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1. Introduction 

Bearings are machine elements that allow move-

ment in one or more directions between the two elements, 

with minimum friction, but hinder movement in the direc-

tion of force [1]. Many types of bearings are produced de-

pending on the application areas and the desired function. 

They vary mainly in the direction of the load they carry, the 

type of rolling elements, or the type of bearing. The bearings 

are called hydrostatic if the fluids used in them are incom-

pressible, and aerostatic, if compressible. 

In hydrostatic bearings, pressure is applied to sta-

bilize the external force and separate the surfaces from each 

other. The required pressure is supplied from the outside by 

means of a pump, and oil is sent to the bearings by this pres-

sure. Bearings are widely used in industries requiring high 

accuracy (e.g. machine tools, measurement and control 

tools, process manufacturing and medical equipment) or in 

heavy-duty machines or at low-speed structures. 

The need for precise mechanical and tribological 

properties of the hydrostatic bearings has made them an in-

teresting study topic for optimisation studies. In recent 

years, swarm intelligence methods, which are nature-in-

spired algorithms, have been used extensively in the prob-

lem of optimization of hydrostatic thrust bearings [2-8]. The 

Grey Wolf Optimization (GWO) algorithm is a swarm in-

telligence method inspired by the hunting and leadership hi-

erarchy method of grey wolfs [9]. Although GWO is a new 

method developed by Mirjalili et. al., it attracts the attention 

of researchers due to its successful performance in engineer-

ing optimisation problems [10-16].  

In this study, the power-loss minimization problem 

of hydrostatic thrust bearing, which was firstly discussed by 

Siddall [2], was solved by using GWO. This problem is con-

sidered to be a very good benchmark problem due to the dif-

ficulty in the structure. 6 out of 7 constraints are active con-

straints considering an accuracy of 3 decimal places, and all 

the design variables are highly sensitive. The Accuracies of 

the Design variables are required from 9 to 15 decimal 

places [7]. In the study, the power-loss minimization prob-

lem of hydrostatic thrust bearing was applied to GWO for 

the first time. Previous studies compared their studies with 

the work of Siddall only and carried out performance anal-

yses accordingly. Here, all previous studies on the subject 

were examined together for the first time and a comprehen-

sive comparison was made. The most significant innovation 

of the study is the improvement on GWO's mathematical 

model. A new model (Enhanced GWO) which increases the 

range of solutions by keeping the search field wider is pro-

posed. 

 

2. Literature review 

Bearing design is still an important subject for re-

searchers, as the power of the pump has a direct impact on 

system parameters such as power, force, friction, and flow 

rate. The importance of hydrostatic deposits has increased 

with the development of application areas, and many studies 

have been carried out on this subject. The optimization stud-

ies on bearing geometry and surface roughness parameters, 

which significantly affect the performance of the bearings, 

are still a developing field of study today. The first hydro-

static bearings were developed by Slocum in 1995 to be 

used in high-pressure press machines [17]. In the developed 

system, the support equipment used for the bearing of the 

shaft had high strength and friction resistance. In 1996, Sin-

hasan and Sah investigated the system characteristics of 

bearing performance [18]. To determine the lubrication flow 

with different viscosities, solutions were obtained by using 

Reynolds equation, finite element method and optimization 

techniques. In another study conducted in 1996, an experi-

mental study was conducted to evaluate the performance 

characteristics of the hydrostatic thrust bearing [19]. Perfor-

mance characteristics of the system were confirmed meas-

uring the oil film thickness, oil flow rate, pressure distribu-

tion and recess pressure.  

The studies conducted to improve the performance 

of hydrostatic bearings show that the most important feature 

expected from the bearings should be a good abrasion re-

sistance [20-25]. The thrust bearings are expected to have 

such properties as low friction coefficient, high abrasion re-

sistance, high loading capacity, good erosion resistance, 

good thermal conductivity and low thermal expansion val-

ues in their selection. However, oil viscosity, oil film thick-

ness, oil flow rate and pressure amount have significant ef-

fects on the performance of the system, as well. 

Since the beginning of 2000, with the development 

of meta-heuristic optimization techniques and increasing 

computing capabilities, intelligent optimization studies on 

mechanical systems have accelerated. Optimization of hy-

drostatic deposits using meta-heuristic optimization tech-

niques is a popular research topic. The aim of these studies 

is to minimize the loss of power during the operation of hy-

drostatic bearings [2-8].  

The first study of the minimization of power loss 

during operation of hydrostatic bearings was carried out by 



 481 

Siddall [2]. The ADRANS method developed by Siddall us-

ing the Hooke and Jeeves (HJ) pattern search method re-

sulted in a power reduction of 2,288.0 ft-lb/s (4.14 hp) in the 

existing bearings. Deb and Goyal solved the power minimi-

zation problem by using Genetic Adaptive Search (GeneAS) 

method based on Genetic Algorithm [3]. Their results were 

more successful than ADRANS method. In the same study, 

the results obtained with the Traditional Genetic Algorithm 

were shown, as well. The study showed that the bearing de-

signed using GeneAS was much better than the other two 

techniques (BGA, HJ) and could withstand a higher film 

thickness. Solmaz et al. [4] performed single and multi-cri-

teria optimization studies in circular hydrostatic bearings to 

ensure that the total power required for the bearing and the 

temperature increase in the bearing remained at minimum 

values. Multi-criteria optimization studies were shown to 

produce more effective results by applying sample methods. 

Coello's GA - Based approach proposes a multi-objective 

optimization technique instead of the penalty functions used 

in GA to overcome constraints [5]. The proposed method 

offers faster and better results than previous studies. In an-

other study on the optimization of power loss, he suggested 

the Particle Swarm Optimization method [6]. He compared 

the previous studies with his study and he discussed the in-

consistencies in the unit and design criteria with Siddall's 

study. Rao et al. applied the Teaching-Learning Optimiza-

tion (TLBO) method to the Siddall's problem [7]. TLBO 

was shown to provide better results than other studies. 

Kentli and Sahbaz solved the problem by using a sequential 

quadratic programming (SQP) approach and compared their 

results with Siddall's study [8]. 

Another important research topic in hydrostatic 

bearings is the optimization of the load bearing capacities of 

the bearings. Fesanghary and Khonsari investigated the ef-

fect of cross-section and thickness variations of the film 

layer on hydrostatic deposits on load-bearing capacity of the 

bearings [26]. As a consequence of optimization with Se-

quential Quadratic Programming (SQP), different film 

thicknesses and the obtained forms were analyzed compar-

atively. As a result, SQP improved the load-bearing capacity 

of the bearing by over 90%. 

3. The problem: optimization of hydrostatic thrust bear-

ing design 

The problem of the optimization of hydrostatic 

thrust bearing was first defined by Siddall [2]. The aim of 

the optimization is to minimize the power loss during the 

operation of a hydrostatic plain bearing that is subjected to 

an axial load during operation (Fig. 1).  
 

 
 

Fig. 1 Hydrostatic thrust bearing 

Different methods were applied to the optimization 

problem by different researchers [3-8]. The following are 

the variables of the optimization, including four design var-

iables and seven non-linear delimiters [2]: Flow rate Q, re-

cess Radius R0, Bearing step Radius R and viscosity µ.   

The purpose function for minimizing the power 

loss of the hydrostatic thrust bearing is given in equation (1) 

[2]. Minimize: 
 

0( ) .
0.7

f

QP
F x E   (1) 

 

Seven non-linear constraints were identified in 

Eqs. (2-10) for the optimization [2, 6]. 

Subject to:  

weight capacity must be greater than weight of generator: 
 

1
( ) 0,

s
G x W W    (2)  

 

where: W is the weight capacity, which can be defined by 

the following equation: 
 

2 2

0 0

0

.
2

P R R
W

R
ln

R

 
  (3) 

 

Inlet oil-pressure required less than maximum 

pressure Pmax available:  

 

2 0
( ) 0,

max
G x P P    (4) 

 

where: P0 is the inlet pressure, which can be identified as: 
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Oil temperature rise should be less than that speci-

fied: 

 

3 max 0
( ) 0.G x T T     (6) 

 

Oil film thickness should be greater than minimum 

film thickness: 

 

4 min
( ) 0.G x h h    (7)  

 

Step radius must be greater than recess radius: 

 

5 0
( ) 0.G x R R    (8) 

 

The six constraint limits on significance off exit 

loss: 
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The seven constraint limits on contact pressure: 
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where: Ef is the friction loss and is defined by the following 

equation: 
 

9336 .
f

E Q C T   (11) 

 

In the optimization, γ (the weight density of oil) 

and C (specific heat of oil) values given in equation 11, are 

defined as 0.0307 lb / in3 and 0.5 Btu / lb0F respectively. T 

(the temperature) given in Eq. (11) is defined by Eq. (12): 
 

2(10 560),
P

T    (12) 

 

where: P is defined by the equation given below: 
 

10 10 1
(8.122 6 0.8)

.
log log e C

P
n

  
  (13) 

 

In Eq. (13), n and C1 are one of the oil constants 

given in Table 1. Table 1 shows the values of n and C1 in 

different grades of oil. Selected in the study are C1 = 10.04 

and n = -3.55 for SAE 20 grade oil.  

Table 1 

Values of n and C1 for various grades of oil 

Oil C1 n 

SAE 5 10.85 -3.91 

SAE 10 10.45 -3.72 

SAE 20 10.04 -3.55 

SAE 30 9.88 -3.48 

SAE 40 9.83 -3.46 

SAE 50 9.82 -3.44 

 

The film thickness h can be calculated from the 

friction loss Ef through the equation given in Eq. (14). 
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 (14) 

 

Other specifications of the design optimization are 

as follows: 

Ws (Weight of generator) = 101000 lb (45804.99 kg); Pmax 

(maximum pressure available)= 1000 psi (6.89655 × 106 

Pa); ΔTmax (maximum temperature rise ) = 50°F (10°C); hmin 

(minimum oil thickness) = 0.001 in. (0.00254 cm); 𝑔 = 32.3 

×12 = 386.4 in./seg2 (981.465 cm/seg2) and N (angular 

speed of shaft) = 750 RPM.  

The ranges of values that the design variables of 

the optimization could have are as follows: 

1.000 ≤ R ≤ 16.000 

1.000 ≤ R0 ≤ 16.000 

1.0 × 10-6≤ μ ≤ 16 × 10-6 

1.000 ≤ Q ≤ 16.000. 

4. Grey Wolf Optimizer 

The Grey Wolf Optimization (GWO) algorithm is 

population-based and an intuitive method inspired by the 

hunting method of wolves in nature [9]. The method is based 

on the rigid hierarchy of grey wolves and their hunting be-

haviour. Each individual in the herd undertakes one of the 

alpha, beta, delta and omega roles defined from top to the 

bottom. Alpha is the leader of the herd, and he makes the 

decisions. Beta acts as a consultant of the alpha wolf. He has 

an auxiliary role in the activities of the herd and the deci-

sions of the alpha. Delta wolves are dominant against 

Omega while obeying alpha and beta. In the herd, scouts, 

sentinels, elders, hunters, and caretakers are included in the 

delta group, and each has his own defined responsibilities. 

Omega wolf is at the bottom of the hierarchy. Omega, who 

has to obey individuals from the upper levels of the hierar-

chy, seems to be not an important individual in the herd, but 

has a role in preventing internal conflicts and problems. 
 

4.1. Mathematical model of the GWO 
 

In GWO, each solution in the population corre-

sponds to a wolf in the herd. Alpha α is considered as the 

most suitable solution. The second and third best solutions 

are assumed to be Beta β and Delta δ, respectively. Omega 

 is considered as the remaining solutions.. The hunting 

area also represents the search field, and the hunt represents 

the optimal solution. 

In the hunting, primarily grey wolves encircle the 

hunt. The mathematical model of GWO developed by Mir-

jalili et. al is given Equation 15-25 [9]. The mathematical 

model of herd encircling behaviour was defined as in Eqs. 

(15) and (16).  In each iteration, the position of each indi-

vidual in the herd is updated by using Eqs. (15) and (16).  
 

. ( ) ( ) ,
p

D C X t X t   (15) 

 

( 1) ( ) . .
p

X t X t A D    (16) 

 

In Eq. (16), t represents the current iteration,  𝐴 and 

𝐶 the coefficient factors, and  𝑋𝑝
⃗⃗ ⃗⃗ ⃗  position vector of the hunt, 

and �⃗� of the wolf. 𝐴 and 𝐶 coefficient factors are calculated 

with the help of Eqs. (17) and (18), respectively:  
 

1 1
2 . ,A a r a   (17) 

 

2
2. ,C r  (18) 

 

where: a decreases linearly from 2 to 0 during iteration. 1
r  

and 2
r vectors, however, are the vectors having random val-

ues in the range of [0,1]. C and A factors are effective in 

finding the position of the hunt in search field. C defines the 

weight of the position of the hunt and is used for the calcu-

lation of �⃗⃗⃗�, the position of the individual in the herd. A

represents the condition of the wolf getting closer to or mov-

ing away from the hunt. If | A | > 1, the wolf is getting away 

from the hunt, if | A | < 1, it is getting closer to the hunt.  

Grey wolves have the ability to recognize the loca-

tion of the hunt and to encircle them. The hunting is usually 

guided by the alpha. Beta and delta may occasionally par-

ticipate in occasional hunting. To mathematically simulate 

the hunting behaviour of grey wolves in GWO, alpha (best 

candidate solution), beta and delta are assumed to have a 

better knowledge of the potential location of the hunt. 

Therefore, the first three best solutions obtained during the 

algorithm are stored and the locations of other search agents 

(omegas) are updated according to the location of the best 

search agents (Eqs. (19-25)). 
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3 3
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 
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4.2. Enhanced GWO 

In the experiments, it was observed that the perfor-

mance of GWO in the solution of the problem was low com-

pared to the results of other studies in the literature. In order 

to achieve better results, the change was made in the value 

of the a in Eq. 26. The a value is of critical importance in 

GWO (Fig. 3). As shown in Fig. 2, a, according to equation 

(26), the a value decreases linearly from 2 to 0 during the 

search process, and the search area gets narrowed accord-

ingly. In view of the difficulties in providing the constraints 

in the structure of the problem and the sensitivity of the de-

sign variables, it is preferred to use the a value defined in 

Eq. (27) instead of the a value in the mathematical model.  
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As shown in Fig. 2, b, the a value draws a spline-

based curve in the search process from 2 to 0. With the use 

of the a value ; it was aimed to make more iterations around 

the best solution in the second half while increasing the va-

riety of the current solutions by keeping the search area 

wider in the first half of the search process. This allows the 

algorithm to achieve better results 

 

    

                                                    a                                                                                                b 

Fig. 2 The chart of the a value during the iteration: a – the original version, b- the modified version 

 

Fig. 3 Pseudocode the of Enhanced GWO 
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5. Results and discussion  

 

The present study aims to minimize the power loss 

of hydrostatic bearings formulated by Siddall [2]. For the 

solution, Siddall used the ADRANS method based on 

Hooke and Jeeves (HJ) pattern search method. In this study, 

the performance of GWO and EGWO in solving the prob-

lem by using the objective function, design constraints, var-

iables and parameters defined by Siddall was tested. In ad-

dition, the performances of both methods were compared 

with the performance of the GA, GeneAS, PSO, TLBO and 

Gene-SQP methods applied to the problem in previous stud-

ies. 

For the solution of the problem through GWO and 

EGWO, the codes developed by Mirjalili were employed 

[9]. In the existing codes, necessary modifications were 

made by considering the objective function along with de-

sign variable ranges and constraints for both cases. 

The statistical performance of GWO and EGWO 

was evaluated in the first stage of the experimental studies. 

For this purpose, the population size for both algorithms was 

50, and the number of iterations was 500. Performance stud-

ies were conducted on MATLAB 2016b software on a Win-

dows 10 x64 machine with Intel (R) Core (TM) i7 3.3 GHz 

CPU and 8 GB of RAM. The best, the worst, average, suc-

cess percentage (SP) and standard deviation (SD) values of 

the obtained results were calculated by running each algo-

rithm 100 times. SP shows the stability of the algorithm by 

evaluating the results obtained with the algorithms running 

a different number of times. In this context, the global opti-

mum (F *) value should be less than 0.1% of the difference 

between the best obtained (F) value and the global optimum 

value obtained for the successful acceptance of the result 

(Eq. (28)). 

 
* *

1 3.F F F E    (28) 

  

The performances of GWO and EGWO indicate 

that the results of EGWO are superior to GWO in every per-

spective (Table 2). 

The statistical results of GWO and EGWO were 

also compared with those of Rao et. al. [7]. Rao et. al. ap-

plied TLBO and ABC algorithm to the problem. Table 3 

shows that EGWO has a more stable performance in SP 

mean and worst values than that of Rao et. al. In the best 

value comparison, the difference is negligible even if it is 

left behind compared to TLBO and ABC. 

Table 2 

Statistical comparison of EGWO and GWO 

 Best Fx Worst Fx Mean Fx SD SP 

GWO 19531.65245856190 19982.44510141746 19613.23633162136 88.600667108268382 0.00 

EGWO 19505.57612078090 19808.38496195806 19532.93037771405 45.786563676010495 0.64 
 

Table 3 

Statistical comparison of EGWO, GWO, TLBO, ABC 

 Best Fx Mean Fx Worst Fx SP  

TLBO[8] 19505.316 21572.49576 25161.61524 0.19 

ABC [8] 19505.31312 22338.648 25738.032 0.05 

GWO 19531.65245856190 19613.23633162136 19982.44510141746 0.00 

EGWO 19505.57612078090 19532.93037771405 19808.38496195806 0.64 

 

In Fig. 4, convergence rates of the algorithms are 

presented. Fig. 4, a shows the convergence curves of GWO 

and EGWO. Fig. 4, b is taken exactly from the study of Rao 

et al. For the compatibility of the curves, function values 

were calculated in units of ft lb/s. As shown in Fig. 4, a, 

EGWO converges faster than GWO and makes more 

searches around the optimum solution. The convergence of 

EGWO is similar to that of TLBO and ABC whereas GWO's 

convergence lags behind others. These results indicate that 

the change in GWO results are appropriate for the purpose. 
 

    

                              a                                                                                                  b 

Fig. 4 The Coverage rate of the algorithms for the problem:  a – the coverage rate of GWO and EGWO; b – the coverage 

rate of TLBO and ABC [7] 

 

The obtained optimum values in Table 4 are given 

in comparison with previous studies. Minor differences 

were observed in the units and design definitions in the pre-

vious studies. In Siddall’s book, the fourth constraint (g4) 

and the sixth one (g6) are multiplied by 108, and the fifth 

constraint and the third one are multiplied by 105 and 2000, 

respectively. The unit of fitness value from Deb [3] and 

Coello [5] used 560.0 while Siddall used 559.7 (Eq. (12)). 

 In Siddall’s book, the fourth constraint (g4) and 

the sixth one (g6) are multiplied by 108, and the fifth  con- 
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straint and the third one are multiplied by 105 and 2000, re-

spectively. The unit of fitness value from Deb and Coello’s 

papers is foot-pounds per second while Siddall used inches-

pounds per second. In order to facilitate the comparison, the 

optimum values presented in previous studies were arranged 

by Siddall’s definition and transferred to Table 4. EGWO 

can reach the best-known value, but GWO does not exhibit 

the same success (Table 4). 

6. Conclusion  

In this study, GWO was applied for the first time 

to solve the design problem of minimum power loss of hy-

drostatic thrust bearing. Moreover, enhanced GWO 

(EGWO) was proposed due to the lower performance of the 

GWO on the problem. The performance of the both of them 

were compared with the previous studies. The results show 

that GWO is not capable of solving the problem as much as 

previous studies. On the other hand, EGWO got the know 

best fitness value with highest success rate.  

The consistency and statistical performance of the 

EGWO show that this method can be used in the optimiza-

tion of machine elements. In the future, we are planning to 

investigate the performance of the proposed method on the 

well-known engineering optimization problems.  
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İ. Şahin, M. Dörterler, H. Gökçe 

OPTIMIZATION of HYDROSTATIC THRUST 

BEARING USING ENHANCED GREY WOLF 

OPTIMIZER 

S u m m a r y 

The need for precise mechanical and tribological 

properties of the hydrostatic bearings has made them an in-

teresting study topic for optimisation studies. In this paper, 

power-loss minimization problems of hydrostatic thrust 

bearings were solved through Grey Wolf Optimizer (GWO). 

Grey Wolf Optimizer is a meta-heuristic optimization 

method standing out with its successful applications in en-

gineering design problems. Power-loss minimization prob-

lem of hydrostatic thrust bearings was applied on Grey Wolf 

Optimizer (GWO) for the first time.  The obtained results 

were evaluated together with the previous studies con-

ducted, and a detailed comparison was made. The most sig-

nificant innovation of the study is the innovation made in 

the mathematical model of the GWO.  A new model (En-

hanced GWO, EGWO) that increases the variety of valid 

solutions was proposed. The comparisons made both with 

GWO and other studies in the literature show that EGWO 

got the best known fitness value with the highest success 

rate. The consistency and statistical performance of the 

EGWO show that this method can be used in the optimiza-

tion of machine elements.  

Keywords: Hydrostatic Thrust Bearing, Grey wolf Opti-

miser, meta-heuristic, Enhanced GWO, engineering optimi-

sation. 
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