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1. Introduction

Real time engineering applications are full of di-

versity. This diversity is due to presence of non linarites 

and randomness in the systems which results in uncertain 

future state. In engineering systems, when reliability is 

under discussion than concept of Condition Based Mainte-

nance poses its limitations of forecasting the future health. 

Specially, when there is an induced nonlinearity (defect), 

which has to evolve with time (degradation), CBM diag-

nostics capability can ascertain its present severity; howev-

er, how much it will deteriorate in future, needs to be as-

sessed through advance tools; this prediction of future state 

is termed as Prognosis. 

Prognosis is a medical term derived from Greek 

language pro & gnosis with a literal meaning ‘forecast of 

the likely outcome of a situation’. Prognosis has been 

widely applied in medical sciences & finance sector and 

enormous literature is available on the subject. Taking lead 

from aforementioned fields, researchers directed their ef-

forts to apply prognostics concept in engineering applica-

tions. 

Machinery health prognosis is broadly driven by 

(i) physical model of machine/component (ii) data driven

models (iii) Hybrid (combination of i& ii).  Suitability of

each method for prognostics application has adequately

been deliberated in [1]. Prognostic on the basis of physical

models is theoretically fine but its practical manifestation

in real time environment is difficult, as machinery life is

governed by various known and unknown effects, while on

the other hand, prognosis using data driven models, carries

better practical manifestation in real life.

Condition monitoring data provides a comprehen-

sive understanding of machinery condition under prevail-

ing operating conditions. This data while providing various 

condition indications of machinery can be manipulated 

using different tools for prognosis [2–3]. Fig. 1 shows the 

statistics of approaches being used in prognosis [1]. 

Data driven methods are broadly divided into two 

approaches i.e. Artificial Intelligence (AI) and Statistical 

approaches. AI approach has its unique computational 

power; however, it requires an extensive expertise [2]; 

however, AI approaches are hard to be explain because of 

the lack of transparency, thus these techniques are always 

named as ‘‘black boxes” [1]. In contrast, statistical models 

being not dependent of physical laws provide a more flexi-

ble framework in dealing with machinery health data. 

Statistical RUL prediction models are constructed by fit-

ting available observations into random coefficient models 

or stochastic process models under a probabilistic method 

[1], [4]. Random variances are generally introduced into 

model parameters to describe the uncertainties caused by 

different kinds of variability sources, such as the temporal 

variability, unit-to-unit variability and measurement varia-

bility [5]. 

Therefore, the statistical model-based approaches 

are effective in describing the uncertainty of the degrada-

tion process and its influence on RUL prediction [1]. This 

paper discusses application of Structural Break Classifier 

model with Autoregressive component in order to effec-

tively predict the nonlinear and random behavior of failure 

propagation in Roller element bearing (REBs).  Validation 

of the proposed model is conducted using standard statisti-

cal tests vis-à-vis experimental data. 

Fig. 1 Machinery health prognosis approaches 

2. Bearings prognosis

Bearings are the most critical component of ma-

chinery and determinant of machinery health [2] and under 

continuous deterioration being the loaded part of any ma-

chine. Bearing failure statistics shows that most of the 

failures in case of bearings are not age related [6] and gen-

erally do not follow well known bath tub curve [7]. Hence, 

it is imperative to predict the potential failure point in bear-

ings to ascertain its P-F curve.  Most of the condition mon-

itoring tools like Vibration analysis, oil analysis, acoustic 

emission, and ultrasonic analysis focuses on detecting this 

potential failure point specially in case of bearings.  

This situation is more complex specially when a 

degradation phenomenon is accelerated near end of life in 

which the randomness and various non linarites act as cata-

lyst.  When the bearing will start exhibiting the deteriora-

tion symptoms, an effect called 'butterfly effect' shows that 

how tiny differences between the initial conditions which 

apply to any dynamic system lead to dramatic difference 

after the passage of time. 
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This may explain why minute variations between 

the initial conditions of two rolling element bearings can 

lead to huge differences between the ages at which they 

fail [7]. Degradation of bearing by wiener process is ade-

quately discussed in [8] alongwith its future trend predic-

tion.  Similarly, a comprehensive review [9–12] enumerate 

in detail the bearing prognosis process with details of re-

search conducted in each prognosis step. Hence, there is a 

need to explore more reliable and easier prognostic meth-

ods in the domain of bearing health prognosis. 

3. Experimentation 

The bearing datasets were measured during exper-

imentation conducted Bearing failure test rig shown in 

Fig. 2. Accelerated testing concept was adopted to collect 

bearing failure data with an induced nonlinearity (i.e. de-

fect) under random conditions.  Experimentation was more 

focused on acquiring the trend after induction of defect till 

the achievement of failure threshold to estimate remaining 

useful life i.e. P-F interval.  

Test rig is a simple arrangement driven by a two 

Hp variable speed induction motor. A customized designed 

shaft is then supported by two bearings.  The test bearing 

SKF-6209 subjected to various radial and axial loading 

conditions, under modified housing follows the support 

bearings.  A screw type loading mechanism is installed for 

static load in radial direction and axial loading was kept 

random using modal exciter.  Data was collected using CSI 

2130 vibration analyzer. 
 

 
 

Fig. 2 Bearing test rig setup 

 

The experimental conditions at various loadings 

with different bearing defects are listed in Table 1. 
 

Table 1 

Experimental Conditions 

S. 

No. 
Radial loading 

Groove 

width (µm) 

Groove 

depth (µm) 

1 30 N 38 12 

2 45 N 38 12 

3 60 N 38 12 

 

Various researchers have utilized rms, kurtosis 

and skewness etc. for feature extraction and further devel-

opment of prognostic models [11] which are proven fea-

ture extraction approaches; however, in these methodolo-

gies the contribution of particular defect may be shadowed 

in overall spectral energy; hence true picture of specific 

defect propagation may not be ascertained. For our study 

we localize our approach to the peak values of Outer Race 

Defect frequency (BPFO) to follow propagation of outer 

race defect to forecast bearing health.  

4. Spectral analysis 

An outer race defect was discovered in test bear-

ing 6209 at 45 N radial load along with variable axial load-

ing. The change of vibration trend was categorized in three 

stages.  In the first stage, vibration levels were stable and 

no defect frequencies were observed. After the defect was 

induced defects frequencies were noted with rise in vibra-

tion levels. After further test runs the rise in vibration trend 

again lowered and stabilizes for some hours and in some 

cases remain fluctuating due ‘healing’ effect [13], the na-

ture of the propagating process of the damage.  

The signal exhibits strong impulse periodicity be-

cause of the impacts generated by a mature outer race de-

fect. To pick these short duration impulses caused due 

metal to metal contact, we employed PeakVue methodolo-

gy. However, the vibration signal acquired on the later 

stages of failure, the periodic impulses are shadowed in 

noise energy caused due propagated defect across the bear-

ing outer race. The spectral results of 6209 bearing at 45 N 

loading at various stages are shown in Figs. 3, a–c for ref-

erence. Damaged bearings are illustrated in Fig.4. 
 

 

a 

 

b 

 

c 

Fig. 3 Time waveform spectra: a – no defect, b – defect at 

initial stage, c – defect at final stages 
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5. Statistical inference 

Upon feature extraction, the structural breakpoint 

model was applied to estimate statistical features. Features 

extracted statistically were than utilized for generation of 

suitable model; which was further validated for its parsi-

mony using various statistical tests. After model validation, 

bearing degradation was forecasted.   
 

 
 

Fig. 4 Damaged bearing 
 

6. Model and method 

The model developed by [14] and further modi-

fied by [15] for structural breaks in small samples is uti-

lized. Consider standard multiple linear regression models 

with T periods and m potential breaks (producing m +1 

regimes) that can be represented by: 

,T,.......Tt''y
jjtjttt

1
1



  (1) 

 

where: t
y  represents dependent variable, 

tt &'   are co-

variate vectors with corresponding coefficients
j

&  

respectively, whereas t
  is the disturbance. Initially, 

Eq. (1) allows for joint estimation of regression coeffi-

cients by utilizing the term 
'

t  along with the determina-

tion of structural changes which are captured by j

'

t  . 

Later on, this equation signifies fractional structural trans-

form where entire coefficients were estimated with regards 

to changes in the model with )(0, iid~
2


t

. 

There were two approaches to locate the break in 

the model by utilizing Eq. (1) (a) Primarily technique of 

global sum of square residuals (SSR) minimizing break 

approach is applied in which every partition m is attained 

such that it minimizes the SSR i.e. at break position (Tj), 

for j = 1,2,…m are determined to reduce as Eq. (2):  
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Secondly, sequential technique is utilized to de-

termine breaks starting with the single break that minimiz-

es the SSR. For each segment its break is determined 

which minimize the SSR. The second break is the partition 

with the minimum SSR between the two and similarly the 

process is conducted for computation of further breaks 

sequentially. 
 

7. Testing 

Test statistics for multiple segments consists of 

generalization of test for single structural change case 

which is shown to be robust to serial correlation and heter-

ogeneity of the residuals under the null [16]. Descriptions 

of various tests will be discussed in coming sub sections. 

7.1. Fixed against zero number of breaks 

In this case, one desires to test the null hypothesis 

of no breaks against the alternative of a known number of 

breaks k. To test this F-ratio between the unrestricted 

standard sum of errors (SSE) for null hypothesis and re-

stricted SSE for alternative hypothesis is measured.  Simp-

ly stated it is the conventional test of the null δ1= δk +1 

against the alternative δj  ≠ δj +1 for some j , where ‘δ’ is the 

vector of coefficients attached to the covariate   in the 

pure structural change model.  

For the global minimized breaks, this test is called 

as Sup F(0, m ). In this case an asymptotically equivalent 

simple variance-covariance matrix for δ is computed to 

overcome the problem of estimating δ in the presence of 

autocorrelation and heteroscedasticity in residuals. How-

ever, in case of smaller time series, this simpler approach 

cause power distortion. 
 

7.2. Unknown against Zero number of breaks 

In this case, the number of breaks is unknown, 

and hence, standard F-statistic approach only not suffice 

for testing of the existence of breaks. In this regard, varia-

tions of the Sup F (0, m) test, called double maximum tests 

is used which is defined as Eq. (3): 

  ,n,FsupamaxD
nm,.......,nmax

0
21

  (3) 

 

where: m,.......,a nn 211  . 


max

D  test statistics for any number of breaks in 

each segment  In general
n

a  can be function of the asymp-

totic critical values for Sup F(0, n) which makes the mar-

ginal p-value equal across the value of n, in such case 

maxD statistics is called 
maxWD (i.e. weighted double maxi-

mum statistics) test or it may be unweighted double maxi-

mum statistics (i.e 
maxUD ). Notably the 

maxD  statistics 

depend on the Sup F(0, m), finite sample variation in the 

estimation of the variance-covariance matrix for δ will too 

affect the size & power of estimated statistics of break 

segments or it may employ the unweighted or weighted 

double maximum statistics. 

7.3. l versus l + 1 breaks 

Similar to the F(0, m ) ratio, the F(l + 1 | l ) ratio 

is also related to the ‘unrestricted’ SSE (for l breaks), to 

the ‘restricted’ SSE (for l + 1 breaks). Calculating the  

F(l + 1 | l ) ratio is equivalent to estimating l + 1 tests of 

the null of zero breaks against the alternative of a single 

break. The test decides in favor of the null whenever the 

sum of SSE for the optimal l + 2 partitions (or l + 1 breaks) 

is sufficiently larger than that for l + 1 partitions (or l 

breaks). However, the critical values of the statistic under 

the null l + 1 depend on sample-specific factors, such as 

the break size and the properties of the residual. An alter-

native approach uses the sup F(0,1) (testing for the pres-

ence of one significant break) in each of the partitions. If 

the null of 0 breaks rejected against the alternative of one 

break in at least one of the l + 1 partitions, then it estab-

lishes that l+1 breaks are statistically significant. 
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7.4. Criteria for finding the number of breaks 

The number of significant breaks can be found us-

ing Bayesian Information Criterion (BIC) and the modified 

Schwarz criterion (SC). The elementary steps will include 

testing for the existence of one break via the Sup F(0,1) 

and subsequently to test for the presence of l + 1 breaks, 

via the F(l + 1 | l) ratio, till null is not rejected. The vari-

ance-covariance of δ set in these tests, is not sensitive to 

heteroskedasticity and auto-correlation [14], unlike the 

information criteria-based approaches. However, this ap-

proach pose limitation in calculation of breaks when there 

are multiple existence of breaks vis-à-vis regimes are 

switching. Using 
maxD stats, regime switching problem can 

be tackled but for larger number of break identification 

problem still persist. 

8. Application 

Above method is applied to historical bearing 

health data t
y  measure through vibration signals by utiliz-

ing signal processing techniques. The time plot of the data 

depicted in Fig. 5 illustrate real time structural break in the 

health parameters. 
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Fig. 5 Real time instability in the health parameter 

 

To examine structural changes in mean during 

running hours we construct a constant fit to bearing health 

parameter. This change in structure of model is observed 

on the basis of sum of squared residuals (SSR). Fig. 6 illus-

trates the constant fit to the health variation progression 

from run to its failure. 
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Fig. 6 Constant fit to health degradation of bearing 

 

The fluctuation process has breaks around 58 and 

67 hours which surpass the margins and hence indicates a 

clear structural shift at these hours. The similar conclusion 

emerges from tests based on F-statistics or on the basis of 

unweighted / weighted double maximum statistics as dis-

played in Ttable-2 & 3 respectively. 

Table 2 

Sequential test statistics for significant breaks 
 

Breaks F-statistics Scaled  

F-statistics 
Weighted 

F-statistics 
Critical 

Values 
1 201.14 201.14 201.14 9.63 

2 205.29 205.29 225.17 8.77 

3 161.99 161.99 198.73 7.84 

UDmax Statistics = 

205.29   
UDmax Critical value  = 10.17 

WDmax Statistics = 

225.17 
WDmax Critical value = 10.91 

 

Table 3 

Estimated breaks in running hours 
 

Break Estimated Break Running Hours 
1 58 

2  58, 67 

3 58, 67,74 
 

Therefore, three-segment model appears fairly in-

stinctive for these data. Thus, we estimate three-segment 

breakpoint model with t
y  regressed on its lag 4-t

y with a 

constant. The evaluation is done by utilizing Bai-Perron 

chronological breakpoint methodology, with an utmost of 

3 breaks, 5% trimming, and a test size of 0.05. Coefficient 

covariances for the tests and approximation are worked out 

by utilizing HAC standard errors & covariance technique 

without modification in degree of freedom. Constructed 

model equations for each segment is represented as 

Eqs. (4, 5 & 6).  

For healthy segment 575 if  t : 
 

,y..y ttt  4040   810     (4) 

 

t-stat    :-10.43    0.41; p-value:   0.00    0.06. 

For degradation segment 6658 if  t : 
 

,y..y ttt  4270622   (5) 

 

t-stat    : 12.52    0.06; p-value :  0.00     0.00. 

For critical segment 8167 if  t : 
 

,y..y ttt  4360253   (6) 

 

t-stat     : 8.34    3.35; p-value : 0.00    0.00. 

where: (0,1) iid~ N
t

  &estimated coefficient of determi-

nation is 0.93.  
 

9. Stability of model 

Stability of the constructed model is tested on the 

basis of the departure of serial correlation and heterogenei-

ty of the residuals under the null.  

(i) Serial correlation in the error terms is esti-

mated by utilizing serial correlation LM test under the null 

hypothesis of the test that there is no successive association 

in the residuals up to the particular order.  The test statis-

tics of the model is depicted in Table 4. 

The plot of autocorrelation function (ACF) & par-

tial autocorrelation function (PACF) as shown in Fig. 7 lies 
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within 95% confidence bounds indicating iid in error se-

quence. 

Table 4 

Serial correlation LM statistics 

F-statistic 0.671 Prob. Value F(2,69) 0.514 

Observed*R2 1.471 Prob. Value χ2(2) 0.479 
 

 

                      a                                           b 

Fig. 7 Correlation Functions of error term with 95% confi-

dence bond: a-ACF plot, b- PACF plot  

 

The serial correlation LM test along with ACF 

and PACF plot results reveals that serial correlation in the 

residuals not exists. 

(ii) It is customary to ensure for heteroscedastici-

ty in error terms as of the cause that we want to check if 

the model thus constructed is incapable to explain some 

pattern in the response variable that ultimately shows up in 

the residuals. This would result in an inefficient and unsta-

ble model that could yield unreliable forecast afterward. To 

ensure it Breush-Pagan-Godfery test of heteroskedasticity 

is utilized whose estimated test statistics is listed in table 5 

which is robust to heterogeneity of the residuals under the 

null. 

Since the error terms are neither serially correlat-

ed nor heteroskedastics which signify that coefficients are 

statistically significant and estimated fit is very tight with 

these. 

Table 5 

Test output confirms error are homoskedastic 

F-statistic 3.391 Prob. F(5,70) 0.008 
Obs*R-squared 14.821 Prob. Chi-Square (5) 0.211 

Scaled explained SS 43.671 Prob. Chi-Square(5) 0.000 

10. Results & discussion 

The estimated three segments represent the bear-

ing degradation trend. It divides life time of the machinery 

bearing into three stages. By using these health stages, the 

remaining useful life is forecasted with the investigation of 

degradation tendency and a pre-determine failure thresh-

old. The actual & fitted three stage constructed model 

graph is represented Fig. 8. 
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Fig. 8 Actual & fitted constructed model within forecasted 

running hours and failure threshold 

It depicts a classical case of P-F curve for bearing 

degradation. Uptil 55th hour the trend of bearing health 

features was stable until a potential failure point was 

achieved at around 60th hour, where, there is a structural 

jump. Upon identification of potential failure point (a non-

linearity), the degradation is highly nonlinear with fluctuat-

ing values and a rising trend.  

The functional failure as per actual health data 

(experimental data) of bearing is achieved at around 75th 

hour, where a preset threshold value of 6 is achieved after 

elapsing 15 hours after identification of potential failure.   

However, the fitted graph has taken a slight long-

er and reached preset threshold at around 78th hour; 03 

more hours than actual, after elapsing 18 hours upon iden-

tification of potential failure. Such difference in actual and 

fitted values is catered while calculating uncertainties and 

errors. It can be seen that developed model has effectively 

match the actual values in the presence of strong nonlinear-

ities and random conditions. 

After the estimation and validation of the con-

structed model, we utilized this three segment structural 

break model to predict the bearing failure threshold value 

by employing out of sample dynamic forecast with sto-

chastic simulation of 1000 repetition. The forecasted statis-

tics along with graph are displayed in Table 6 and Fig.9 

respectively. 

Table-6 

Forecasted Statistics 
Forecast Test Statistics 

RMSE 0.04829 

MAE 0.03423 

MAPE 0.342 

Theil Inequality Coefficient 0.098 

Theil U2 Coefficient 0.307 

 

The forecast statistics & displayed graph 

strengthen the constructed model for bearing health param-

eters. Besides the predicted breakdown threshold value 

reaches to 6.4 with maximum 84 hours. 
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Fig. 9 Forecasted plot with observed & forecasted thresh-

old 

 

11. Conclusion 

In this study initially maximum break in bearing health 

parameter were established by utilizing constant fit tech-

nique and then by means of the estimated segments, struc-

tural break model has been developed. The projected mod-
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el expresses the bearing health equation for each segment 

with regard to different operational hour. The stability of 

the model has been attained by utilizing error analysis. 

Lastly, constructed model has been utilized to forecast the 

bearing failure threshold value. In this regard necessary 

forecast statistics and graph were work out which authenti-

cate the power of constructed model. In this study the fore-

casted bearing threshold value note down to be is around 

6.4 which achieved at maximum 84 operational hour.  
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M. Hussain, A. Mansoor, Shafiq ur Rehman Qureshi,  

S. Nisar 

 

BEARING DEGRADATION PROGNOSIS USING 

STRUCTURAL BREAK CLASSIFIER 

S u m m a r y 

Prognostics based on machine condition monitor-

ing data are one of the key elements of modern mainte-

nance philosophies.  Machinery health prognosis follows a 

sequential methodology inclusive of various processes 

ranging from data acquisition till remaining useful life 

estimation. Every step depicts distinct statistical features, 

which are helpful in estimating health state of a machine.  

In this investigation, bearing vibration data has been ana-

lyzed by utilizing the technique of structural break point 

regression. Constructed model is also employed to observe 

degradation of bearing in different regimes to estimate 

remaining useful life. 
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