ISSN 1392 -1207. MECHANIKA. 2011. 17(1): 64-70

Natural convection boundary layer along impermeable inclined surfaces

embedded in porous medium

M. H. Kayhani*, E. Khaje**, M. Sadi***

*Mechanical Department, Shahrood University of technology, Shahrood, Iran, E-mail: m_kayhani@ yahoo.com
**Mechanical Department, Shahrood University of technology, Shahrood, Iran, E-mail: esmaeilkhaje@yahoo.com
***Mechanical Department, Shahrood University of technology, Shahrood, Iran, E-mail: meisam.sadi@gmail.com

crossref http://dx.doi.org/10.5755/j01.mech.17.1.205

1. Introduction

Convection heat transfer in a saturated porous
medium is in great attention for many applications in geo-
physics and energy systems. Applications such as geo-
thermal energy utilization, ground water pollution analysis,
insulation of buildings, paper production and petroleum
reservoir can be cited. These applications have been widely
discussed in recent books by Nield and Bejan [1], Ingham
and Pop [2], Vafai [3], Pop and Ingham [4] and Ingham et
al. [5]. However, natural convection along inclined plates
has received less attention than the cases of vertical and
horizontal plates. Rees and Riley [6], and Ingham et al. [7]
presented some solution for free convection along a flat
plate in a porous medium which are only valid at small
angles to the horizon. Jang and Chang [8] studied free con-
vection on an inclined plate with power function distribu-
tion of wall temperature, while its angle varies between 0
to close to 90 degrees from horizontal. While Pop and Na
[9] have solved the free convection of an isothermal in-
clined surface. Their solution included all horizontal to
vertical cases. Hossain and Pop [10] studied the effect of
radiation. Conjugate convection from a slightly inclined
plate was studied analytically and numerically by Vaszi et
al. [11]. Lesnic et al. [12] studied analytically and numeri-
cally the case of a thermal boundary condition of mixed
type on a nearly horizontal surface.

The purpose of this paper is to study natural con-
vection above an inclined flat plate at a variable tempera-
ture range embedded in saturated porous medium. There is
power-law variation in the wall temperature.

Coordinate system introduced by Pop and Na [9]
is used in the solution. Then the system of two equations
can be solved by finite difference technique proposed by
Keller [13] for both the cases of positively inclined plate

(O° <¢< 90°) and negatively inclined plate at small angles

to the horizontal (¢ < 0°) . The effect of inclination pa-

rameter on skin friction coefficient and Nusselt number
and also the dimensionless velocity and temperature pro-
files have been investigated. However, the free convection
has been solved on the horizontal and vertical plates earlier
by Cheng and Chang [14], and Cheng and Minkowycz [15]
respectively.

2. Governing equations

Consider the steady natural convection from an
arbitrarily inclined plate embedded in an isothermal porous
medium at temperature 7. Assume that the wall tempera-

ture is kept at a higher value with the power-law variation.

The inclination angle is either positive (O° S¢S90°) or

slightly negative (¢ < O°) . The physical model and coordi-

nate system is given in Fig. 1. Here (x, y) are Cartesian
coordinates along and normal to the plate, with positive y
axis pointing toward the porous medium.
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Fig. 1 Physical model and coordinate system: a - positive
inclination; b - negative inclination

If the following assumptions have been used (i)
the convective fluid and the porous medium are in thermo-
dynamic equilibrium anywhere, (ii) the temperature of the
fluid is below boiling point at any point of domain, (iii) the
fluid and porous medium properties are constant except the
variation of fluid density with temperature, and (iv) the
Darcy-Boussinesq approximation is employed, the velocity
and temperature within the momentum and thermal bound-
ary layers which develop along the inclined plate are gov-
erned by the following equations:
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where the “+” and “-” signs in Eq. (2) indicate the positive
and negative inclinations of the plate respectively. Here in
Egs. (1)-(5) u, v are the velocity components along (x, y)
axes; K is the permeability of porous medium; ¢, p, f

and o are the viscosity, density, coefficient of thermal
expansion and thermal diffusivity, respectively; 7, p, g are
also temperature, pressure and gravity acceleration. The
subtitle "oo" also refers to conditions in the infinite dis-
tance. Boundary conditions of the problem are as

v=0, T=T, =T, +Ax (6)
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By deriving Egs. (2) and (3), respect to y and x re-
spectively and applying Darcy-Boussinesq approximation
and considering boundary layer approximations, Eqgs. (8)
and (9) are derived and with continuity equation form go-
verning equations of the problem are as below
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To convert Egs. (1), (8) and (9) to the equations
that could describe natural convection flow from an arbi-
trarily inclined plate in a porous medium, the parameter
which was introduced by Pop and Na [9], is used

(Ra|sin ¢|)1/2
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where Ra=gKp (Tw —Too)x/ av is the Rayleigh number.

This parameter describes the relative strength of the longi-
tudinal to the normal components of the buoyancy force
that simultaneously applies on the boundary layer. Also for
a fixed inclination angle, it could be used as a longitudinal
coordinate. In addition, the forward variables are used.

§=%, f7=(§}1 (11)
where

A :(Racos¢)l/3 +(Ra|sing/5|)l/2 (12)

Because at a given ¢, ¢ is defined as

E=1/ (1 + cons tan t.xf(yﬂ)/é) , this parameter shows the

distance from the leading edge for a particular inclination
angle. In addition &, changes from 0 to 1 as an inclination
parameter at a fixed Rayleigh number by changing the an-
gle ¢ from 0° to 90°. Now it is possible to define the re-

duced stream function and dimensionless temperature as
following
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Based on the new variables, new equations are as
following
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These equations should satisfy the following
boundary conditions.

=0, =1 onn=0
f'=0, =0 asn—o>x»

(17)
(18)

Primes show differentiation with respect to 77. As
obvious to solve Egs. (15) and (16), having an initial con-
dition for & is necessary. This condition is obtained by the
solution of the equations for horizontal plate with ¢=0°
and £=0. Also, at £ =0 or ¢=0", Egs. (15) and (16)
declined to the equations of horizontal flat plate embedded

in porous medium which presented by Cheng and Chang
[14]

f~+r9+%q9':o (19)
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For the case £ =1 or ¢=90", the equations

change to the equations expressed by Cheng and Min-
kowycz [15] for a vertical plate
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Quantities such as skin friction coefficient and
Nusselt number can now be defined as following and in-
vestigated
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T, 18

1/2
where U, = (au / xz) is characteristic velocity,

skin friction and ¢,, is heat flux at the wall which are
normally given as
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where £ is thermal conductivity of the porous medium. By
using Egs. (11) and (13)
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3. Results and discussions

The coupled differential equations of Egs. (15)
and (16) are solved under boundary condition Eqs. (17)
and (18) by Keller numerical scheme [13]. Based on ¢

definition, numerical solution is started in £ =0 and it
continues step by step to & =1. To start numerical solu-

tion, similarity solutions of free convection along horizon-
tal flat plate presented in Egs. (19) and (20) are used.

Solution of the equations is implemented for
0 <7 <1 which is available for both vertical and horizon-
tal cases. For validating calculations, vertical solution re-
sults of Cheng and Minkowycz [15] are used. For further
information on the numerical solution, it could be referred
to [16].

Positive inclination. Figs. 2 and 3 depict skin fric-
tion coefficient and Nusselt number versus ¢ for different

values of 7. Table presents results of similarity solution of
Egs. (21) and (22) and numerical solution at £=1 or
¢ =90°. There is an excellent agreement between the re-

sults. As it can be seen, in a state of constant temperature,
absolute value of skin friction coefficient is strictly ascend-
ing with increasing angle. This is due to the increase of
buoyancy force in tangent direction of the plate. But in
other cases, wall temperature changes also effect on the
problem and cause changes to the diagram pattern. More
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Fig. 2 Variation of the skin friction coefficient with & for
positive inclination
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r=0.00
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Fig. 3 Variation of the Nusselt number with & for positive
inclination

over, by increasing r, absolute value of skin friction coeffi-
cient increases in the constant inclination angle. The reason
is the increment of buoyancy force which induced due to
temperature difference. Nusselt number increases with
increasing 7. In addition, in all cases by increasing &, Nus-

selt number declines at first and at & ~0.55 where the

tangential and normal components of buoyancy force are
comparable, achieve to minimum, then again it moves up-
ward.

Table

Comparison between values of —6'(0) from Cheng and

Minkowycz [11] and present results at £ =1

r Cheng and Min- | Present results
kowycz [11]
0 0.444 0.444
0.25 0.630 0.627
0.5 0.761 0.764
0.75 0.892 0.892
1 1.001 1

Dimensionless velocity and temperature profiles
have been plotted in Figs. 4-9 for different » and &. Pro-
files related to the horizontal and vertical plates that have
good agreement with similarity solution are also given.
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Fig. 4 Dimensionless velocity profiles for » = 0.00 in posi-
tive inclination case
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Fig. 5 Dimensionless velocity profiles for » = 0.50 in posi-
tive inclination case
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Fig. 6 Dimensionless velocity profiles for » = 1.00 in posi-
tive inclination case

As it could be seen in Figs. 4-6, for a given &, by

the increment of 7, the slope of dimensionless velocity pro-
files increases and causes the increase in skin friction coef-
ficient. Moreover in all cases except & =1, this increment

causes the increase in dimensionless velocity. This is be-
cause the tangential component of buoyancy force in-
creases.

Figs. 7-9 depict that the slope of dimensionless
temperature profiles increases by increasing r for a given
&, which validated the increment of Nusselt number. For

all &, by increasing r the decrease in momentum and

thermal boundary layer thicknesses is visible.

Negative inclination. 1t is expected that for nega-
tive inclinations, the boundary layer separates with the
increase in distance from leading edge, because the buoy-
ancy force is exerted to the top of surface and causes the
flow to return. When the plate velocity reaches negative
values, the fluid starts to move upward and causing bound-
ary layer separation occurs. Thus boundary layer equations
have been broken before separation point and in general a
new scaling is necessary in separation region. So that the &

in which boundary layer equations are broken is only an
estimate of the separation point and therefore (;)

approx

0.67

approx

specified. From the solution of equations (¢, )

is achieved. The solution does not converge for the values
higher that.
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Fig. 7 Dimensionless temperature profiles for » = 0.00 in
positive inclination case
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Fig. 8 Dimensionless temperature profiles for » = 0.50 in
positive inclination case
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Fig. 9 Dimensionless temperature profiles for » = 1.00 in
positive inclination case

Due to the previous description, the variations of
skin friction coefficient and Nusselt number for negative
inclination angles are presented in Figs. 10 and 11 respec-
tively. Again in this case at certain & an increase in 7 in-

creases skin friction coefficient and the Nusselt number.

At the end, the dimensionless velocity and tem-
perature profiles are depicted for different values of » and
£=0, 0.25 and 0.5 in Figs. 12-17.
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Fig. 10 Variation of the skin friction coefficient with & for
negative inclination
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Fig. 11 Variation of the Nusselt number with £ for nega-
tive inclination
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Fig. 12 Dimensionless velocity profiles for »=0.00 in
negative inclination case

As it observed from Figs. 12-14, at a given r for
smaller values of & dimensionless velocity profiles have

steeper slope, on the other hand, increasing r at a given &

increases profile slope. The skin friction coefficient varia-
tions graph also confirms these results. For £ =0.50 the
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Fig. 13 Dimensionless velocity profiles for » =0.50 in
negative inclination case
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Fig. 14 Dimensionless velocity profiles for » =1.00 in
negative inclination case

boundary layer thickness is higher than in the other cases,
due to the approach of separation point.
Figs. 15-17 show that with increasing ¢ in a cer-

tain 7, the slope of temperature profiles decreases, which
reflects the Nusselt number reduction. It is also approved
by Fig. 11. On the other hand the temperature profiles in-
crease with the increase in & at a given r.
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Fig. 15 Dimensionless temperature profiles for » = 0.00 in
negative inclination case
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Fig. 16 Dimensionless temperature profiles for » = 0.50 in
negative inclination case
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Fig. 17 Dimensionless temperature profiles for » = 1.00 in
negative inclination case

4. Conclusions

1. The boundary layer solution of natural convec-
tive heat transfer along an inclined arbitrarily flat plate
embedded in a saturated porous medium was presented.
The wall temperature is power function of distance from
the leading edge.

2. The solution was obtained by using the inclina-
tion parameter defined by Pop and Na [9] and defining a
new coordinate system for both positive and negative in-
clinations of the plate. The numerical Keller box scheme
implemented to discrete equations. The skin friction coef-
ficient, Nusselt number, dimensionless velocity and tem-
perature profiles were plotted for various values of 7 and & .

3. As it was observed in both of cases with in-
creasing » at a fixed inclination angle, coefficient of skin
friction and Nusselt number will increase. On the other
hand, for positive inclination in & ~0.55, where longitu-

dinal and normal components of buoyancy force are com-
parable, Nusselt number has a minimum. For negative in-
clination, the point where separation occurred was deter-
mined approximately. In this case, the Nusselt number
decreased uniformly at a given  with increasing & .

4. Moreover there is a wonderful match between
the numerical solution and similarity solutions for & =0

(horizontal plate) and & =1 (vertical plate), which are
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presented by Cheng and Chang [14] and Cheng and Min-
kowycz [15] respectively.
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M. H. Kayhani, E. Khaje, M. Sadi

PORINGOJE APLINKOJE FORMUOJAMU PASIENIO
SLUOKSNIU NATURALIOJI KONVEKCIJA ISILGAI
NEPRALAIDZIU NUOZULNIU PAVIRSIU

Reziumé

Tyrinétas nattiralus ribiniy sluoksniy konvekcinis
tekéjimas laisvai pasvirusioje plokstéje prisotintoje poréto-
je aplinkoje, kur sienelés temperatiira yra atstumo nuo
kreipiamosios briaunos laipsniné funkcija. Keliama-jai
jégai nustatyti pritaikyta Dancy-Boussinesko aproksimaci-
ja. Kad visus horizontaliy, pasvirusiy ir vertikaliy ploks¢iu
atvejus buty galima iSreiksti viena transformuota ribiniy
sluoksniy lyg¢iu sistema, panaudotas pasvirimo parametras
&. Nelinijinés priklausomos parabolinés lygybés buvo is-
sprestos pagal zinoma baigtiniy skirtumy schema, esant
teigiamam ir neigiamam plokstés posvyriui. Lygybiy pana-
Sumas horizontaliyjy ir vertikaliyjy ploksciy ribiniams at-
vejams pasiektas atitinkamai laikant, kad =0 ir = 1.
Detallis pavirSiaus trinties koeficientai ir Nussett skaiciai
tieck bedimensiam greiciui, esant tiek temperatiiros profi-
liams, yra nustatyti pla¢iam parametro ¢ diapazonui. Gauti
rezultatai gerai sutapo su kituose straipsniuose paskelbtais
rezultatais.

M. H. Kayhani, E. Khaje, M. Sadi

NATURAL CONVECTION BOUNDARY LAYER
ALONG IMPERMEABLE INCLINED SURFACES
EMBEDDED IN POROUS MEDIUM

Summary

The natural convection boundary layer flow on an
arbitrarily inclined plate in a saturated porous medium is
considered, where wall temperature is power function of
the distance from the leading edge. Darcy-Boussinesq ap-
proximation is adopted to account for buoyancy force. In-
clination parameter ¢ is used such that all cases of the hori-
zontal, Inclined and vertical plates can be described by a
single set of transformed boundary layer equations. The
non-linear coupled parabolic equations have been solved
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numerically by using an implicit finite-difference scheme
for both positive and negative inclinations of the plate.
Also, the similarity equations for the limiting cases of the
horizontal and vertical plates are recovered by setting &= 0
and &= 1, respectively. Detailed results for skin friction
coefficient and Nusselt number as well as for dimen-
sionless velocity and temperature profiles are presented for
a wide range of the parameter . The comparison with
other validated articles shows excellent agreement.

M. X. Kauxanu, E. Kxane, M. Cagu

ECTECTBEHHA S KOHBEKL{ [TPEJIEJIbHBIX
CJIOEB 3AKPEIUIEHHBIX B [IOPUCTOM CPE/IE
BJ10J1b HEITPOHULIAEMbBIX HAKJIOHHBIX
I[TOBEPXHOCTEM

Pe3smomMme

HccnenoBaHa ecTeCTBEHHAss KOHBEKIMS TEUECHUS
TIPE/ICIBHBIX CIIOEB B CBOOOJHO HAKJIOHEHHOH IITACTHHE B
HACBILLIEHHOW MOPHUCTOMN cpelie, TIe TeMIepaTypa CTEHKH
SIBIIICTCSI CTETIEHHON (DYHKITMEH pacCTOSHHUSA OT HalpaB-
JisoLel rpadu. [ns onpeneneHust Hecyliend CUilbl IpUMe-
HeHa annpokcuMauus [lanuu-boyccunecka. Mcnonbs3zoBan
TaKoil mapamerp HawksIoHa &, YTOOBI BCE CIIydad TOPHU3OH-
TaJbHBIX, HAKJIIOHHBIX U BEPTUKAIBHBIX MIACTHH ONHCHIBA-
JIUCh OJTHOW TpaHC(HOPMHUPOBAHHOW CHCTEMOW YpaBHCHHIMA
Npe/ieNbHBIX cnoeB. HemnuHeiHble 3aBUCHMBIE TTapadoIu-
YEeCKHE YPaBHEHMS PELICHBI HCIOJIB3YsI U3BECTHYIO CXEMY
KOHEUHBIX PA3HOCTEH C IOJOXWUTENbHBIM U OTPULATENb-
HBIM HaKJIOHOM IuTocKocTd. [lomobue ypaBHeHuWit B mpe-
JIENBHBIX CITydasxX Al TOPU30HTAIBHBIX W BEPTHUKAIBHBIX
IUTACTUH TIOMYYEHO MPH HCHOIB30BAHUM COOTBETCTBEHHO
¢=0 u ¢=1. JleranpHble 3HaUYeHUS KO3(PPUIIMEHTORB MMO-
BEpXHOCTHOro TpeHus u Hycerr umcna kak s 0Oe3nu-
MEHCHOM CKOpPOCTH, Tak U MpoQuiieil TeMIiepaTypsl orpe-
JIEJIeHB! JJIS IHUPOKOro auanazoHa mapamerpa ¢. Comoc-
TaBJICHHE PEe3yJIbTATOB C PE3yJIbTaTaMH, OIMyOJIMKOBaHHBI-
MU B JIPYTHUX CTaThsIX, IOKA3aJI0 OTIMYHOE UX COBIAJICHUE.
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