TIOMOIIH paboT IPYTHUX aBTO-
poB. Pe3ynbraThl MccnemoBaHUsS IMOKa3ald, 4TO KO3(PQU-
LMEHT WHTEHCUBHOCTHU HANpSHKEHUH MaKCHUMaJbHOE 3Ha-
YeHHE MPUHUMAET B HAYAIbHOW CTAIHH TEIIOBOTO yaapa,
YTO MONTBEPKIACT BAXKHOCTH STOW CTaaWHU IS IpoIecca
pa3pyIIeHus.
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